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Floquet’s theorem, and the general qualitative features
of the band structure, are described in the one-dimensional
case. The discusston includes o litile-known unstable
state at band edges that s not a Floquet function. This
“band edge state” can in certain cases play a role in a thin
crystalline layer, analogous to the role of a surface state in
a semi-infinite crystal. Some incorrect and misleading
statements about Floguet's and Bloch’s theorems, which
are widespread in expository accounts of the subject, are
pointed out.

I. INTRODUCTION

A great many elementary accounts in the
physies literature of the basic theory of Floquet’s
theorem and band theory contain incorrect or
misleading statements. Statements of the form,
“all solutions of Schrodinger’s equation with a
periodic potential are Floquet functions” are
common but incorrect. Some of these statements
are presented and corrected in See. VII.

It is convenient to give first a discussion of
Floquet’s theorem. This is done in See. IIT. The
theory includes the unstable as well as the stable
solutions; the treatment also deals carefully with
the special situation which arises at a band edge
(i.e., an energy separating an “allowed” band of
stable solutions from a “forbidden’” band of un-
stable solutions). At the band edge there are as
usual two linearly independent solutions, but
there is only one solution of Floquet form.

In this paper the analysis of a periodie potential
on the real line (—o <z<®) is named after
Floquet,* and the analysis using cyclic boundary
conditions is named after Bloch.? In the physics

literature either analysis is usually named after
Bloch. Bloch’s analysis is deseribed and ecompared
with Floquet’s in Sec. VI.

II. THE EQUATION

In the one-electron approximation, the station-
ary states ¢ (z) of an electron in a crystal lattice
are solutions of the time-independent Schrodinger
equation in a periodic potential

(d%/da?) +Q(2)¢ =0,
where

Q(z) = 2m/B)[E—V (z)]. (1)
We consider only the one-dimensional case and
neglect spin. m is the mass of the electron, and ¥ is
the energy of the stationary state. We take F real,
as this corresponds to physical solutions. (One
can learn more by studying the analytic properties
of the solutions with complex £ but we do not
do this here.)

V () is the potential due to the lattice. V (x) is
periodic with minimum period a:

V(z)=V(z+a).

All the following results hold if V(z) is finite
and twice differentiable everywhere.* Most of the
results hold under less restrictive conditions. In
the problem ‘of an electron moving in a erystal,
a potential V(z) with no lower bound at the
positions of the nuclei is often indicated.*7 Such a
potential is arrived at by a self-consistent one-
electron approximation, such as the Hartree—Fock
method. However the nearly free electron model
(NFEM), based on a weak potential is found to
give band structure results in good agreement
with experiment for /many crystals (particularly
simple metals). The NFEM is justified by the
theory of the pseudopotential.® In this theory it is
found that there are a pseudopotential and a
pseudowavefunction for a conduction electron
which satisfy a one-electron Schrédinger equation.
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The energy eigenvalue & of this pseudoequation is
the same as that of the self-consistent equation.
The advantage of this method is that the pseudo-
potential can be chosen to be small, so £ can be
found quite accurately by second-order perturba-
tion theory. In general, the pseudopotential is a
nonlocal potential V(z, z'), meaning that the
potential term V(2)¢(x) in the one-electron
Schrédinger equation is replaced by

[ dx'V {(x, 2"y (2).

Sometimes the pseudopotential can be approxi-
mated by a local potential, in which case the
pseudoequation is formally the same as Eq. (1).
In what follows we will consider the mathemati-
cal nature of the solutions of Eq. (1). For our
purpose there is no need to specify the origin of
Eq. (1); we merely note that the one-electron
approximation, and the results of band theory, are
applicable to electrons in crystals in many cases.

III. STABLE AND UNSTABLE SOLUTIONS;
FLOQUET’S THEOREM

Equation (1) is a second-order, linear, ordinary
differential equation, so it has two linearly inde-
pendent solutions for each value of E, and any
linear combination of these two solutions is also a
solution with the same E. For some values of ¥
however, the solutions are not stable. We define a
solution ¥ to be stable if it is bounded, i.e., if there
exists a constant M such that | ¢ [<M for all z.
Otherwise the solution is unstable. (In the theory
of differential equations, and its various fields of
application, there exist many nonequivalent
definitions given the name stability.) Under the
assumptions about V(z) made in Sec. II, the
solutions of Eq. (1) are eontinuous,® so they can
only be unstable by becoming infinite at 2=+«
or — =, or both. '

Only stable solutions are acceptable as quantum
mechanical states in a perfectly periodic potential.
Nevertheless, we consider all solutions, stable and
unstable, because the mathematical theory has

a more complete form if all solutions are studied,"

and because the unstable solutions are useful in
related problems (e.g., surface and size effects).
Since @(z) in Eq. (1) is real, the fwo inde-
pendent solutions can be taken real. Nevertheless,
it is convenient to consider linear combinations of
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solutions with complex coefficients. This is because
we wish to find solutions with specially simple
properties, which amounts to reducing a certain
matrix to canonical form. The theory of the
canonical form of matrices takes its most natural
form if the matrix elements are complex numbers.

Suppose ¥1(2) and y»(z) are two independent
solutions of Eq. (1). Then y1(z+4a) and ¢»(x+a)
are also solutions since Eq. (1) is unchanged by
replacing z with z--a.

We write
¥1()
v(z)=
Ve ()
Then
v(z+a)=Tv(z), (2)

where T is a 2X2 matrix whose elements are in
general complex numbers. 7' is the operator of
translation by a. Equation (2) holds because any
solution can be written as a linear combination of
two independent solutions.

A different pair v/ = Lv of independent solutions
[where L is any linear transformation, subject to
det (L) 207, translates according to

v (z+a) =TV ()
with
7" = LTI (3)

The theory of the canonieal form of matrices is
concerned with the simplest form 77 to which 7'
can be reduced by the similarity transformation
(3). The canonical form of the matrix 7' depends
on its eigenvalues 7, i.e., the solutions of

det (T—+I) =0, (4)

where I is the 2X2 identity matrix. The eigen-
values are unaltered by similarity transformations.
Since Eq. (4) is quadratic in 7, there are three
casesto—12:

Canonical type I: If the eigenvalues of T are
distinet (r15%72), the canonical form is

n 0
T/ =
0 79,

(which is diagonal).



Canonical type I1: If the solution of Eq. (4) isa
double root (r1=7,) and

T1 0
T ,
0 T1,

then the canonieal form is

T1 0
7" = :
]. T1

Canonscal type I11: If

0
T= )
0 n
T is already in canonical forrn.‘ (In this case

T'=T for all L.)

There are two restrictions on the canonical
forms of 7”7, which follow from the fact that T is
a translation operator for solutions of Eq. (1).

First, det(T) =1. Proof: From any two inde-
pendent solutions y1, ¥» construet the matrix

1 dl//1/d$
-5,
L p3 dg{/g/dﬁ?

Since ¥1 and ¥, are solutions of Eq. (1),
Y1 (d¥n/da?) — g (d¥s/da?) =0,
which is integrated to give
det (W) =y1 (dyn/dz) — 2 (dyfr/dx) = const,

(independent of z). det(W) is called the Wron-
skian of the solutions ys, ¥s.

Differentiating Eq. (2),
(d/dz)v(z+a) =T (d/dz)v(z),

and thence,

W{(z+a)=TW ().

Floguet’s Theorem in One Dimension

Therefore
detEW(x+a) J=det(T)ydet[ W (x)].

But we just saw that det[ W(x)] is independent
of z; therefore det(7") =1. QED.

Now the determinant of a matrix is unaltered
by similarity transformations (3), so det(7") =1,
which gives mim2=1 for canonical type I, and
=1 (i.e., mm==1) for canonical types IT and
II1.

The second restriction on 7T involves Tr(T)
(trace of T, = sum of diagonal elements), which
is also unaltered by transformation (3). As
remarked earlier, Eq. (1) is real, so two inde-
pendent solutions ¢1(z) and ¥,(x) can be taken
which are real functions, i.e., their values are real
for all z. Then ¢1(z+a) and Ys(xz+a) are also
real (because the set of all 2-+a is the same as the
set of all z); so T in Eq. (2) is real (has real
matrix elements) for this particular choice of
Y1, Yo. Therefore Tr(7") is real. But Tr(T) =
Tr (1),

Tr(77) is real,

i.e., 11+79 is real (canonical type I), m1 is real
(canonical types IT and III).
Write 7 in the form

exp (tka) =exp (tka) exp(—pa),

where x=k-+iu with k& and p real. Then the
possible canonical forms of 7' and the associated
values of k and u are as given in Table I.

Floquet’s theorem concerns the existence of
solutions ¢ having the property

Y(z+a) =Y (x). (5)

Solutions having this property are called Floquet
functions or solutions.

The theorem can be stated in various ways.
One way is®

Floguet's Theorem (1): There is always at least
one Floquet solution of Eq. (1).

This result is an immediate consequence of the
canonical forms of 7. However, Floquet’s theorem
is much more useful in those cases when there are
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TasLE 1. Canonical forms of the translation matrix T and associated wavefunctions. The superscript s is for “stable’” and

the superscripts =+ are used when exp (tka)

=41, i.e., at the center (resp. boundary) of the Brillouin zone. # is an integer.
All functions denoted w, », U, or V have period a. u, means u, with Im(«) =

—u.
Canonical Stability
type Canonical form of T’ k [ Canonical wavefunctions of solutions
exp (tka) 0
Ie #nr/a 0 y1,0=exp (F=tkz) tsn(x) All solutions stable
exp (—tka)
exp (ua)
I+ 2nw/a #0 Y10 =exp (Fpz) Ui, (x) All solutions unstable
exp (—ua)
—exp(ua) 0
I- @Cn+1)r/a #0 yro=exp[(Eu+in/a)zuy,(z) All solutions unstable
—exp(—pa)
Y= () Y1 stable
II+ 2nw/a 0
11 =y (x) + (z/a) uo () Y2 unstable
-1 Y1 = exp (In2/Q) Unsa () Y1 stable
II- @Cn+)w/a O
1 Yo =exp (irz/a) s unstable
X [orsa () — (/@) Usra () ]
= Un (.”13)
III+ 2nw/a 0 All solutions stable
01 2=V (%)
=exp(tnz/a) Urra ()
II1- Cn+1)r/a 0 All solutions stable
0 Ve =exp (ixx/a) Vara(z)

two independent Floquet solutions, because two
such solutions can be taken as basis solutions,
and the general solution is a linear combination
of these. So the following, stronger statement of
Floquet’s theorem [c¢f. Ref. 97 is more useful:

Floquet’s Theorem (2): When T has two distinet
eigenvalues (ecanonical type I) or 7'=41 (canoni-
cal type IIT) there are two independent Floquet
solutions of Eq. (1).

When 7' has a double eigenvalue (ri=71,=2-1)
and is #2-4-J (canonical type II) there is one
Floquet solution ¢4 of Eq. (1), and an independent
solution y¥» with the property

Ye(z+0a) =Tfe () +41(2). (6)
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Noles on Floguet’s Theorem (2):

(i) The result is an immediate consequence of
the canonical forms of 7.
(ii) In canonical type I the general solution

g(x) = o1 (z) +BY(x)
has the property
g(z+a) =mio(z) +rbyn () (ﬁ#m)-
In eanonical type II ¢ has the property
g(zta) =ng(2) +Br(z).

In neither type is the general solution a Floquet
solution. This is so only for canonical type IIL.



(iii.a) A Floquet solution can be written in
the form

exp (txx) u(z)
with
w(z+a)=u(x).

The % and « required to satisfy Kq. (5) are not
unique:

& =x+(2an/a),

u' =exp(—2minz/a)u,

(n=07 +1, +2, "'):

will do just as well. It follows that %k can be
restricted to the interval —w/a<k<w/a, the
values £wx/a being equivalent to each other
(reduced zone.scheme).

(iii.b) If ¥ in Eq. (6) is written in the form

Yo () = e () + (/ar) s (2), (M

then property (6) is equivalent to
¢ (z-+a) =g ().

[Note ¢, is not a solution of Eq. (1).]

(iil.c) From (iii.a) and (iii.b) one readily finds
the expressions for y1 and ¥ in. terms of periodic
funetions given in Table I.

(iv) The Floguet solutions are stable if and only
if k=k41p is real, because exp[ (k—p)xJu(z) is
unbounded as z—F « if u20.

The solution (6) is unstable at z= -+ « and at
r=—o [because of the linear factor z in Eq.
(7)]. 8o the canonical solutions are classified with
regard to stability as indicated in Table I.

(v) From Table I, the general canonical type II
solution

9=+t
can be written in terms of periodic funetions as
exp (thx) { Laur(2) +Bui(x) ]+B exp(ika) (x/a)us(z)}
‘ k=0 or x/a. (8)
An example of such a solution is shown in Fig. 1.

IV. BAND STRUCTURE

So far we have discussed a classification of the
solutions of Eq. (1) in terms of the properties

Floquei’s Theorem in One Dimension

Fia. 1. A sketch of a canonical type IT (or band edge)
solution g=ayy+pBy¢: [see Eq. (8), or Table I]. For
simplicity we have chosen « and g real, and £=0, so ¢
is real. The “gradient” and “center” depend on « and 8.

of the matrix 7. But 7 is a transformation
property of the solutions ¥, so one has to find the
solutions before classifying them. It would be nice
if the classification could be related directly to the
funetion @ (x) in Eq. (1), so that one could say
certain things about the solutions without having
to solve Eq. (1) completely. A limited amount
of progress has been made in this direction
(Liapounov type results’). But more generally
useful qualitative results can be gotten, which do
not refer to V() explicitly, but consider the way
the solutions depend on the energy E which can
be regarded as a parameter varying from — e to
+ ». We summarize these results informally with
an F-¢ diagram (Fig. 2) and comments. These
results are all proved in Ref. 15.
The following are comments on Fig. 2.

(i) The energy E is divided into bands by the
values Eo+<E1__<_E2_<E1+SE2+<E3_SE4—<
Es*<E<-... The canonical type of the solution
for each value of the energy is indicated in Fig. 2.
An energy value separating a band of solutions of
type I from a band of solutions of type It or I~
is called a band edge. In ¥ig. 2, E¢t, Ei—, Ex—, Eit,
B Est, Ef, Es~, Eq are band edges, but
E;-=FE{ and Est=EFst are not. We denote the
interval or band E,<E<Ey by (K., E). A band
(Hs, Ep) is said to be stable (resp. unstable) if all
the solutions in (F,, E,) are stable (resp. un-
stable). The band (— =, E,*) is unstable. It
never vanishes. The bands (Eyt, Ei7), (Fe, Eit),
-+, are stable. They never vanish. The bands
(B, E5), (Ert, Eyt), -+, are unstable if they
do not vanigh, If, e.g., Bs~=E, as in Fig. 2, the
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E Canonical

Type of
solution
/5

stable ]
bands
E+

unstable
bands +
E

LY
>

u

Fr1a. 2. The band structure in one dimension: ¥ as a func-
tion of k(=k-+7u); x can be 20 only when k=0 or &=/q.
The superscript s is for “stable,” and the superseripts =
are used when exp (¢ha) = =1.

related unstable band vanishes, and there is a
stable band (Ey*, Est). [If V{(z)=const (free
electron model), all unstable bands .except
(— o, Eyt) vanish., Less trivial cases occur in
three-dimensional crystals in which certain un-
stable bands vanish due to screw or glide sym-
metry elements.®] This subsection [IV(i)] con-
tains the main results of the oscillation theorem.*

(ii) For each value of E within a stable band,
there are two independent stable Flogquet solu-
tions.

For each value of E within an unstable band
there are two independent unstable type I
Floquet solutions. These unstable Floquet solu-
tions have k[ =Re(x) ]=0 or Zx/a.

For each value of F at a band edge the solutions
are of canonical type II. Moreover type Il solu-
tions oceur only at band edges, so we can refer to
type II solutions as band edge solutions. At a band
edge there is only one independent Floquet
solution; it is stable. There is also an independent
unstable solution, namely ¢. in HEgs. (6) and
(7); a linear combination of the stable and un-
stable solutions is unstable.
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(iii) E (k) is a continuous function of «.

(iv) E(x)=E(—«). [This follows from the
results of Sec. IIT; see Table I. The result does not
require V(z) =V (—2x).]

(v) dE(k)/dk=0 at a band edge. [When the
unstable band vanishes, as at F;~=FE,; in Fig. 2,
there is no band edge, so dE(k)/dk need not
vanish. ]

(vi) There are not more than two « values
corresponding to any energy. So a curve like that
shown in Fig. 3 is not possible. [ This follows from
the facts that Floquet solutions with different
k (modulo 2r/a) are linearly independent, and
that Eq. (1) has only two linearly independent
solutions. ]

V. PHYSICAL APPLICATIONS OF STABLE
AND UNSTABLE SOLUTIONS

In the quantum mechanics of a system with a

_ perfectly periodic potential, the stable solutions

correspond to physical solutions. The unstable
sclutions do not correspond to physical solutions,
because they diverge as z—— o, or — e, or both.

Unstable solutions of canonical type I diverge
like exp (uz) as z—= « with 2 0. However, these
unstable solutions do have a physical role in the
theory of surface states. Consider a semi-infinite
crystal with a surface (Fig. 4), in which the
potential has the periodic form V(x) only for
2<0. In the region >0 there is a surface potential
which becomes constant a short distance outside
the boundary.

The unstable solution of canonical type I has
energy ¥ in an unstable band (or energy gap) of
the unbounded crystal. In suitable circumstances
a solution of energy ¥ in >0 can be matched
(continuity of ¢ and dy/dz at =0) to a solution
exp (uz)u(z) or exp[ (p+ir/a)x]u(z) with x>0

E

Fi1g. 3. This kind of E(x) curve, with «(¥) more than
two valued in places, is not possible in one space dimen-
sion.



of energy E in z<0.7 If so a surface state exists
whose wavefunction decreases exponentially as it
penetrates into the ecrystal. Such states are
important in conneection with electronic surface
effects.

Now the unstable solution of canonical type 11
[Eq. (7)] diverges like z both as 2—- and
as z—— o, So it cannot have a physical role
in a semi-infinjte crystal. This solution is not
generally included in physical treatments of band
theory, although it was recognized by Kramers,'

and it also appears in some mathematical treat- .

mentg.!*2

It is possible however for this solution to have a
role in a thin crystalline layer analogous to the
role of the unstable solutions exp(uz)u(x) and
exp[ (u+ir/a)xJu(z) in a semi-infinite erystal.
Such a solution has to be matched at two bound-
aries (x=0 and L, Fig. 5). Since the energy of a
band edge state cannot be varied continuously
(it must be at a band edge of the infinite erystal),
this matching is only possible for special values of
L, or for speeial forms of surface potential.

The band edge state can also be considered in
the following way: A surface state with energy
near the band edge has small x, and extends a long
way into the crystal. The band edge state is a
limiting case (energy—band edge, u—0) of two
surface states each associated with one of the two
surfaces of a finite layer.

Energy bands of
unbounded crystal

;

:

Surface

Lattice potential

VAVAV/

/\ '
\/ O: Solution in X
| surface potential
)

uyfxjeFx I

Energy

(p>0]
Solutions

matched
here

F1a. 4. A surface state in a semi-infinite crystal. For
2 <0 the potential is periodic, and the solution is an un-
stable Floquet solution. E lies in an energy gap (unstable
band) of the unbounded crystal.

Floguet's Theorem in One Dimension

Energy bands of
unbounded crystal

Surface

potential Surface

potential

m

N NN

Lattice potential

Fia. 5. A band edge state in a finite crystal: It is matched
at =0 and L to solutions with energy E in the surface
potential.

To find the possible electron states in a finite
crystalline layer one can proceed by finding the
states in the infinite crystal for all energies (stable
bands, unstable bands, and band edges), and
then picking out those solutions which fit the
boundary conditions at the two surfaces (z=0
and L). This will lead to a discrete spectrum of
energy levels. A band edge state occurs when one
of these energy levels coincides with a band edge.

These considerations are relevant for the theory
of the “quantum size effect.”’?! This effect con-
cerns the oscillations with thickness of the elec-
tronic properties (e.g., electrical conductivity)
of layers of semiconductor or semimetal whose
thickness is comparable with the effective de
Broglie wavelength of the conduction electrons
and holes.

VI. CYCLIC BOUNDARY CONDITIONS;
BLOCH’S THEOREM

We now consider a finite length Na of the
crystal (where N is a large but finite integer) and
suppose it bent into a circle and the ends joined.
This finite periodic system is mathematically
much simpler than the infinite system. The wave-
functions must have the period Na (since z-+Na
is the same point as z), i.e.,

v{z+Na) =T"v(z) =v(z)
[ef. Eq. (2)]. Such boundary conditions are
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called cyclic. Equation (1) subject to eyclic
boundary conditions does not possess nontrivial
solutions [v(z)=0] for all energy E. For a non-
trivial solution

v =T. 9)

Now canonical type I, with

exp (tka) 0
T= ,
0 exp(—1ika)

is compatible with Eq. (9) only if « is real and
equal to 2am/Na (m=integer). Canonical type
II, with

£1 0
T= :
1 %1

is not compatible with Eq. (9).

In canonieal type III, T'=1 is compatible with
Eq. (9) for all N, and T'=—1 is compatible with
Eq. (9) if N is even.

Thus all the canonical solutions compatible
with eyeclic boundary conditions are stable
Floquet solutions. The basis set of solutions can
be taken in canonical form without loss of gen-
erality, so we have:

Bloch’s Theorem: The general nontrivial solution
of Eq. (1) subject to cyclic boundary conditions
is a linear combination of two stable Floquet
solutions.

The use of ecyclic boundary conditions is
essential to Bloch’s theorem, because Sec. IIIL
showed that for a noneyclic lattice (— o <z< w)
only one of the two independent solutions at a
band edge is a Floquet solution.

In group theoretical terms Bloch’s argument?
is that the translations T, T?, T3, ««+, T" =1 of a
crystal, subjeet to cyclic boundary conditions
form a finite Abelian group, and all the irreducible
matrix representations of such a group are one
dimensional. If eyeclic boundary econditions are
not applied, the translations form an #nfinite
Abelian group, and the irreducible representations
of an infinite Abelian group are not all one dimen-
sional. '

In the application of eyclic boundary conditions
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one does, of course, suppose that N is very large.
Nevertheless, there are some solutions in the
infinite lattice which are not obtained from the
cyclic lattice, even when N— o, The theory with
eyelic boundary conditions is strikingly simple. A
specially valuable feature is that this theory holds
for the three-dimensional case in almost as simple
a form.? However, one does see more by including
the unstable solutions, and they are essential in
the study of surface effects.

VII. SOME COMMON IMPERFECTIONS IN
EXPOSITIONS OF FLOQUET’S AND
BLOCH’S THEOREMS

The following imperfections in expositions of
Floquet’s and Bloch’s theorems and band theory
have been noted to be quite widespread:

(i) In most physics and some mathematics
expositions, the possibility of the band edge
solution ¢, in Kqgs. (6) and (7) is overlooked.
The statement?® 2 that the general solution of
Eq. (1) is a linear combination of two Floquet
solutions is not completely correct; it is not true
at a band edge.

(i1) Statements of Bloch’s theorem equivalent
to the following are quite common in physies
books?—38; \

Statement I: “The solutions of Eq. (1) are
Floquet functions.” The weakness of such state-
ments, in expositions for the noviee to the subject,
lies in the uncertainty as to what is meant by
“the solutions.” The most natural interpretation
is that “the solutions” means “all solutions.”
Indeed some books* ¢ make statements like

Statement II: “All solutions of Eq. (1) are
Floquet functions.” We saw in Sec. IIT that
statement IT is incorrect, and insofar as statement
I is most naturally interpreted to mean the same
as statement I1, statement I is misleading,.

(iii) Some treatments® 234 oive the two
Floquet solutions of energy £ (again valid only
for canonical types I and III) as

ue () exp(Fixr).
As shown in See. IV the two solutions are
and  u—(x) exp(—ikx),

u () exp (ixx)

which do not amount to the same thing.



VIII. CONCLUSION

Certain deficiencies are quite common in
expositions of Floquet’s and Bloch’s theorems.
One defect is that the status of the Floquet
solutions is not often made clear.

In physical problems involving an unbounded
crystal, so that only stable solutions are used, the
stable Floquet solutions form a basis set. It is
this property that makes them so useful, and it
would seem to be pedagogically important to
stress this property. No generality is lost by
starting with Floquet solutions in an unbounded
crystal problem. The general stationary state is a
superposition of two Floquet functions—except
at a band edge, where there is only one Floquet
funection that is itself the most general stable
stationary state. The most general time dependent
state can be gotten by superposing Floquet
funections with different energies £ [ with the time-
dependent factors exp(—2Et/%) included]. TIn
this way one can, for example, construct a wave-
function that is initially localized ; as time proceeds
the wavefunction spreads out.

Floquet’s and Bloch’s theorems and band theory
are rightly considered to be so important that the
student of physics should understand them as
early as possible. The real difficulties to the
student of this material are often made greater by
inadequate statements of the central theorem.
Even the correct statements are not often accom-
panied by an elementary explanation of the status
of the Floquet functions. It is true that the nature
and status of the Floquet functions is implicit in
the derivation of Floquet’s and Bloch’s theorems,
but the beginning student is not usually able to
appreciate such implicit consequences. Expository
accounts should help the student by an explicit
statement of the status of the Floquet functions.
Some of the best expositions in this respect are
to be found in Refs. 50-53, although only the first
of these is at an elementary level.

It is not suggested that the unstable solutions
should necessarily be presented in elementary
expositions, because the analysis of the stable
solutions only is so much simpler, and the stable
solutions are so much more important than the
unstable ones. But it is suggested that elementary
expositions should stress the feature that the
Floquet functions are a basis set, i.e., the general

Floquet's Theorem in One Dimension

stable solution is a hnear combination of Floquet
functions.
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Using the frequency dependent conductivity, we show
that electronic charge is expelled from the interior of a
melal by setiing up an oscillation driven by the Coulomb
repulsion at the plasma frequency. This oscillation damps
out in a time on the order of an electronic collision time.
The usual textbook derivation does not obtain this result
because it discusses this high-frequency phenomenon in
terms of the zero-frequency conductivity. In the case of
poorer conductors which do not support plasma oscilla-
ltons the usual treatment is valid.
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I. INTRODUCTION

It is generally accepted that electronic charge is
expelled from the interior of a conducting material
within a very short time.! The derivation of this
result, which is based upon Gauss’ law, charge
conservation, and Ohm’s law, gives an exponential
decay time of 7,= (4r¢)~, where ¢ is the de
conductivity in esu units. However, in the case of
metals one finds that this relaxation time is much
shorter than a typical electronic collision time 7.
This treatment of the problem is therefore not
self-consistent since one should use the condue-
tivity appropriate to the frequency wrIr, ™,
and this is very different from the de conductivity.
At low frequencies collisions occur so frequently
that the charge carriers are moving as if within a
viscous medium, whereas at high frequencies the
charge carriers behave almost as if they were free.

These two frequency regimes are well-known
in the transverse electromagnetic response of
metals. Radio waves do not penetrate metals
because they are damped out within a skin depth



