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Applications in Materials Science

The potential applications of group-theoretical meth-
ods in solid-state physics — synonymous for materials
science — depend on the various groups that are
specific for this field. For instance, the compact con-
tinuous groups SU(2) or its homomorphic image
SO(3,R) are widely used in multiple scattering theo-
ry. Proper point groups as specific finite subgroups of
SO(3,R) are employed when investigating macro-
scopic properties of materials that are described by
tensors of certain ranks. Crystallographic space groups
containing Bravais vector lattices as countable sub-
groups are taken into account when describing bulk
properties of materials. Moreover, sectional layer
groups might turn out to be of decisive importance
when discussing surface properties of materials, since
they describe the symmetries of crystallographic
planes. Finally, penetration rod groups may eventual-
ly become important when investigating one-dimen-
sional defects in some materials.

Point Groups - Macroscopic Properties

Proper crystallographic point groups 2(7 (%)) are,
by definition, intersection groups of the type
SO(3,R)nSL(3,Z) where the symbol SL(3,Z) de-
notes the group of all integral 3 x 3 matrices with
det Z(z) = +1 such that, in addition, a certain
Bravais lattice .7 (%) i1s mapped by these matrices

onto itself. Proper noncrystallographic point groups
2 are, by definition, finite subgroups of the proper
rotation group SO(3,R) which are not constrained
by the invariance condition of Bravais vector lattices.
Macroscopic properties of materials, such as stress
or conductivity, are described by tensors of certain
ranks which in the presence of symmetry are invar-
iant with respect to the symmetry group G in ques-
tion. For instance, the invariance condition implies,
for a second rank tensor {T}, |7,k =1,2,3},

3
S Al B R R=T s WReP. 1]
jk=1

that, depending on the symmetry group 2, certain
tensor components vanish for symmetry reasons. For
instance, in cubic symmetry tensors of rank two are
proportional to the three-dimensional unit matrix.

Crystallographic Space Groups

A proper description of bulk properties in solids
requires the introduction of three-dimensional cry-
stallographic space groups which, loosely speaking,
can be seen as the invariance groups of three-dimen-
sional periodic structures. The basic constituents of
space groups are their underlying Bravais vector lat-
tices 7 (%) and admissible crystallographic point
groups 2 that leave the Bravais vector lattice 7 (%)
invariant. Possible structures of space groups and
their classification schemes are discussed later.

Bravais vector lattices Let {#, #, #3} be a set of
three linearly independent (noncoplanar) vectors of
the Euclidean vector space Ep where the latter is
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regarded as the vector space component of the un-
derlying Euclidean point space Ej. To simplify the
notation, let ¢t =(#1, #,, #3) be formally denoted as
row vector and 7€ Z> as column vectors with integral
coefficients. Then, by definition,

(&) ={t=t n|nel’} 2]

N

t=eD(Z) 3]

where the countable set of vectors denoted by 7 (%)
determines uniquely a Bravais vector lattice which
can be traced back by means of an appropriate three-
dimensional nonsingular matrix D (%)eSL(3,R)
with det D (%) >0 to an orthonormalized basis e of
the associated Euclidean vector space Ej. It is worth
noting that the positive sign of the determinant gua-
rantees the right-handedness of the associated coor-
dinate system. Apart from this, the symbol #-#
should be seen as formal scalar product and likewise
e D (&) are the formal multiplication of a row vector
times a 3 x 3 matrix. Moreover, one can define

t(z) =tZ(z) VZ(z)eSL(3,Z) [4]
countable infinitely many vector bases for one and the
same Bravais vector lattice 7 (%), since the group
SL(3,7) is countably infinite. Accordingly, the corre-
sponding vector bases #(z) are equally well suited to
describe one and the same Bravais vector lattice.
Hence, the choice of standardized vector bases, such
as vectors of the shortest lengths, is subject to certain
conventions to achieve this goal.

Automorphisms of vector lattices — point groups To
understand the structure of crystallographic space
groups, one first has to understand the structure of
crystallographic point groups (7)) that leave a cer-
tain Bravais vector lattice 7 (%) invariant. Obviously,

Aut(7) = GL(3,2) 5]

which implies that the “automorphism group”
Aut(7) is the most general group that leaves the
Bravais vector lattice 7 invariant, where GL(3,Z)
contains SL(3,Z) as normal subgroup of index two.
To assure that the point group (7)) contains only
orthogonal transformations, one demands the restrict-
ing condition

2(7) = 0(3,R)AGL(3,2) 6]

in order to guarantee a maximal set of ortho-
gonal symmetry operations that leave the Bravais
vector lattice 7 invariant. The action of the point
group operations Re Z(7) onto the elements of the

primitive vector basis # is given by

3
Rit; i— Z Zk/(R)tk [7]
k=1

where the additional condition Z(R)e GL(3,Z) must
be satisfied for all group elements Re () of the
crystallographic point group. The actual form of
the matrix representation {Z(R)} is characteristic of
the corresponding crystal class, once the associated
crystal system has been determined for the Bravais
vector lattice 7 in question.

Space groups — gross classification The easiest ac-
cess to crystallographic space groups is to start from
the locally compact continuous “Euclidean group”
E(3,R) which is composed of the locally compacts
three-dimensional continuous translation group
T(3,R) and the full rotation group O(3,R):

E3,R)= T3, R)® O, R) (8]

which symbolizes a semidirect product group
between the translation group and the full rotation
group. The Euclidean group E(3,R) is the most
general motion group whose corresponding transfor-
mations map the Euclidean vector space E3, onto itself,
such that not only the distance between two vectors,
but also the angle between them remains invariant.
The nonsingular transformations .#(S|v) that are
uniquely assigned to the groups elements (S |v), (X |
w)e E(3,R) are given by the following expressions:

M(S|v)x =Sx +v=xcE} 9]

M(S | v)M(X | w) = M(SX|v+Sw)  [10]

where the so-called Wigner—Seitz symbols are used to
denote the group elements of the Euclidean group. In
order to combine consistently the various notations,
one may express an arbitrary element of the Euclidean
vector space E?R as follows x = e - x, where xeR> are
the corresponding column vectors with real-valued
components. Finally, the composition law of the Eu-
clidean group E(3,R) is given by [10] in terms of the
nonsingular transformations.

By definition, space groups (hereafter sometimes
denoted by the shorthand notation %) are countable
subgroups of the Euclidean group E(3,R) where
the locally compact continuous translation group
T(3,R) is reduced to one of the noncountable infi-
nitely many Bravais vector lattices 7 and where the
full rotation group O(3,R) is reduced to the utmost
maximal crystallographic point group 2(7) that
leaves the underlying Bravais vector lattice 7 by its
orthogonal transformations invariant. In mathematical
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terms, one writes
G =1{7,2|0,ws} 11]

to symbolize space groups. Here, the entry 7 de-
notes the Bravais vector lattice and 2 its correspond-
ing crystallographic point group which satisfies the
group-subgroup relation 2, SP<Pax, where
Prmin and its corresponding counterpart P, are de-
termined by the associated arithmetic class of space
group types. Moreover, the symbol @ denotes the
chosen origin of the associated coordinate system
and wyeEy, the set of nonprimitive translations
which are likewise called “fractional translations.”
They are uniquely assigned to the point group ele-
ments Re?. Accordingly,

wyp ={wr =t -wr | Re?} [12]

where the components wreQ® of the fractional
translations become rational numbers if the origin ¢
of the space group G is suitably chosen. The corre-
sponding space group elements are denoted by
(R|wg +t)e¥, where again the Wigner—Seitz no-
tation is employed. The composition law of each
space group ¢ must follow automatically from the
composition law [10] the Euclidean group E(3,R)
due to their group-subgroup relation. To be more
specific

(R|wg +#)* (S |ws +v)
= (RS |wgs + tr s+ t + Rv) [13]

trs = wr + Rws — wgs [14]

where the closure relation for the space group %
implies ¢tz s€ 7 for all point group elements R, Se 2.
This allows one to classify the space groups into two
significantly different types, namely “symmorphic”
and “nonsymmorphic” space group types. The cri-
terion reads

Symmorphic 4: trs=0 VR,Se? [15]
Nonsymmorphic 4: #xs#0 3R,Se2? [16]

which simply shows that symmorphic space groups
can be seen as semidirect product groups, whereas
nonsymmorphic space groups are more general ex-
tensions. As a matter of fact, there exist 230 space
group types which split into 73 mutually disjoint
arithmetic classes, where each arithmetic class is led
by a symmorphic space group type.

%-Invariant atomic arrangements The simplest
model for a crystal is the static arrangement of at-
oms (molecules, clusters, etc.) where it suffices to fix

some atomic positions within one primitive cell
2(7) and to exploit its space group symmetry to
obtain an infinitely extended periodic structure. Here
the symbol 2(77) denotes the primitive cell of the
Bravais vector lattice 7 that is nothing but the par-
allelepiped spanned by the primitive basis vectors ¢.
Atomic positions in #(7) are denoted by xe 2(7)
and are classified by the so-called “Wyckoff posi-
tions.” Here, for simplicity G = (R |wgr +#)€¥ a
shorthand notation for the space group elements is
introduced as

G(xj) = {Ged | 4 (G)x; = x;} [17]

{%(9)} ={x(G) = M (G)x; | Ge ¥ : %(x;)} [18]

Groups of the type %(x;) defined by [17] are called
site. groups. Infinite sets {(x;)%} defined by [18]
are called single site atomic arrangements. Two
positions, say x; and xy, are called ¢ equivalent if
and only if, there exists at least one space group
element Ge% such that .#(G)x; = x;. Their site
groups are then conjugate subgroups with respect to
the space group % in question. However, if one can-
not find a space group element Ge¥ such that the
previous condition holds, then the two positions are
called ¢ inequivalent. The union of mutually disjoint
single site atomic arrangements defined by

{21550, ;200 G}
={x1(9)}u{x(D)}o - {xa(9)} [19]

is regarded as a multiple-site atomic arrangement
which describes a periodic structure that possesses
the space group ¢ as its symmetry group. The notion
of Wyckoff position is synonymous for connected
subsets of the primitive cell #(7), whose points
(vectors) possess image groups 2 (xj)~%(x;) that
are conjugated subgroups with respect to its cry-
stallographic point group 2. Wyckoff positions may
consist of isolated points, lines, planes, or compact
subsets of (7). This specific classification of points
xeP(7) is of importance in physical applications.
Since different elements or any fixed Wyckoff posi-
tion must have the same point group symmetry,
it may or may not lead to a change of energy when
the atoms vary their positions within one Wyckoff
position.

Space group—subgroup relations Group—subgroup
relations between crystallographic space groups
play a decisive role in structural phase transitions
which are accompanied by changes in the sym-
metry. Usually, one assumes that the space group #
of the distorted phase is a proper subgroup (of finite
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index) of the space group % of the parent phase
which implies that # =%. Due to the reduction of
the symmetry at the phase transition, the distorted
phase can appear in several homogeneous simulta-
neously coexisting states which have the same struc-
ture but different orientations and/or locations in
space. Let 9={7,2|0,wy} be the superspace
group and # ={¥,2|0',w,} be the subspace
group of the former. In fact, three significant differ-
ent types of group—subgroup relations are possible,
namely

translationseleiche: ™A'= 77519 & 75190
[ascengleiche : "Fog, 2=2P [21]
general s | P TEND= P [22]

where by means of “Hermann’s theorem,” it can be
shown that every general group-subgroup relation
between space groups can be traced back to various
chains of maximal translationsgleiche or klassengle-
iche subspace groups. Group-subgroup relations of
infinite index are given by V Kopsky and D B Litvin
in 2002 in the International Tables for Crystal-
lography, Volume E, Subperiodic Groups, where
sectional layer groups and penetration rod groups
are discussed as subgroups of three-dimensional
crystallographic space groups.

Space Group Unirreps

This section focuses on the representation theory
of space groups with special emphasis on their un-
irreps. It is well known that space group unirreps
can be constructed systematically by applying
Mackey’s induction procedure, which is exhaustively
discussed by C J Bradley and A P Cracknell in
1972 in The Mathematical Theory of Symmetry in
Solids. Mackey’s induction procedure relies, among
others, on the assumption that the given group G
possesses a normal subgroup N whose unirreps are
known. Specifying these assumptions to space
groups, it implies that one should start from the
well-known one-dimensional # unirreps, since every
crystallographic space group % contains a Bravais
vector lattice 7 as its natural normal subgroup.

Reciprocal vector lattices In order to be able to
define the J unirreps, one has to define first the cor-
responding reciprocal vector lattice 7 * together
with its corresponding “Brillouin zone” %(7 *)

T* ={K=K -n|neZ®} 23]

t- K, = 27‘6571 [24]

By definition, the vectors K = {K;, K3, K3}, for-
mally written as row vectors, form the basis of the
corresponding reciprocal lattice 7 *, where 7 is the
underlying direct vector lattice. The Brillouin zone
(T *) is the counterpart of the Wigner—Seitz cell of
the underlying direct vector lattice. The primitive cell
P(T*) is spanned as parallelepiped by the basis
vectors K. Recall that 2(7 *) and its symmetrical
counterpart %(7 *) are equally well suited to
describe the basic domains of the reciprocal vector
lattice 7 *.

Z Unirreps Since J forms an abelian group, its
unirreps over the field C of complex numbers are one-
dimensional, which implies that they are unimodular
numbers. In fact,

DF(E|t) = e i** [25]

k = oKy + K, +7K3 [26]

where not only ke (7 *) but also €7 should be
taken into account. It is to be noted that the 7 irrep
label ke %8(7 * ) varies continuously over the Brillouin
zone. For instance, in the case of primitive cubic
Bravais vector lattices, the corresponding continuous
parameters have —1/2<a, f,y< + 1/2 their domains
of definitions to avoid double counting of eventually
superfluous 7 irrep labels.

Periodic boundary conditions Once the so-called
“periodic boundary conditions” are imposed to any
given Bravais vector lattice 7, it implies that only
finite homomorphic image of the originally counta-
ble Bravais vector lattice are considered. This reduces
the originally compact continuous Brillouin zone
B(7*) to a finite set of vectors. Hence, the original
continuous parameters o, f§, y become discrete and
lose their continuity properties. Usually, periodic
boundary conditions are introduced to avoid math-
ematical difficulties that arise from the fact that the
J unnirreps (see eqn [25]) are normalized to delta
functions. On the other hand, they reduce to ordi-
nary Kronecker delta functions if periodic boundary
conditions are imposed. Closely related to these dif-
ficulties is the fact that Bloch functions, which are
associated with infinitely extended crystals, cannot
be normalized to unity, since their /; norms do not
exist for fundamental reasons.

Little group unirreps The next step in Mackey’s in-
duction procedure consists of determining the corre-
sponding little group 4(k) =¥ for each 7 irrep label
ke (7 *). Once this is done, the corresponding
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% (k) unirreps are computed. To summarize,
9(k) = {Ge% | DG (E[f)G) = D*EI)}  [27]
Pk)~Y(k)|T =P [28]

?(k) = {Re?|Rk=k+K(kR)} [29]

where, in particular, it is assumed that K(k,R)e 7 *

for all point group elements Re?. The homomor-
phic images 2 (k) of the little groups % (k) are usually
called “little co-groups.” It is to be noted that

K(k,RS) = K(k, R) + RK(k, S) 30]

must be valid for all point group elements R, Se 2 (k)
as, otherwise, the closure condition for the little
co-group 2(k) would be violated. The closure condi-
tion [30] plays an important role when symmetrizing
plane waves or any other type of wave functions. It is
seen in this context that the reciprocal lattice vectors
K(k,R)eZ * may only occur if and only if, the as-
sociated ke (7 *) belongs to the surface of the
Brillouin zone %(7 *) as otherwise they are zero.

Apart from this, corresponding % (k) unirreps are
usually obtained by computing suitable 2(k) unir-
reps. Provided the underlying space group G is
symmorphic, suitable 2(k) unirreps have to be ordi-
nary vector unirreps. However, if the underlying
space group % is nonsymmorphic, suitable 2(k)
unirreps are the so-called projective (k) unnirreps.
Nevertheless, the use of projective representations is
merely an auxiliary tool which simplifies the con-
struction of 2(k) unirreps significantly. Accordingly,
suitable 2(k) unirreps are constrained by the fol-
lowing condition:

D¢(R)D*(R) = #*(R, S)D*(RS) [31]
F*(R,S) = exp(—ik - tg 5) [32]

for all point group elements R,Se (k) and where
the special translations ¢ s€7 are defined by [14].
As previously noted, these vectors vanish, if the space
group % is symmorphic, and hence the corresponding
2 (k) unirreps are ordinary vector representations.
However, if the space group % is nonsymmorphic,
the corresponding 2 (k) unirreps may be projective
representations, since some tg s€.J may be nonzero.
By definition, the constructions

D% (Rlwg +t) = e **D¢(R) [33]
dim D*(%(k)) = n(¢) (34]

D *(R|wg + £)D**(S|ws + v)
= D**(RS|wgs +trs +t+Rv)  [35]

define ordinary vector %(k) unirreps, provided that
suitable (k) unirreps are constructed. Note in par-
ticular that ¢ € o7 (2(k)) define the complete sets of all
2 (k) irrep labels. In summary, the set of ordered pairs

A (4(k)) ={(k,$)|e (2 (k))} [36]

define complete sets of %(k) unirreps for each
ke B(T*).

Full space group unirreps The final step is, among
others, to restrict the Brillouin zone #(7 *) to a
suitable subset, sometimes called “representation
domain,” A%(T * #), in order to avoid double
counting of equivalent % unirreps. This is done by
taking only one representative (arm) from each k-
vector star S(k) defined by

S(k) = {krcB(T *,P)| kx = Rk; Re?} [37]

(k)| = |2 = (k)| [38]

It is worth noting that the order |S(k)| of any star is a
divisor of the order |2| of the corresponding cry-
stallographic point group 2. The union set of all
these representative k vectors defines the representa-
tion domain A%(7 * ,2). As commonly accepted in
physics, one takes a simply connected continuous
subset AB(7 *,2) of the original Brillouin zone
Z(7*) in order to avoid unnecessary difficulties
when dealing, for instance, with the so-called “com-
patibility relations,” whichever have been discussed
for the first time by L P Bouckaert ez al., in 1936.

The actual final step in Mackey’s induction proce-
dure consists in inducing the full & representations
from the 4 (k) unirreps given by [33]. A general the-
orem guarantees that the corresponding induced %
representations are automatically irreducible. The
induction formulas read

D$D1(G) = drppyrsrwD*(ATIGB)  [39]

G=(R|wr+1t) [40]
A = (Rlwg) [41]
B = (Sjws) [42]

1, R-'RSe2(k)

ORP(k) RSP(K) = { 5 [43]

otherwise

dim D®91 (@) = |2 . 2(k)| - n(¢) [44]

where the specific space group elements A = (R|wg)
and B = (8|ws) are coset representatives of the space
group % with respect to the corresponding little
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group %(k). Specifying the conjugation A~'GBe%
by taking into account [33] and [43], one immedi-
ately arrives at the following final formulas for ¥
unirreps:

k,
Dt (Rlwr +1))
= Sro( RspE SETOF ((R)DS, (RTIRS)  [45]

D ¢(R) = exp(—ik- tg s(R)) [46]

trs(R) = tg-1g +fg-1ps — Rt g1€ T [47]

Clearly, if ¢ defines a symmorphic space group, then
the corresponding phase factors CDQS(R) defined by
[45] reduce to 1, since the special translation vectors
trs are zero-vectors. However, if ¢ defines a non-
symmorphic space group, then some of the phase
factors defined by [45] are nontrivial and lead to
quite different expressions for its corresponding ¢
unirreps.

Operator Representations of Space Groups

Usually, space group symmetry and space group rep-
resentations are applied in the one-particle approx-
imation to Hamiltonians that describe the motion of
an electron in periodic structures quantum mechan-
ically. The first step consists of defining a homo-
morphism ¢: 49— U(%) of the given space group %
into a group of unitary operators U(%) that map the
underlying Hilbert space # = L?*(R*) onto itself
(here the spin degree of freedom has been neglected):

U(%) ={U(G)|Ge¥%} [48]
[U(G)®](x) = ¢(4(G")x) [49]
Doe = liee) [50]

In this context, it is worth noting that every mapping
M(G) : R*-R? is nonsingular but likewise nonlin-
ear, if and only if the translational part t€.7 con-
tained in G = (R|wg + ) is nonzero, whereas the
uniquely associated unitary operator representation
is linear with respect to the Hilbert space L2(R?®) in
any case. The one-particle Hamiltonian reads

1

HZZm

PEE V0 [51]
where the potential is responsible for the symmetry
of the problem. Apart from this, space groups and
their representation theory are likewise utilized in
order to simplify systematically the diagonalization
of the force matrix in the “harmonic approximation”
when dealing with lattice vibrations in classical point
mechanics.

Bloch Theorem - Energy Bands

The eigenvalue problem of periodic one-particle
Hamiltonians, where the spin degree of freedom is
neglected, presents one of the most popular examples
where group-theoretical methods are applied. Taking
into account that every space group ¥, whether % is
symmorphic or nonsymmorphic, contains a counta-
ble translational group  as a normal subgroup, one
may use, as a first step, the translational symmetry
of the Hamiltonian represented by the vanishing
commutators

[H,UEt)] =0 VteT [52]
to simplify the eigenvalue problem. According to a
general theorem of functional analysis, the countable
set U(J ) ={U(E|t)|te T} of mutually commuting
unitary operators and the Hamiltonian H can be
diagonalized simultaneously.

Bloch theorem Bloch’s theorem predicts partly the
form of the common eigenfunctions of the periodic
Hamiltonian. It leads to the following well-known
and extensively used statement:

Pk (x) = ek *1(k, x) 53]

w(k,x) =w(k,x+t) VteT [54]

These eigenfunctions are called “Bloch functions,” of
the Hamiltonian, and the unitary translational oper-
ators have the form given by [53] and [54]. The
translational symmetry has been utilized for this fac-
torization. The eigenvalue problem reads

HY* = E(k)¥* [55]

where the eigenfunctions are assumed to be Bloch
functions. What remains to be done in practical ap-
plications is the determination of the periodic Bloch
factors

w(k) : P(T)—C [56]

for every ke B(7 *), which is a problem in its own
right. Simple manipulations yield the following non-
countable infinite set of decoupled partial differential
equations for the unknown Bloch factors:

i) zim(g 1)+ V(X) (57]

H(k)w(k) = E(kjw(k) [58]

for all ke B(7 *) where, in particular, the operator
Q = —ihV is the usual differential operator but its
domain of definition is the Hilbert space L?(#(7))
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group %(k). Specifying the conjugation A~'GBe%
by taking into account [33] and [43], one immedi-
ately arrives at the following final formulas for ¥
unirreps:

k)14
DY (Rlwg +1))
= Spop)rsp)e SO ((R)DS,(RTIRS)  [45]

D ¢(R) = exp(—ik- tg s(R)) [46]

t&&(R) = tR*],R = tR"lR,S_ — Rilt&g—l =k [47]

Clearly, if 4 defines a symmorphic space group, then
the corresponding phase factors CD’f{’S(R) defined by
[45] reduce to 1, since the special translation vectors
trs are zero-vectors. However, if ¢ defines a non-
symmorphic space group, then some of the phase
factors defined by [45] are nontrivial and lead to
quite different expressions for its corresponding %
unirreps.

Operator Representations of Space Groups

Usually, space group symmetry and space group rep-
resentations are applied in the one-particle approx-
imation to Hamiltonians that describe the motion of
an electron in periodic structures quantum mechan-
ically. The first step consists of defining a homo-
morphism ¢: 49— U(%) of the given space group %
into a group of unitary operators U(%) that map the
underlying Hilbert space # = L*(R’) onto itself
(here the spin degree of freedom has been neglected):

U(9) ={U(G)|Ge%} 48]
[U(G)®](x) = ¢(4(G")x) [49]
HoEe =Iee) [50]

In this context, it is worth noting that every mapping
M(G) : R*-R? is nonsingular but likewise nonlin-
ear, if and only if the translational part t€.7 con-
tained in G = (R|wg + #) is nonzero, whereas the
uniquely associated unitary operator representation
is linear with respect to the Hilbert space L2(R?) in
any case. The one-particle Hamiltonian reads

1

H:
2m

it SR e & [51]
where the potential is responsible for the symmetry
of the problem. Apart from this, space groups and
their representation theory are likewise utilized in
order to simplify systematically the diagonalization
of the force matrix in the “harmonic approximation”
when dealing with lattice vibrations in classical point
mechanics.

Bloch Theorem - Energy Bands

The eigenvalue problem of periodic one-particle
Hamiltonians, where the spin degree of freedom is
neglected, presents one of the most popular examples
where group-theoretical methods are applied. Taking
into account that every space group ¥, whether ¢ is
symmorphic or nonsymmorphic, contains a counta-
ble translational group  as a normal subgroup, one
may use, as a first step, the translational symmetry
of the Hamiltonian represented by the vanishing
commutators

[H, UE|t) =0 VeeT [52]
to simplify the eigenvalue problem. According to a
general theorem of functional analysis, the countable
set U(J) = {U(E|t)|te T} of mutually commuting
unitary operators and the Hamiltonian H can be
diagonalized simultaneously.

Bloch theorem Bloch’s theorem predicts partly the
form of the common eigenfunctions of the periodic
Hamiltonian. It leads to the following well-known
and extensively used statement:

P (x) = ek *1(k, x) [53]

w(k,x) =w(k,x+t) VteT [54]

These eigenfunctions are called “Bloch functions,” of
the Hamiltonian, and the unitary translational oper-
ators have the form given by [53] and [54]. The
translational symmetry has been utilized for this fac-
torization. The eigenvalue problem reads

HY* = E(k)¥* [55]

where the eigenfunctions are assumed to be Bloch
functions. What remains to be done in practical ap-
plications is the determination of the periodic Bloch
factors

w(k) : P(T)—C [56]

for every ke #(7 *), which is a problem in its own
right. Simple manipulations yield the following non-
countable infinite set of decoupled partial differential
equations for the unknown Bloch factors:

Hk) = %(Q 1)+ V(X) (57]

H(k)w(k) = E(k)w(k) 58]

for all ke (7 *) where, in particular, the operator
Q = —ihV is the usual differential operator but its
domain of definition is the Hilbert space L*(#(7))



296 Group Theory in Materials Science, Applications

together with periodic boundary conditions which
give rise to a pure point spectrum of the operator Q
in contrast to P = —iAV that possesses a continuous
spectrum with respect to L?(R%). To recapitulate, if
one does not introduce periodic boundary conditions
for the original eigenvalue problem, admissible vec-
tors ke B(7 * ) vary continuously over the Brillouin
zone, whereas the spectrum of the momentum oper-
ator Q is discrete and coincides with the correspond-
ing reciprocal lattice K€ 7 * . Assuming that [58] has
been solved for all ke (7 *), then [55] reads

HWE — , (k) ¥E” 59]

where #n € N is usually called the “band index,”
where s = 1,2, ...,deg E,(k) describes possible de-
generacies of the eigenvalues E, (k). The band index
n is a countable index, since the Hamiltonians H(k)
given by [57] possess pure point spectra for fixed
ke B(T*).

Energy bands To define energy bands in terms of
functions of the following type E,, : #(7 * ) - R, one
has, in principle, two different possibilities. Either
one defines these functions by assuming the strict
ordering

1. Ei(k)<E;(kR)<--<E,(k)<E,;1(k)<--- [60]

2. E,(k) = analytic functions [61]

or one demands that these functions be analytic
functions. The second possibility is usually preferred,
since it leads to smooth functions with respect to the
variable ke (7 * ), whereas the first possibility may
lead to cusps with band contacts and hence acciden-
tal degeneracies. Obviously, the second possibility
may likewise lead to band crossings, which indicate
the same type of accidental degeneracies.

Wannier functions Assume that the eigenfunctions
{P*"} are orthonormal with respect to the scalar
product of the underlying Hilbert space #:

CHEm W = 3k —K)omdes  [62]

where the entries (k — k') define the delta functions.
This implies that for the infinite system, that is, sys-
tem without periodic boundary conditions, Bloch
functions cannot be normalized to unity. This is one
of the main reasons for the introduction of periodic
boundary conditions, since then the delta-functions
reduce to ordinary Kronecker deltas, which means
that the corresponding Bloch functions become
square-integrable functions. In the case of infinite

systems, Wannier functions are defined as
gl
Dl

/ efik-tlljlsz,n [63]
(7)) )

<Q:l’t, Q:l//’t/ > = Ot 0w s [64]

which are square integrable and orthonormal with
respect to all labels #, 7, s respectively. These func-
tions are localized around the positions teJ
but have infinitely many oscillations to achieve their
mutual orthogonality. Whether the Bloch functions
Wkn are directly taken to construct [63] or specific
linear combinations (U matrix approach) of
{Pk" |s=1,2,...,deg E,(k)} are considered, turns
out to be problem of its own right and is sensitively
influenced by the physical problem.

Energy bands - full space group symmetry More
information is gained regarding the degeneracy of
the eigenvalues E, (k) and their corresponding eigen-
functions {¥*"}, if the full space group symmetry is
exploited. The correspondingly refined eigenvalue
equation reads

B P it i (LT [65]
E;(k) = E5(Rk) VReZ:2(k) [66]
deg E; (k) = |2 : 2(k) | - (¢) [67]

s . G, 5
where the eigenfunctions ‘ngf)w’n are written as %-

symmetry-adapted functions, the eigenvalues E¢ (k)
are labeled by the band index 7 and the ¥ irrep labels.
Apart from this, the formula [67] for the degeneracies
of the eigenvalues is valid, if and only if there is no
accidental degeneracy caused by band crossings. The
symmetry properties (see eqn [66]) of the eigenvalues
explain why energy band calculations are restricted to
subsets of k vectors, namely ke AB(T *, 2), where
the symbol A%(7 *,#) denotes the so-called repre-
sentation domain of the Brillouin zone %(7 * ). Note
that AB(T ¥, P) presents, loosely speaking, the |2|th
part (simply connected subwedge) of the Brillouin
zone. The restriction to AZ(7 * %) guarantees the
uniqueness and completeness of the corresponding -
irrep label set .2/ (%):

A(G) = {(k, &) | ke AB(T*,2); Ee o (P(k))} [68]

Compatibility relations It was in the famous article
of L P Bouckaert et al. in 1936 where for the first
time continuity properties of %-symmetry-adapted
eigenfunctions were discussed. The basic idea was
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together with periodic boundary conditions which
give rise to a pure point spectrum of the operator Q
in contrast to P = —iAV that possesses a continuous
spectrum with respect to L2(R*). To recapitulate, if
one does not introduce periodic boundary conditions
for the original eigenvalue problem, admissible vec-
tors ke B(7 *) vary continuously over the Brillouin
zone, whereas the spectrum of the momentum oper-
ator Q is discrete and coincides with the correspond-
ing reciprocal lattice K €.7 * . Assuming that [58] has
been solved for all ke (7 *), then [55] reads

HYA" = E, (k¥4 591

where # € N is usually called the “band index,”
where s =1,2,...,deg E, (k) describes possible de-
generacies of the eigenvalues E, (k). The band index
n is a countable index, since the Hamiltonians H(k)
given by [57] possess pure point spectra for fixed
ke B(T*).

Energy bands To define energy bands in terms of
functions of the following type E,, : #(7 * ) >R, one
has, in principle, two different possibilities. Either
one defines these functions by assuming the strict
ordering

L By(B)<Ep(k)< -+ <En(B)<Enu(l)<-  [60]

2. E,(k) = analytic functions [61]

or one demands that these functions be analytic
functions. The second possibility is usually preferred,
since it leads to smooth functions with respect to the
variable ke (7 * ), whereas the first possibility may
lead to cusps with band contacts and hence acciden-
tal degeneracies. Obviously, the second possibility
may likewise lead to band crossings, which indicate
the same type of accidental degeneracies.

Wannier functions Assume that the eigenfunctions
{¥%"} are orthonormal with respect to the scalar
product of the underlying Hilbert space #:

QO WEH Y = Sk —K)oubsy (6]

where the entries 6(k — k') define the delta functions.
This implies that for the infinite system, that is, sys-
tem without periodic boundary conditions, Bloch
functions cannot be normalized to unity. This is one
of the main reasons for the introduction of periodic
boundary conditions, since then the delta-functions
reduce to ordinary Kronecker deltas, which means
that the corresponding Bloch functions become
square-integrable functions. In the case of infinite

systems, Wannier functions are defined as
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which are square integrable and orthonormal with
respect to all labels #, n, s respectively. These func-
tions are localized around the positions teJ
but have infinitely many oscillations to achieve their
mutual orthogonality. Whether the Bloch functions
W7 are directly taken to construct [63] or specific
linear combinations (U matrix approach) of
{‘I’f’” |s=1,2,...,deg E,(k)} are considered, turns
out to be problem of its own right and is sensitively
influenced by the physical problem.

Energy bands - full space group symmetry More
information is gained regarding the degeneracy of
the eigenvalues E, (k) and their corresponding eigen-
functions {¥*"}, if the full space group symmetry is
exploited. The correspondingly refined eigenvalue
equation reads

B P el (T [65]
E:(k) = E5(Rk) VReZ:2(k) [66]
deg E;(k) = |22: 2(k) | - n(8) [67]

. o g .
where the eigenfunctions ‘I—‘E{kf” 7 are written as %-

symmetry-adapted functions, the eigenvalues ES(k)
are labeled by the band index 7 and the ¥ irrep labels.
Apart from this, the formula [67] for the degeneracies
of the eigenvalues is valid, if and only if there is no
accidental degeneracy caused by band crossings. The
symmetry properties (see eqn [66]) of the eigenvalues
explain why energy band calculations are restricted to
subsets of k vectors, namely ke AB(T * |, 2), where
the symbol A%(7 *,#) denotes the so-called repre-
sentation domain of the Brillouin zone %(7 * ). Note
that AB(7 * , P) presents, loosely speaking, the |2|th
part (simply connected subwedge) of the Brillouin
zone. The restriction to AB(7 * , ) guarantees the
uniqueness and completeness of the corresponding -
irrep label set .o/ (%):

A (%) ={(k,&) | keAB(T*,2); cest(P(k))} [68]

Compatibility relations It was in the famous article
of L P Bouckaert et al. in 1936 where for the first
time continuity properties of %-symmetry-adapted
eigenfunctions were discussed. The basic idea was
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to change smoothly the continuous parameters
ke AB(T * ,2) in the vicinity of some k-vectors and
study the transformatlon properties of the corres%ond—
ing %-symmetry-adapted elgenfunctlons ‘I’( ; at
different k-positions, say k and k' = k+ e. In addmon,
the authors studied whether the assigned eigenvalues,
say ES(k) and ES(k +¢) may or may not split, de-
pending on the relationship of the associated little
co-groups Z(k) and 2(k + ¢). The important result
culminated in the so-called compatibility relations
which allow one to make some predictions on the
splitting of energy bands. To summarize, if and only if
P(k) = P(k + ¢), then, because of D*¢(2(k)) | 2(k +
¢) = DkS(2(k)) it follows that E:(k+¢) must not
split. Conversely, if and only if, (k) = 2?(k + ¢), and
if, in addition, D*¢(2(k))| 2 (k + ¢) becomes reduc-
ible, then the corresponding eigenvalue ES(k + ¢) may
split, unless accidental degeneracies occur. The com-
patibility relations are an indispensable tool when ca-
Iculating energy bands or phonon dispersion relations,
since in many situations the numerical accuracy may
be insufficient to decide whether eigenvalues degene-
rate or not.

Space Group Symmetrized States

As already noted, the ¥-symmetrized eigenfunctions
{‘I’ &, C)T(q"} which are normalized to unity, are mu-
tual orthogonal and, by definition, transform ac-
cording to the @ unirreps. One simply proves that the
eigenfunctions

P10 (@) = iRk x) (6]

retain their structure to form Bloch functions, where
the lattice periodic Bloch factors carry the trans-
formation properties with respect to the corres-
pondingly conjugated little co-groups 2(Rk) =
(k)R~!. Turning back to the penultimate step of the
induction procedure, one has the forms

BT ) il ) [70]

Ea

kngﬁn kéT“J’n [71]

U(R | wr Z D
which represents the special case R = E where, es-
pecially, G = (R|wr) e %(k) with Re Z(k) and t =0
This yields the subset of the eigenfunctions that must
transform according to the corresponding %(k) un-
irreps. Accordingly, one can define

[UR | wr)®E0 ") ()
= P& (MR | wr) ) [72]

= e * ¥ VA (Rlwg)wi" (k)] (x) [73]

where Re 2(k) is assumed. It is worth noting that
definition [72] is used to assign uniquely via defini-
tion [73] to each unitary operator U(R|wg) for every
k-vector belonging to A%(7 *,#) an isometrical
operator V¥(R|wg) where, especially, the constraints
Re (k) must not be forgotten. To summarize,

[V*(Rlwg)w;" (k)] (x)

— e iRkwg iK(k,R)-x wg"(k /i (xwa)) [74]

where every set of operators VE(2(k)) = {V*(R|
wgr)|Re?(k)} forms a generalized unitary operator
representation with respect to the Hilbert space
L*(2(7)), since these operators leave the L2(2(7))
scalar product invariant. Rather straightforward
manipulations yield
VE(R|wr) VE(S|ws) = e *®s V¥ (RS|wgrs)  [75]
for all point group elements R, Se Z(k). In fact, the
operator representation VX(2(k)) defines the so-
called “projective multiplier” representations, since
the occurrence of the factor system [32] on the RHS
of [75] shows, among others, that they must be
projective ones. The notion multiplier representation
comes from the extra factor e K*R)* on the RHS of
[74], where the special reciprocal vectors
K(k,R)e 7 * may occur, if and only if the vectors

ke AB(T * ,P) belong to the surface of the corre-
sponding Brillouin zone %(7 *). Accordingly,
k : W ke ¢
VE(Rlwr)ws" (k) = Dy (Ryw;" (k) [76]
=1

which represents the transformation properties of the
lattice-periodic 2 (k)-symmetrized Bloch factors. It is
to be noted that even in the case of symmorphic space
groups the extra factors e K&K on the RHS of [74]
occur and hence crucially enter into the discussions
when constructing %(k)-symmetrized functions as the
penultimate step in the induction procedure. Point
symmetrized states have been extensively discussed
by S L Altmann and P Herzig in 1994.

Symmetrized plane waves A brief comment on the
construction of symmetrized plane waves is made
here. By virtue of the previous discussions, it is im-
mediately clear that the construction of all 2(k)-
symmetrized bases of the image Hilbert space
L*(2(7)) is sufficient to obtain symmetrized plane
waves, since the last step in the induction procedure
consists in inducing from %(k)-symmetrized bases,
the ¥-symmetrized bases. As noted before, an ortho-
normalized basis of the Hilbert space L?(2(J)) is
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defined by the plane wave basis {®X |[Ke 7 * }:

K 18y 1 e—LK-x
TS T z

(O, 0% 2y = Oxcie (78]

Now, let X be a fixed plane wave. To achieve 2(k)-
symmetrization, one must apply for the chosen
ke AB(T * ,P), the corresponding set of unitary op-
erators VE(2(k)) to the fixed plane wave ®X which
induces a (k) matrix representation, which in gen-
eral should be decomposed into a direct sum of its
irreducible constituents. The definition [74] yields

[VE(R|wr)®X](x)
— e IRkwro—IKER)* @K (R~1(x — gz))

= ¢ iR(kHK) QRKHK(R.R) (1) [79]

which illustrates among others, the importance of the
specific reciprocal lattice vectors K(k, R) e 7 * , where
the latter inevitably occur if the corresponding k-vec-
tor ke AB(T *,P) belongs to the surface of the
Brillouin zone #(Z *). To summarize, even in the
case of symmorphic space groups, nontrivial multi-
plier representations may be realized. Once the 2 (k)
matrix representations are decomposed into their
irreducible constituents, the last step of the induction
procedure consists in passing over from the corre-
sponding %(k) unirreps to % unirreps in order to con-
struct the correspondingly symmetrized plane waves.

Selection rules for space groups
(k,&)1%n

Let % be a space
group and {‘P } be some %-symmetrized
eigenfunctions of the Hamiltonian H in question.
Moreover, let T*o)1% = {Téf" PN Sedp: Pk);
s=1,2,...,n()}, an irreducible %-tensor operator
of rank (k,,4,)1%. According to the Wigner—Eckart
theorem, one expects

(k&) 19n (ko do) 19 qs(K &)16.1
@ T Yo 't

m((k07j-0)7( ,é (ko,i ) (k/, é/)
S e

(k, é>w>*

Ra

w=1

x (PRI Tlho )19 | 195, [80]

where the absolute square of the matrix elements de-
scribes, apart from a time dependent factor, “Fermi’s
golden rule,” namely the transition probability from

the initial state ‘PRk, a,g 197 6 the final state ‘I’ kf ko8

provided that the interaction operator is descrlbed by
the irreducible ¥ tensor operator component

Tlkoo) 19

Ss . The appearance of nontrivial multiplicities

m((ko, o), (K, &)|(k, £))>1

causes additional difficulties, since not only the deter-
mination of suitable Clebsch-Gordan coefficients
becomes more complicated, but also the dependence
of the reduced matrix elements causes additional
problems. These problems might be the main reason
why the application of the Wigner—Eckart theorem in
solid-state physics has not been popular. Basic mate-
rial concerning space group unirreps and Clebsch—
Gordan coefficients for space groups were cited by A P
Cracknell et al., in 1979 and 1980. Important appli-
cations, such as infrared absorptions or Raman spec-
troscopy, of this topic are discussed by J L Birman and
J F Cornwell in 1974 and 1984, respectively.

What Group Theory Provides

Finally, the usefulness of group-theoretical methods,
especially in solid state physics, when applied to
simplify certain tasks, is summarized. Here, exclusive
comments on group-theoretical tools and methods
which refer to space groups, subgroups of space
groups, and eventually certain homomorphic images
of space groups are made. Possible applications of
so-called magnetic space groups, spin groups, and
other groups to describe the symmetries of more
complex periodic, or even quasiperiodic structures,
such as the symmetry properties of quasicrystals, are
not discussed here.

® Bravais vector lattices and sublattices. Group the-
ory presents an effective tool to identify vector lat-
tices and their sublattices, which are useful for
determining not only their crystal system and their
crystal class, but also their correlations to standard-
ized lattices. Standardized lattices have basis vectors
of the shortest length and specific orientation.

® Deformed and distorted lattices. By definition,
deformed lattices are obtained by continuously
varying the lattice parameters, whereas distorted
lattices have lattice matrix that is post-multiplied
by a nonsingular matrix which describes the dis-
tortion. The proper identification of such lattices
is of vital importance in practical applications, for
instance, in relaxation processes.

® Subgroups of space groups of finite index. Group—
subgroup relations of space groups of finite index
are of interest in structural phase transitions that
are accompanied with changes in symmetry. The
knowledge of admissible chains of subgroups
from the determination of all intermediate groups
is vital in such discussions, since they allow one to
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predict the preferred chains of admissible struc-
tures of the intermediate phases.

Coset and double cosets of space groups. In phase
transitions (with changing structures) which are
accompanied with the loss of symmetries, it turns
out that simultaneously coexisting domain states
are generated whose positions and orientations in
space are directly related to the coset decomposi-
tion of the parent space group with respect to the
subspace group (and correspondingly conjugated
subspace groups) which describes the symmetry of
the domain states. Likewise, double coset decom-
positions are used to describe the so-called or-
dered domain states.

Sectional layer and penetration rod groups. The
systematic determination of the symmetries of
crystallographic planes, which are subsumed un-
der the notion of sectional layer groups, as
subgroups of three-dimensional space groups,
plays an essential role in the analysis of the phys-
ical properties of two-dimensional surfaces. Like-
wise, the symmetries of crystallographic lines
denoted as penetration rod groups are of interest
when describing one-dimensional defects.

Point group symmetries of tensors. Macroscopic
properties, such as electrical conductivity, are usu-
ally described by tensors of certain ranks. In the
presence of some symmetries, for example, point
group symmetries, the invariance of such tensors
with respect to point groups leads to restrictions
as regards their nonzero components.

Space group unirreps. The computation of space
group unirreps by means of Mackey’s induction
procedure can be carried out systematically for
every space group in question. Likewise, this ap-
proach allows one to gain more insight into the
constructions of space—group-symmetrized states.
Space group Clebsch—Gordan coefficients. Know-
ledge of sets of space group Clebsch-Gordan co-
efficients allows one not only to study selection
rules when calculating transition probabilities, but
also to construct systematically product states that
transform according to the Kronecker product of
the space group in question.

Bloch theorem. One of the most prominent ap-
plications of group-theoretical methods in solid-
state physics is presented by the Bloch theorem.
This theorem allows one to predict the functional
form of the common eigenfunctions of the mutu-
ally commuting translational operators which rep-
resent the Bravais vector lattice and the periodic
Hamiltonian, where the latter is assumed to com-
mute with the translational group.

Spectral properties of periodic Hamiltonians.
Once, the entire space group symmetry of the

periodic Hamiltonian is taken into account, more
information gained not only as regards the point
group symmetries of the energy eigenvalues, but
also systematic construction of the corresponding
eigenstates.

Compatibility relations. The continuity behavior of
the energy eigenvalues and their associated eigen-
functions in the vicinity of some k-vectors can be
described by some specific subduction rules of the
corresponding 2 (k) unirreps when passing over
continuously to some adjacent k-vectors with lower
symmetry. Thus, group theory provides a necessary
condition which decides whether the eigenvalues do
not split or alternatively may eventually split.
Transformation properties of states. An important
task in applications, for instance energy band cal-
culations, concerns determining according to which
representation the lattice periodic Bloch factors
transform. Every careful treatment of this problem
inevitably leads to multiplier or even projective
multiplier representations of the corresponding lit-
tle co-groups provided that in the latter case the
underlying space group is nonsymmorphic.
Symmetrized states. The systematic construction of
space group symmetry-adapted functions follows
closely along the lines of Mackey’s induction pro-
cedure for space group unirreps. For instance, sym-
metrized plane waves may be useful when calculat-
ing matrix elements of some interaction operators.
Symmetrized operation. In order to apply the
Wigner—Eckart theorem to space groups, irreduc-
ible space group tensors are required. However, in
many cases the interaction operators do not rep-
resent irreducible space group tensors. Neverthe-
less, group theory allows one to decompose any
operator into a sum of its irreducible space group
tensor components. The corresponding method
closely resembles the symmetry adaptation of
states, apart from some minor modifications.
Wigner—Eckart theorem. The application of the
Wigner—Eckart theorem to problems which pos-
sess space group symmetry requires not only the,
knowledge of space group symmetry adapted
states and irreducible space group tensors, but al-
so the corresponding space group Clebsch—-Go-
rdan coefficients. Due to the fact that space groups
are nonsimple reducible groups, additional diffi-
culties may arise because of the occurrence of
nontrivial multiplicities.

Magnetic groups — co-representations. The inclu-
sion of the so-called “antiunitary” operators, for
instance, the time reversal operator, requires, sub-
stantial extension of the concept of groups to the
so-called magnetic groups, and their representa-
tions to co-representations.
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Applications of Group Theory

Group theory was originally used extensively in
evaluating the so-called energy band structures along
special symmetry directions, that is for computing
the eigenvalues corresponding to a special k-vector
from the three-dimensional Brillouin zone of a par-
ticular bulk system. The reasons were quite clear,
namely the dimension of the secular matrix could be
reduced substantially and therefore the computing
times for inversion or diagonalization procedures
were drastically shortened. Furthermore, respective
compatibility relations guaranteed an unambiguous
classification of energy bands along the rays in the
Brillouin zone. The usefulness of such classifications
was, in particular, evident in photoemission experi-
ments and studies involving the Fermi surfaces.

With increasing speed of computers, in particu-
lar, with the innovation of architectures utilizing
vectorizations, efforts at directly deriving the physi-
cal properties grew. This implied, for example, in
most cases summations over all occupied states, that
is, the use of Brillouin zone integrals by means of so-
phisticated sampling techniques. Thus, no longer were
individual k-states of interest, but so was the sum over
all these states. Consequently, the incentive for using
group theory, shifted from projecting particular states
to theoretical means of reducing the computational
efforts in evaluating Brillouin zone integrals.

Nowadays, most theoretical descriptions of prob-
lems in materials science, nanoscience, etc., are based
on Kohn’s density-functional theory, that is, on the use
of effective (single-particle) Hamiltonians (H.g,
Kohn-Sham Hamiltonians). In particular, since the
interest in solid-state physics shifted to systems with
surfaces and interfaces, mostly group-theoretical
means for two-dimensional translationally invariant
systems are applied. It turned out that in two kinds of
applications, namely in Brillouin zone integrations
and in reduction of angular momentum coupling con-
stants, the use of group theory is very valuable indeed.
These two applications are discussed below and are
meant to illustrate the contemporary use of group
theory in solid-state physics.

Brillouin Zone Integrations

Taking the density of states as the simplest physical
observable,

n(e)

il
——Im%
—Im 9(r,,0)

G 1|3‘"1 Zlm G (k; ) [81]
k

T

n —%m(g‘*)rl / Im g(k;e)dk  [82]

where the Green’s function %(r,r,¢) is the diagonal
configuration space representation of the resolvent of
Hegt, (z — Heg) ' and %(k;e) the corresponding lat-
tice Fourier transformed Green’s function, and |7 |
the order of the translational group. It should be
noted that in eqn [81] a symmorphic space group is
assumed and |#(7 *)| refers to the volume of the
corresponding Brillouin zone #(7 *).

Suppose now that an appropriate matrix repre-
sentation is used for %(r,r,¢) and ¥4(k;¢), which, of
course, depends largely on the applied quantum me-
chanical approach: Korringa—Kohn-Rostoker meth-
od (KKR), linear combination of muffin-tin orbitals
(LMTO), or by using directly the effective Hamil-
tonain in the formulation of 7n(¢) by means of a
pseudopotential approach, or the linearized augmen-
ted plane wave method), then eqn [81] can be re-
written as

- BT [ (9kis) b

T

n(e)

= ) U (ks o) dk} 183]

where %(k;e) refers to the matrix representation of
the Green’s function and tr denotes the trace. In most
of the methods mentioned above, the matrix repre-
sentations are related in essence to angular momen-
tum representations, that is they are expressed in
terms of spherical harmonics.

Let 2 be the point group of the underlying (three-
dimensional) lattice 7 and suppose D(S) contains
blockwise the irreducible representations of Se 2. If
ABg (7 *,P) = ABg as shorthand notation denotes
an irreducible wedge of the Brillouin zone of volume
|ABE(T*,2)| = |ABE|, then any other wedge
ABs(T* ,P) of the Brillouin zone is defined by

ABs(T*,P) = {Sk | ke ABE|} [84]

where Se 2 : 2(k) is sufficient such that the union of
the mutually disjoint subsets, (formally written as a
sum here) can be written as follows:

BT *) =) AB(T*,P) [85]
Se?

It is seen from eqn [83] that
9(5 k) = D(S)'9(k;)D(S)  [36]
that is for a rotated k vector, the corresponding

Green’s function matrix is related to the original one
by means of a similarly transformation.
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The Brillouin zone integral in eqn [83] can, there-
fore, be expressed as

1
B / 9(k:¢) dk

1
= Y D)
}AQE| SeP ( ) l: ABE

Y(k; ) dk] D(S) [87]

which, of course, results in a very large reduction of
computing time, even if the order of the point group is
rather small. In the case of a relativistic description,
(Kohn-Sham-Dirac Hamiltonians) in the presence of
an effective magnetization, the proper rotational
invariance group of the corresponding Hamilton
should be used. This is one of the rare cases when
antiunitary operators are practically important. Of
course, the same type of procedure as in eqn [87] can
be applied when only two-dimensional translational
symmetry is applied.

Reduction of Angular Momentum Coupling: The
Point Group Symmetry of Single-Particle Densities

Let g(r) be the (shape-truncated) charge density in
the cell #°(7) (which may denote the corresponding
Weigner—Seitz cell or any other type of primitive cell)
centered at a particular origin Ry of given lattice or
of any particular site in an arbitrary ensemble of
scatterers,

p(r) = p(r)a(r) =) pr(nYi(P) [88]
L
where a(r) is the so-called shape function given by

reW(f)}

ré N (7) it

which usually is expanded into spherical harmonics as

o(r) =) or(r)YL(7)
/

T [90]
=0 m—i

m=—

where the expansion coefficients are determined by
o) = [ drad)¥i 91]
#()

It should be noted that the gy (r) are the coefficients of
the shape-truncated charge density, that is,

pLr) =Y Chnpp(row(r) [92]
L/,L/I

o / QYL QYL QY (@) [93]

Table 1 Table of nonvanishing azimuthal quantum number

terms

Plane n Two-dimensional lattice
(100) 4 Quadratic lattice

(110) 2 Rectangular lattice
(111) 3 Hexagonal lattice

Since p(r) is a real function, in eqn [88] one needs to
evaluate only terms p;_,,(r) for m>0 and then make
use of the relation

Pr-m(r) = (=1)" Prym(r)” [94]

Furthermore, for a system with inversion symmetry
with respect to Ry,

Pilr)=0, Vi=0dd [95]
If the z-axis of the coordinate system is an n-fold
rotational symmetry axis, the selection rule

m=...,—n,0,mn, .. [96]
applies, which in turn implies for example, that for
simple cubic systems, there are only very few nonvani-
shing terms, namely those shown in Table 1.

Reviewing eqn [93], it is obvious that even very
simple group theory can help substantially in red-
ucing the number of terms to be evaluated. This kind
of application is a very transparent example of red-
ucing angular momentum coupling constants and
is desperately needed whenever the so-called full-
potential approaches are applied.

Much more advanced procedures are used when-
ever spectroscopic intensities are to be calculated,
since then 3j-, 6j- or even higher coupling constants
occur, depending, of course, on the type of excitation
to be investigated.

See also: Group Theory.

PACS: 02.20; 03.65; 61.50
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Nomenclature

B(T) Brillouin zone

AB(T*,P) irreducible subwedge of %(7 *)

CE 0 Gaunt coefficient

D*(Ejt) =e *'* 7 ()-unirreps

D&Y (g) space group unirrep

D{&4)1 matrix element of space group element
(Rlwr +2) of space group unirrep

G= shorthand and extended space group
{T,P|o,ws} symbol

t=(t1,t2,13)
T*

7(£)

Wy =
{wr|ReZ}
WA(T)
Z(z)eSL(3,2)
¥e(x) =

e* % (k, x)
fe

little group
periodic one-particle Hamiltonian

little co-group

point group of 7 (4)

primitive cell of 7 (.#)

Wigner—Seitz symbol for space group
element

vector basis of Bravais vector lattice
reciprocal vector lattice

Bravais vector lattice

set of fractional translations

Wigner-Seitz cell of 7 (&)
integral 3 x 3-matrix with determinant 1

Bloch function

Bloch eigenfunction of periodic Hamil-
tonian

%-symmetrized eigenfunctions of peri-
odic Hamiltonian

plane wave basis of Hilbert space
LX(2(7))

‘Wannier functions



