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Je considere, dans ce travail, une équation différentielle linéaire
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Uber die Quantenmechanik der Elektronen
in Kristallgittern.

Von Felix Bloeh in Leipzig.

Mit 2 Abbildungen, (Eingegangen am 10, August 1928.)

Di¢ Bewegung ¢ines Elektrons im Gitter wird unfersocht, indem wir uns disses
durch ein zunichst streng dreifach periodisches Kraftfeld schematisieren. Unter
Hinzunahme der Fermischen Statistik anf die Elektronen gestattet unser Modell
Aunssagen fiber den vonm ihnen herrithrenden Anteil der spesilischen Wirme des
Rrnstalls. Ferper wird gegeigt, dall die Berficksichtigung der thermischen Gitter-
schwingungen Gribenordoung und Temperatarsbhingigheit der elektrischen Leit-
fihirkeit von Metallen in qualitativer Ubereinstimmung mit der Erfahrong ergibf.

Z.Physik 52, 555 (1928)
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["ber die spezielle Form der Funktion w#g;,, ist nichts ausgesagt.
IMese hingt natiirlich davon ab, wie das Potential im einzelnen verlinoft,
und aulerdem kann sie aufler von den Zahlen %, 7, s» noch sehr wohl von
anderen GQuantenzahlen abhingen.

Die Tatsache, dafl sich von den Eigenfunktionen nach {Ga) stets ein

) = == . .
Faktor ¢ ( + M7 ghbspalten liBt, wobei der Rest nur noch die
Periodizitiit des (Fitters anfweist, LBt sich anschaulich so formulieren,

dall wir es mit ebenen de Broglie-Wellen zn tun haben, die 1m
REhythmus deg (zitteranfbaus moduliert sind#.




A.A. Cottey, Am.J.Phys. 39,1235 (1971)

Canonical forms of translations

Supposze the time-independent one-dimensional Schrédinger equation 1s
given by

73 i h

d i (x) ) .

— Q[Ejvi_r} =

L i

where ,
. 2m o
Qz) = =z(£ - V(z))

such that the potential function V' (x) 12 periodic 1n some constant a

Vie)=Vie+a) . Yz

The Schradinger equation 1s an ordinary linear second order differential equa-
tion that has two linear independent solutions for each value of E such that
a linear combination of these two solutions 1z also a solution of the eigenvalue

problem.

[t should be noted that for some values of £ these sclutions are not stable.
1.e. there 18 no constant M such that

viz) <M |, Vax

The solutions 1(x) are contineous and can become unstable only by growing

indefinitely at t = o0, 2 = —oc or x = +oc.



Suppose that for a given eigenvalue E. ¥, (x) and ¥, (x) are the two linear

independent then ¢, (x+a) and ¥, (x+a) are also solutions of the Schrodinger

equation, since this equation 1z unchanged 1if x 15 replaced by x + a:

& fdz® — V(z)] Uy (z) =

d*fd(z+a) —V(z+a)d(z+a)=
Ev(z) = EY(z+ a)

Using ¥, (z) and ¥,(x) as a basis,

U [ 1 i | = w | I'~I,'I
B =1 o, (e)

s,

then obviously the following relation applies
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where T corresponds to a linear operator, who-se matrix representative 1s
of dimension two with in general complex matrix elements. T 15 the matnx

representative of that operator, that corresponds to a tranzlation by a.




A different combination of solutions can be obtained by a linear transforma-
tion L
v (z) = Lu(z) , det(L)+#£0

The tranzlational properties are then given by

E!(I 4 a~] _ If£jll$]
Ly(x +a) =T Ly(z)

Ly(z + a) = T Ly(x)

v(z+a)=(LT'T'L) v(x) = Tu(x)

Ky

Obviously this 13 a similarnty transformation for the matrix representative T

T = LTL™

The canonical form of the matrix T depends on 1ts eigenvalues 7 1.e. depends
on the solutions of the following system of equations

det(T —71) =10

[t should be recalled that the eigenvalues of T remain unchanged by a sim-
larty transformation. Since I’ and [ are two-by-two matrices the eigenvalue
equation corresponding to the last equation 12 quadratic in 7.




Canonical type I

[t both eigenvalues ot T' are different, 71 = 75 , then I 12 diagonal

[f 71 = 75 and

then T" 1s of the form:

0 ]
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Canonical type II
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Canonical type 111




For a further evaluation of the eigenvalues 7; and 75 one can make use of
the fact that det(I) = 1. In order to show that this 1z indeed the case, one
picks two linear independent solutions ¢ (x) and v,(x) of the SChermger
equation and constructs the following matrix:

du(@), (@)
' B L ), ()

Since ¥, (x) and ¥,(x) are solutions of the Schré-dinger equation to one and
the same eigenvalue E
d*y,(z) 2m

T T ol (E—Vix))u,(z)=0

12 i r .
dw.(x) 2m, e
,_2 . 5 'E _ Tl rll .|'L.’!2'LIJI = ()
da R
one can multiph‘ the first of these two equations with v,(x) and the second
with 2, (x). Subtracting now the first equation from the second equation

}]Eldﬂ

d21e(x)"




This in turn 1imphes that det(117). the so-called Wronski determinant 1s a
constant:

L |

det(W) = o, (x) (duy(z)/dx) — Y,(z) (du,(x) /d)
= const

Considering now the translational properties of ¥ (x) and ¥y (x).
. ( Yy(x)
ylz)y=( "¢
.' %, .L;EI'-\.I.-'I
7. )

|:_'r'L: |: IT-.:I h
T
Lol

. - { Y(x+a) diy(z+a)/dx
Wix+a)= '

for the matrix Wiz + a).

— Uolx +a) di,(x+ a)/de
one obtains the following translational property
Wi +a)=TW(z]

and therefore

det(W (x + a)) = det(T) det(W (x))




However, since
det(W(x 4+ a)) = det(IL) det(W (z)) = const
1t tollows immediately that

dET.IrT:I =1

Furthermore, since - as 15 well-known - the determinant 1z unchanged by a
similarity transformation, 1.e..

det(T") = det(T)

thizs implhes for the eigenvalues 7; and 75 that




Finally one can use the fact that the trace (fr) of the matrix I has to be
real. This again 15 easily understood from the Schréd-inger equation. Since
all quantities 1n this equation are real, also the solutions ¥, (x) and ¥, ()
can be chosen to be real 1n the mterval —oc < & < oc. Quite clearly then
also the solutions ¥, (x + a) and ¥, (x + a) are real,

" (z) . ?_L']Ij'm—ka:l)

1 real ( R . b ‘
— - -\._ .. . . LI.-.. I m _|_ a _.I
by = 9 P

which 1imphes that T has only real matrix elements 1e_

tr(T) = tr(T') = real

T+ Ts =real or 7, =real




Writing therefore the eigenvalues 7; and 75 of the canonical forms of T' as
the following umt roots

T = explira) = explika) exp(—ua)

rn=k<4+1u

Im(k)=Im(u) =20

the various canonical forms can be classified according to the (real) numbers
k and p such that det(T') = 1 and Im[tr(I') = 0.




Floquet theorem

Solutionz of the Schréodinger equation with the property

x4+ a) = 1Y)

F

are called Floguet functions or Floguet solutions. There exist two linear
independent solutions of the Schrédinger equation it and only 1f T has two
different eigenvalues (7, # 73). which 1z the case for the canonical type I

or if 7= £+ (unit matrix), which 1s the case for canonical type IIL

[f T has a double degenerated eigenvalue (7; = 7 = =1) and 1z not of the
form T'= £ (canonical type II) then there exists a Floquet solution v, (x)
of the Schrodinger equation such that the corresponding linear independent
solution ¥,(x) has the pro-perty

Walx + a) = T () + Uy ()




Remark 1: The Floquet theorem follows immediately from the posaible
canonical forms of T and the properties

det(T) = 1 and Iml[ir(T)] = 0.

Remark 2: Suppose g(x) 15 a general solution of the Schriodinger equation

glz) = a(x) + By (x)

glx + a) = e, (x + a) + By + a)

Im(a)=1Im(3)=10

then one can =zee that since for

typeI: g(z+a)=miav,(z) + 720¢,(x)

type Il g(x+a) = 7mg(x) + GU,(2)

type IIl : glx +a) = 7 (e () + Ss(x))
= T1g(x)
only in the case of canonical type III the general solution of the Schradinger
equation 15 also a Floquet solution.




Remark 3: A Floquet solution can always be written in the following form

KT y

U +a) = e™u(x)

where

ulz) = uler + a)

"

The function u(z) and the (complex) number # are not uniquely determined
by the equation
V(x4 a) = TY(x)

since all k" and u/(x) of the form

K =K+ (2mn/a)

If E 'y - oy i Y ; Y
u(xr) =expl—2minx/a)u(x)

n=40=xl =2 ---

also satisty the requirements for a Floquet solution.




Since the complex number x was given by

k=Fk+1iu

its real part £ can be restricted to the interval

—(7m/a) <k < (m/a)

)l _. —

"

whereby the values = (7/a) are equivalent to each other.




Remark 4: For a canonical type II Floquet solution v,(z) there exists a
linear independent function v, (x), which can be written as

o o x .
Wolx) = O5(x) + a—__u]f_r}
1

with

e(x) = T1U5(z) + ¥, ()

such that
0o+ a) = T105(x)

In this case, however, ¢,(x) is not a solution of the Schrédinger equation.

Remark 5: Floquet solutions are stable if and only if

Im(k+ip) =0

since for u # 0

exp ((tk — p)x) u(x)
erows indefinitely for x+ — +o0. In the case of canonical type II the corre-
sponding linear independent function v¥,(x) becomes singular for x = oo or

r = —00.




Type Canonical form

I gthe 0
0 E,—éka

ehe U
0 e #H

—eha 0

0

Stab.




Bandstructure

Since the eigenvalues 7 of the canonical forms of T were written as

r = exp(ika)exp(—pa) = exp(ira)

W

Im(k)=Im(p) =0

one can plot the possible eigenvalues E of the Schrédinger equation versus
. In this case one gets a separation of the energies E into bands. namely a
one-dimensio whereby the = sign indicates that exp(ika) = =1.

I3

iw#01if and only if £ =0, =—
a

The possible energy eigenvalues E fall then in the following intervals

Ef <E <E, <Ef<Ef<E; <Ej--

whereby the = sign indicates that exp(ika) = £1.




For each energy eigenvalue E within a stable band there exist two linear
independent Floquet solutions. For each energy eigenvalue E within an un-
stable band there exist two linear independent Floquet of the type [ such

that Re(k) =k =0 or k = £ /a. Within a band the function E(x) has the
following important properties:

(k) is contineous

E
E(k) = E(—~K)
dE(k)/dk = at a band edge

1.
2.
3.




Bloch theorem

Let us return now to the Schrédinger equation and apply cyclic boundary
conditions for the wavefunctions

r=x 4+ Na

Uy (x+ Na)

Us(z+ Na)

where ] again denotes a two-by-two unit matrix and 77 means that the
translation matrix 7 is N times applied. Quite clearly the last equation can
only be the case if and only if

T N — i

If one compares now this condition with the canonical forms of the matrix 7T
discussed previously, one obtains the following relations:




Canonical type I

TN _ exp(ira) N_ 1 0
= exp(—ika) L0 1

compatible with cyclic boundary conditions if and only if

Im(k)=0 , Re(x)=27m/Na

m integer number

Canonical type 11

?.,.."
N :l U - lU
L _(1 il) #(U 1)

not compatible with cyclic boundary conditions!




Canonical type III

N
N L1 0\ /(10

compatible with cyclic boundary conditions if and only if

N even (+) or N odd (—)

The last equations imply that all canonical solutions of the Schrédinger equa-
tion compatible with cyclic boundary conditions are stable Floquet
solutions.

Bloch condition

The famous Bloch theorem can therefore now be stated as follows: a gen-
eral, not trivial solution of the Schrédinger equation satisfying cyclic
boundary conditions is a combination of two stable Floquet solu-
tions.




Surface tates, thin film states

For a physical system with "perfect periodicity” for the potential function
| Ffr}r
Viz)=V(z+a) , —0o<z<x©

only stable Floquet solutions (Bloch functions) refer to acceptable wave-
functions.

If, however, the periodicity of V'(z) is only semi-infinite

Viz)=V(r+a) , —oc<z<0

and for x > 0 the potential V'(z) decays rapidly enough to zero, then the case
can arise that a canonical type I solution corresponding to a particular
energy E in an unstable band can be matched contineously to a solution
of the Schrédinger equation for x > 0 such that the total wavefunction is
normalizable in the interval —oo < o < 0.

If this is indeed the case, then this energy E refers to a "surface state” and
1ts wavefunction is well-behaved in the interval —oc < x < oc.




Canonical type II solutions diverge for x — oo as well as ¥+ — —oc. For
a semi-inifinte system this kind of solutions is always unphysical. Suppose.
however, that V'(x) is periodic only in a finite interval

Vi +a)

where L is sufficiently small like in a thin film, and V' (x) decays rapidly
enough for

—oo<x<0 and L<zx <o

Under certain conditions canonical type II solutions of the Schrédinger
equation in the interval 0 < o < L can be matched to solutions of this
equation in the intervals —oc < x < 0 and L < x < oo such the resulting

total wavefunction is normalizable 1n the interval —oo < 2 < o¢.

If this is the case the corresponding energy E would then refer to a * thin-film" -
state, namely to a "surface”-state caused by the presence of two
surfaces! For an illustration of a typical "thin-film”-state see




Canonrcail

Tvoe of
solution

NN

AN

\

BNENNY

5
Z

unstable
bands

L
-

N

Fia. 2. The band structure in one dimension: ¥ as a funec-
tion of x(=k-4iu); u can be 0 only when k=0 or &=/q.
The superscript s is for “stable,” and the superscripts =+
are used when exp (#ka) = 1.




