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A new approach is presented to evaluate the velocity of field-driven domain
walls by means of ab initio parameters. This approach makes intensive use
of multi-scaling by means of (a) mapping of domain wall formation
energies obtained in terms of a fully relativistic method onto a Landau–
Ginzburg-type expression, and (b) applying the Landau–Lifshitz–Gilbert
equation to evaluate the time needed to move domain walls. In comparison
with the ‘‘classical’’ expression for the domain wall velocity originally
proposed by Landau and Lifshitz, according to which the velocity increases
with increasing width of the domain wall, three different types of magnetic
alloys, namely permalloy (Ni85Fe15), CoxNi1�x and CoxPd1�x, are
analyzed. It is shown that the Landau–Lifshitz expression for the velocity
seems to be valid whenever the slopes of the exchange and the anisotropy
energy with respect to the concentration are either both increasing or both
decreasing.

Keywords: domain wall velocities; magnetism; magnetization; magnetiza-
tion dynamics; domain structure

1. Introduction

Current-driven domain wall (DW) motions seem to raise a lot of interest because of
their possible use in completely new types of storage media [1–7]. For their
theoretical description and modelling, presently almost exclusively only micro-
magnetic approaches [5,7–9] are applied, which usually rely on a (macroscopic)
Landau–Lifshitz–Gilbert (LLG) equation with an additional phenomenological
spin-torque term [7,9] that contains a so-called non-adiabaticity parameter �,
supposed to describe the alignment of the spins of the charge carriers with those of
the wall within a classical view. Since – like all other quantities in micromagnetic
schemes – � inherently is introduced parametrically, a materials-specific description
of DW motions seems to be quite likely out of reach, even if all parameters are
‘‘borrowed’’ from experiment. Interestingly enough, it turned out that while
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according to the ‘‘classical’’ Landau–Lifshitz expression [10–12] for the velocity of
field-driven DW’s of length L, v(L), increases with L, a micromagnetic simulation of
v(L) for current-driven DW’s predicted independence of L [8].

Although presently available ab initio spin dynamics [13–15] and new multi-scale
approaches [16–23] suggest that also quantum mechanical schemes are within reach,
the difficulty to be encountered is that non-collinear magnetic structures require to
include (at least) spin–orbit effects, which for domain walls because of their size is no
easy task. Furthermore, since quantum mechanically well-defined spin torques
and spin currents [24] are not likely to be available computationally in the near
future on a level to be used for DW’s, in the meantime a multi-scale approach is
proposed for the description of DW motions in which the free energy is first
evaluated fully relativistically on an ab initio level and then – in the spirit of spin
dynamics [13–15] – mapped onto the internal field in the LLG equation.

Several applications will demonstrate that indeed materials-specific DW veloc-
ities can be evaluated without assuming parameters beyond those inherent to density
functional theory, i.e. beyond a standard parametrization of the density functional.
A comparison with the Landau–Lifshitz expression for the velocity [10–12] will give
further insight into the use of the suggested multi-scale approach.

2. Theoretical description

2.1. Formation energy of domain walls

Suppose that C0 and Cd denote the following magnetic configurations in a system
with only two-dimensional translational symmetry (‘‘layered system’’),

C0ðLÞ ¼ f~nl ¼ ~z, ~nk ¼ ~z, ~nr ¼ ~z, k ¼ 1,Lg, ð1Þ

CdðLÞ ¼ f~nl ¼ ~z, ~nk, ~nr ¼ �~z, k ¼ 1,Lg, ð2Þ

where ~nl and ~nr refer to the orientations of the magnetization in the ‘‘left’’ and the
‘‘right’’ domain, the ~nk those in the atomic planes forming the wall, and ~z is parallel
to the surface normal. In Cd the orientation of the magnetization in the individual
atomic planes changes continuously from ~z to �~z,

~nk ¼ Dð�kÞ~z, ~nk ¼ Dð�kÞ~z, �k ¼ �k=L, ð3Þ

D(�k) being a rotation by an angle �k around the in-plane ~x-axis. It should be noted
that for matters of simplicity in Equations (2) and (3) a simple sinusoidal wall profile
is assumed. Clearly enough the use of any other, perhaps more realistic set {D(�k)} is
straightforward. For a given value of L the domain wall formation energy is then
given by

EðLÞ ¼ EðCdðLÞÞ � EðC0ðLÞÞ, ð4Þ

where, when adopting the magnetic force theorem, E(Cd(L)) and E(C0(L)) refer to
grand-canonical potentials at T¼ 0. If cp� denotes the respective concentrations of
constituents A and B in layer p of a substitutionally statistically disordered alloy,
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then in terms of the (inhomogeneous) Coherent Potential Approximation (CPA) for
layered systems [25,26] E(L) is given by

EðLÞ ¼
XL
p¼1

EpðLÞ ¼
XL
p¼1

X
�¼A,B

cp� Ep
�ðCdðLÞÞ � Ep

�ðCoðLÞÞ
� �

, ð5Þ

Ep
�ðCiðLÞÞ ¼

Z �F

�b

np�ð�; CiðLÞÞð�� �FÞd�, ð6Þ

where the np�ð�; CiðLÞÞ are the components of the layerwise projected DOS
corresponding to the magnetic configuration Ci (L), �b denotes the bottom of the
valence band, and �F is the Fermi energy.

Phenomenologically, by using a Ginzburg–Landau-type expansion, the domain
wall formation energy E(L) is defined by [16,20]

EðLÞ ¼ A0
A

L
þ KL

� �
, ð7Þ

where A0 is the area of the two-dimensional unit cell, and A and K are proportional
to the exchange and magnetic anisotropy energy, respectively. From the condition
dE(L)/dL¼ 0 it follows immediately that the equilibrium domain wall width L0 is
given by L0 ¼

ffiffiffiffiffiffiffiffiffiffi
A=K
p

. The coefficients A and B in Equation (7) can easily be obtained
by evaluating the free energies E(L), see Equation (5), at (at least) two different
values of L. It should be noted that by using Equation (7) a first multi-scale step is
taken because a quantum mechanically defined quantity, namely the domain wall
formation energy, is mapped without additional parameters on a phenomenological
(macroscopic) quantity.

2.2. Domain wall motions

Clearly enough in the definition of magnetic configurations, see, e.g. Equation (2),
a domain wall is described as ‘‘fixed’’ in coordinate space by an arbitrary choice of
an origin in order to specify layer indices

CdðLÞ ¼ ~nl ¼ ~z
� �

, Dð�1Þ~z,Dð�2Þ~z, . . . ,Dð�LÞ~z
� �

, ~nr ¼ �~z
� �� �

,

l ¼ 0, � 1, � 2, . . .�1, r ¼ Lþ 1,Lþ 2, . . . ,1: ð8Þ

To shift such a domain wall by one ML, i.e. to ‘‘make it move’’, one has to switch
from Cd(L) to C 0dðLÞ:

C 0dðLÞ ¼ ~nl ¼ ~z
� �

, ~z,Dð�2Þ~z, . . . ,Dð�LÞ~z,Dð�Lþ1Þ~z,Dð�Lþ1Þ~z
� �

, ~nr ¼ �~z
� �� �

,

l ¼ 1, 0, �1, �2, . . .�1, r ¼ Lþ 2,Lþ 3, . . . ,1:
ð9Þ

After the ‘‘move’’, i.e. being again in ‘‘equilibrium’’, of course the following
condition has to apply,

EðCdðLÞÞ � EðC 0dðLÞÞ, ð10Þ

which in turn implies that a simple re-indexing of layers will not describe a domain
wall motion.
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Consider now a Taylor series expansion,

f ðuÞ ¼
XP
n¼1

f ðnÞðu0Þ

n!
ðu� u0Þ

n, f ðnÞ ¼
d ðnÞ

dun
, ð11Þ

for the layer-resolved band energies, see Equations (5) and (6), reformulated in
Equation (12) such that the layer-index is cast into multiples of the interlayer
distance d?

f : xk ¼ kd?f g ! EkðLÞ
� �

� EðL;xkÞ
� �

: ð12Þ

Now it is easy to see that in analogy to the approach suggested in Ref. [27] in terms
of Equation (11) layer-resolved band energies shifted along the surface normal can be
written as

EðL; ukÞ ¼ EðL; xkÞ þ akðLÞðuk � xkÞ þ bkðLÞðuk � xkÞ
2

þ ckðLÞðuk � xkÞ
3 . . . , k ¼ 1,L: ð13Þ

In order to move a domain wall by one monolayer uk has to fulfill the condition

uk � xk ¼ d? cosðD�Þ, ð14Þ

D� ¼ �k�1 ��k: ð15Þ

It should be noted that uk corresponds to the z-like component of a displacement
operator in coordinate space of the type ~uk ¼ ð0, 0, ukÞ. In fact in a ‘‘parent’’ (simple)
lattice d? refers to a translation, which in turn is followed by a rotation of the
magnetization with respect to the difference angle between the orientation of the
magnetization in layers k and k� 1; for details, see Ref. [26]. The error W(L) of this
numerical procedure can easily be checked by evaluating the difference between the
band energy before and after the shift

WðLÞ ¼ EðC 0dðLÞÞ � EðCdðLÞÞ
		 		=EðCdðLÞÞ ð16Þ

since according to Equation (10) W(L) should be zero. Quite clearly the above
outlined procedure can in principle be applied as often as necessary, i.e. a domain
wall can easily be moved over a distance pd? along the surface normal. It is a scheme
that frequently is used as an ‘‘in-between step’’ in molecular dynamics as a scaling
procedure.

2.3. Landau–Lifshitz–Gilbert equation

As already mentioned in the introduction, in order to estimate the time needed to
move a domain wall of given width L, at present only the following (layer-resolved)
equation of motion is available

d ~miðL, tÞ

dt
¼ �� ~miðL, tÞ � ~HeffðL, ~uiÞ þ � ~miðL, tÞ � ~miðL, tÞ � ~HeffðL, ~uiÞ


 �
þ ~�iðLÞ,

i ¼ 1,L, ð17Þ
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where the case ~�iðLÞ ¼ 0 refers to the ‘‘classical’’ LLG equation, successfully used in

ab initio spin dynamics [13–15], while

~�iðLÞ ¼
1þ ��

ð1þ �2Þ
jzðLÞ ~miðL, tÞ � ~miðL, tÞ �

@ ~miðL, tÞ

@z

� �

�
�� �

ð1þ �2Þ
jzðLÞ ~miðL, tÞ �

@ ~miðL, tÞ

@z
ð18Þ

corresponds to a phenomenologically augmented LLG equation, which is usually

termed the ‘‘generalized’’ LLG equation. In Equation (17) � is the so-called Gilbert

damping factor and � the gyromagnetic ratio; in Equation (18) the current density

jz(L) is given by PðLÞ g�B=ð2eMsÞð Þ~jðLÞ with ~jðLÞ being the current density, P(L) the

(non-relativistic) ‘‘spin’’ polarization, Ms the saturation magnetization, and �
corresponds to the already mentioned non-adiabaticity parameter [7].

Since for the time being only ~Heff
i ðL, ~uÞ,

~Heff
i ðL, ~uÞ ¼ �

@ DEiðL, uÞ
� �

@~u
, ð19Þ

Heff
i,xðL, uxÞ ¼ Heff

i,yðL, uyÞ ¼ 0, 8u, ð20Þ

Heff
i,z ðL, uÞ ¼ �

d DEiðL, uÞ
� �

du
, ð21Þ

where

DEiðL, uÞ ¼ EiðL, uÞ � EiðL, u0Þ, ð22Þ

can be associated with quantum mechanically well-defined quantities1, in the

following exclusively the ‘‘classical’’ LLG equation is applied, i.e. in Equation (17)
~�i ¼ 0, 8i. Furthermore, in order to evaluate the time needed to change the

orientation of the magnetization by D� usually [13–15,24] only the relaxation term in

the LLG equation needs to be considered,

m0
dnixðL, tÞ

dt
¼ 0, ð23Þ

m0

dniyðL, tÞ

dt
¼ � �niyðL, tÞn

i
zðL, tÞH

eff
i,z ðL, uÞ, ð24Þ

m0
dnzðL, tÞ

dt
¼ þ � niyðL, tÞ


 �2
Heff

i,z ðL, uÞ, ð25Þ

where

~niðL, tÞ ¼ ~miðL, tÞ=m0, m0 ¼
X
�¼A,B

ci�m
i
�, 8L, t: ð26Þ
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In Equation (26) the mi
� are the layer- and component-resolved magnetic moments

and the ci� the corresponding concentrations of species A and B. Since the magnitude
of the magnetic moments is supposed to remain constant,

niyðL, tÞ

 �2

þ nizðL, tÞ
� �2

¼ 1:

Equation (25) reduces to

dnizðL, tÞ

dt
¼ 1� nizðL, tÞ

� �2
 �
�

�

m0
Heff

i,z ðL, uÞ

� 
: ð27Þ

By using the first four expansion coefficients in Equation (13) the integration
of Equation (27) can now be performed using exactly the approach discussed in
Refs. [28,29].

In the case of the ‘‘generalized’’ LLG equation, see Equation (18), �i,z would be
of the form

�i,z ¼
1þ �ðLÞ�

ð1þ �2Þ
jzðLÞ

@nizðL, tÞ

@z
,

from which one can immediately see that Heff
i,z and @nizðL, tÞ=@z are of opposite sign

with � appearing in both terms of Equation (27). It is important to note that by using
Equation (27) it is implicitly assumed that during the motion of a domain wall its
profile does not change. This restriction, however, can only be overcome by actually
calculating directly for a given length L the nizðL, tÞ as a function of t self-consistently
within density functional theory, a procedure that up to now is only possible for
small clusters of magnetic atoms on metallic surfaces, see, e.g. [14].

2.4. Velocity

The velocity v(L) of the motion of a domain wall of width L can now easily be
calculated, simply by making use of the relation

vðLÞ ¼
d?
	ðLÞ

, ð28Þ

where 	(L) is the (minimal) time needed to move a domain wall of width L over the
distance of one monolayer,

	ðLÞ ¼ max 	iðLÞ
� �

, ð29Þ

and d? is the interlayer spacing (constant). In order to obtain L0 in principle the
domain wall formation energy E(L) is needed only at two different L. This suggests
fitting 	(L) by a second order polynomial of the form y¼ axþ bx2 in order to obtain
	(L0). Furthermore, since the changes in the layer-resolved band energies are biggest
at the very beginning (or end) of a domain wall, it turns out that when moving a
domain wall to the right, see Equation (14), 	(L0) is determined by 	1(L0), where
	1(L0) refers to the very first atomic layer in the domain wall, namely to the largest
layer-dependent shift time.
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3. Multi-scale procedures

Before going ahead with applications it seems to be useful to summarize all multi-
scale procedures introduced up-to-now, see Table 1.

4. Applications

In this section, three different systems are considered in order to illustrate the
above approach and to investigate its relation to the ‘‘classical’’ Landau–Lifshitz
expression [10–12] for the velocity,

v ¼
�

�
Ms

ffiffiffiffi
A

K

r
¼
�

�
MsL0 ð30Þ

in which any spin-torque action is neglected. Since in Equation (30) v is proportional
to the equilibrium width L0 this implies that thicker domain walls move faster than
thinner ones.

In the following, the velocities of 90� and 180� domain walls [22] in permalloy
Ni85Fe15(100) are investigated, and then two different magnetic substitutional alloys,
namely CoxNi1�x(100) [21] and CoxPd1�x(111) [23], by varying the concentration
of Co.

4.1. Permalloy (Ni85Fe15)

Figure 1 illustrates the case of moving a 180� domain wall of equilibrium width L0 in
Ni85Fe15, see Equation (8), one ML to the right. It is interesting to note (top of this
figure showing the original domain wall in terms of all layer-resolved band energies)
that there is a rapid change in layer-resolved band energies only at the very beginning
and the very end of the domain wall covering a region of about 10 Å thickness.
Furthermore, an in-plane anisotropy can be seen in terms of the maximum in the
middle of the domain wall exactly when the direction of the magnetization is
perpendicular to ~z.

By using a Taylor expansion of order 5 a rather accurate shift by one ML is
achieved, see the lower parts of Figure 1, in which only the very beginning (middle
entry) and the very end (bottom entry) of the original and the shifted domain wall are
displayed. The lower parts of Figure 1 prove that the domain wall was indeed shifted
by d? to the right. Considering that the individual layer-resolved band energies Ei are

Table 1. Summary of all multi-scale procedures and computational fits applied.

Step Microscopic Macroscopic Sought Procedure

1 Equation (5): E(L) ) Equation (7): �(L) L0 ‘‘Ginzburg–Landau’’

2 Equation (22): DEi(L, u) ) Equation (23): ~Heff
i ðL, ~uÞ 	i(L) ‘‘Landau–Lifshitz–Gilbert’’

+
	(L0) Computational fit

2254 P. Weinberger et al.
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already of the order of meV the remaining inaccuracies can hardly be removed, since
both the layer-resolved energies [25,26] as well as the derivatives in Equation (11)
result from numerical procedures. Despite these inherent inaccuracies it turns out
that the error defined in Equation (16) amounts to only 0.0009%.

In Figure 2 the mentioned polynomial fit of 	(L) is illustrated together with the
resulting domain wall velocities v(L). As can be seen this polynomial fit is indeed
quite accurate. It seems therefore not necessary to evaluate the domain wall energy
exactly at the equilibrium width as shown in Figure 2 for the case of a 180� domain
wall in Ni85Fe15.
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)

Figure 1. Ni85Fe15. Top: original (unshifted) layer-resolved band energies for L0¼ 1038ML.
The middle and the bottom entries refer to the band energies corresponding to the ‘‘left’’ and
‘‘right’’ edge of the original domain wall (full line) and the one shifted by 1ML (dashed line).
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In Table 2, a detailed analysis for the two types of domain walls in permalloy is

given. From this table it can be seen that essentially only the exchange energy A is

changing when going from a 90� domain wall to a 180� one [22].
From Table 2 it follows that the ratio w between the two velocities is 1.23,

while in terms of Equation (30), w.L0(180)/L0(90), this ratio amounts to about 2.
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Figure 2. Ni85Fe15. Top row: fit of 	(L) by a second order polynomial. Bottom row: domain
wall velocities. Displayed are the cases of a 90� (left column) and a 180� (right column) domain
wall.
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Quite obviously for permalloy (at least for Ni85Fe15) this implies that as predicted
by the Landau–Lifshitz relation thicker domain walls indeed move faster than
thinner ones.

4.2. CoxNi1�x

In CoxNi1�x there seem to be two different regimes of changes in K(x) with respect to
the concentration [22], see the insets in Figure 3. As long as the sign of the slope of
A(x) and K(x) with respect to x is the same, i.e. when 0.45 x� 0.8, the behavior as
predicted by Equation (30) is found. As is well-known for x4 0.8 structural changes
start to set in (Co is hcp, while CoxNi1�x is fcc), so it seems that all considerations
using a parent fcc lattice should be confined to about x� 0.8. In the range of
0� x� 0.3, however, K(x) increases rapidly with decreasing x while A(x) decreases,
see Figure 4. In this regime the ‘‘classical description’’ v(x, L0) � L0(x) in Equation
(30) seems to be of no great help.

4.3. CoxPd1�x

In CoxPd1�x there are quite a few concentration regimes in which K(x) changes
rapidly [23], see the left column in Figure 5. Only for small values of x do the slopes
of the concentration-dependent constants A(x) and K(x) have the same sign. This
then is the (only) regime in which the velocity increases with the domain wall width,
see Figure 5.

For all other concentrations of Co, v(x,L0) is not proportional to L0(x), i.e. is not
of Landau–Lifshitz type.

5. Conclusion

In this paper, an approach is introduced to evaluate by means of multi-scale schemes
the velocity of domain wall motions in terms of ab initio derived parameters. The
phenomenological parts of the scheme are based on (a) the evaluation of equilibrium
domain wall thicknesses L0(x) in terms of a Ginzburg–Landau-type expansion, see
Equation (7) [16], and (b) the Landau–Lifshitz–Gilbert equation to obtain shift

Table 2. Comparison between a 90� and a 180� domain wall in permalloy.
The values for 	(L0) and v(L0) correspond to a Gilbert damping factor of 1.

Unit 90� 180�

A meV 2.3030 9.1514
B meV 0.72426.10�2 0.71895.10�2

L0 ML 564 1038
	(L0) ns 20.28 16.43
v(L0) cm s�1 0.87 1.08
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times, see Equation (27) [13–15,28,29]. Furthermore, a second order polynomial
expansion is suggested in order to extrapolate these times to L0(x); see also Table 1.
The microscopic parts consist of an evaluation of domain wall formation energies
and their layer-wise contributions using a fully relativistic ab initio approach, i.e.
using the Dirac equation. The assumptions made were (a) that a domain wall profile
was chosen which reproduces correctly the minimal domain wall energy, (b) that this
profile does not change during the motion of the domain wall, and (c) a particular
value for the Gilbert damping term, �, has to be chosen. The first assumption can
easily be checked by varying the profile and evaluating the domain wall energy at L0.
The second assumption can presently not be verified, since in principle also the
influence of the applied external field that causes a domain wall to move has to be
taken into account [24]. Clearly also in micromagnetic schemes a value for � has to
be chosen.
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Figure 3. CoxNi1�x. Equilibrium width L0(x) (top) and velocity v(x, L0) as indicated in the
range of 0.45xCo� 0.8. The insets show the exchange (top) and anisotropy energy (top) data
from Ref. [22].
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For permalloy a kind of Landau–Lifshitz behavior, see Equation (30), is found,
which is only partially the case in CoxNi1�x and hardly applies to CoxPd1�x. Taking
all the evidence together, roughly two cases can be distinguished when varying the
concentration x in a magnetic substitutional binary alloy, namely (1) v(x,L0) is
proportional to L0(x) (Landau–Lifshitz behavior) provided that DA(x)/
jDA(x)j ¼DK(x)/jDK(x)j, and (2) v(x, L0) seems to be proportional to K(x), whenever
DA(x)/jDA(x)j ¼�DK(x)/jDK(x)j, where DA(x)¼ dA(x)/dx and DK(x)¼dK(x)/dx.

In Ref. [7] for 1500 nm wide, 20 nm thick permalloy wires of length 80 mm a
velocity of about 40–60 cm/s is reported for current densities j4 1.05� 1012A/m2,
while for j less than about 0.9� 1012 A/m2 the velocity is about 10 cm/s. Considering
that in the present calculations only the classical LLG equation (no spin-torque
term) is used and that a two-dimensional translationally invariant system serves as a
model for nanowires, in particular for low current densities, the values listed Table 2,
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Figure. 4. CoxNi1�x. Equilibrium width L0(x) [23] and velocity v(x,L0) for 0� x� 0.3.
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namely about 1 cm/s, for �¼ 1, agree reasonably well with their experimental
counterparts. This is true even if in Equation (25) a value of � of 0.1 or even less were
used, since v(x,L0) scales directly with �. Therefore, it seems that despite all the
assumptions made (such as a domain profile that does not change during motion) in
terms of the presented approach material-specific velocities can be evaluated based
entirely on parameters obtained via an ab initio fully relativistic approach. Finally, it
should be noted that it would be extremely difficult to find ‘‘reasonable’’ parameters
to predict concentration-dependent domain wall motions using micromagnetic
schemes.
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Note

1. This can easily be seen considering the quantity PðLÞ ~j ðLÞ, the ‘‘spin-polarized current
density’’, which is only quantum mechanically well-defined in the (non-relativistic) case of
collinear magnetic structures. In principle for non-collinear magnetic structures this term
has to be replaced by the so-called polarization density, introduced in Ref. [24].
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