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The discovery of thermodynamics
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Based on the idea that a scientific journal is also an “agora” (Greek: market place)
for the exchange of ideas and scientific concepts, the history of thermodynamics
between 1800 and 1910 as documented in the Philosophical Magazine Archives
is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clau-
sius, Maxwell or Boltzmann shared this forum. Not always in the most friendly
manner. It is interesting to find out, how difficult it was to describe in a scientific
(mathematical) language a phenomenon like “heat”, to see, how long it took
to arrive at one of the fundamental principles in physics: entropy. Scientific
progress started from the simple rule of Boyle and Mariotte dating from the
late eighteenth century and arrived in the twentieth century with the concept of
probabilities. Thermodynamics was the driving intellectual force behind the in-
dustrial revolution, behind the enormous social changes caused by this revolution.
The history of thermodynamics is a fascinating story, which also gives insights
into the mechanism that seem to govern science.
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1. Introduction

Most likely, thermodynamics was and is the (technologically) most successful part of physics
in the last 200 years. Of course, nowadays it is very easy to summarize formally the key
equations of thermodynamics in just three lines,

F = U − T S, (1)

G = H − T S, (2)

H = U + pv, (3)

where F is the Helmholtz free energy, G the Gibbs free energy, H the enthalpy, U the
internal energy, T the temperature, S the entropy, p the pressure and v the volume, but back
in the first half of the nineteenth century none of the quantities denoted by a capital letter
had a name nor did they have any clear meaning. It took altogether almost a century till the
last “mysterious” term, namely the entropy, was fully accepted by the physics community.
To make absolutely clear what kind of gigantic progress was made, just imagine to sit –
around 1820 – in front of a fire place with a nice coal fire burning and to wonder of what
physical origin the experienced “heat” possibly might be. Even today it would not be easy
at all to answer this question in simple terms.
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Quite clearly, at the beginning of the nineteenth century, which usually is recognized as
being the beginning of the industrial revolution, the interest in gases, in particular steam,
was mainly driven by the invention and subsequent use of steam engines (James Watt,
around 1770, and others).

At least some relations for gases were already well known, namely Boyle’s (1662) and
Mariotte’s (1676) law,

pv = k, (Boyle-Mariotte)

and Gay–Lussac’s relation (1802),

V = k′(a + t), (Gay-Lussac)

where p is the pressure, v the volume, t the temperature in centigrades and a, k and k′
are constants. Carnot’s (Nicolas Léonard Sadi, 1796–1832) splendid explanation of steam
engines in his Reflections on the Motive Power of Fire [1], although many times cited,
remained slightly mysterious for a number of years.

In modern sociology of science, the term agora (Greek, market place) is frequently used
for the social structure of scientific communities. A scientific journal can be viewed as an
agora, as a place suitable for the exchange of ideas, as a market place of cultural importance.
The Philosophical Magazine Archives give a wonderful account of the conceptual progress
in thermodynamics made in the nineteenth century, since many famous papers by Joule,
Thomson (Kelvin), Clausius, Maxwell, Boltzmann and many others got published there or
were reproduced as translations. For this very reason, almost exclusively, only quotations
and citations from the Philosophical Magazine are used in the following. Consequently,
the conceptual history compiled below reflects only the progress of ideas in a single
scientific auditorium (agora), it cannot claim to provide a complete account of the history
of thermodynamics. There is a wide variety of books dedicated to this subject.

It should be noted that all equations specified by the name of a particular author, refer to
the original formulation. Since some of the concepts are written in a formal language that
might appear difficult to understand, two appendices, one dealing with the kinetic theory of
gases, the other one with a more modern view of Boltzmann statistics, are provided.

2. Joule and the concept of heat

Perhaps one of the very first people (in Britain) to investigate various forms of heat
experimentally in a scientific rigorous and systematic manner was Joule (James Prescott,
1818–1889), a brewer by profession. Very typically for his time, he first started out [2,3] to
deal with heat generated in wet-chemical processes and electrochemical phenomena. From
his carefully described experiments he concluded1 that the heat evolved by other chemical
actions, besides which is called combustion, is caused by resistance to electric conduction …
[2]. While the heat of combustion remained a bit mysterious, the heat produced in magneto-
electric experiments seemed to lead to first quantitative relations: (1) the heat evolved by
a bar of iron revolving between the poles of a magnet is proportional to the square of the
inductive force and (2) the heat evolved by the coil of the magneto-electrical machine is
proportional to the square of the current [4].

Joule quickly realized that in obtaining a concept for heat at least a quantity that would be
specific for individual (chemical) systems was needed, in particular, since an adequate unit
for heat obviously was missing. The specific heat as formulated by Petit and Dulong [5],
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Figure 1. First part of Joule’s original 1845 set-up to investigate changes of temperature produced by
the rare-faction and condensation of air [7]: a pump C, a pipe A, a receiver R, a vessel W containing
water, and a vessel G filled with small pieces of CaCl2. Air dried by means of G is led into the pump.
The temperature is measured in W and in the container of water into which C and R are immersed.

namely that the specific heat of simple bodies is inversely proportional to their atomic
weights [6] seemed to provide a first key, but did not convince Joule completely.

Besides electricity and magnetism, the other very popular scientific topic in the first half
of the nineteenth century was the handling of gases, in particular, since in galvanic processes
gases were produced. In 1845, Joule constructed a remarkable device [7] consisting of a
pump and one (Figure 1) or two receivers (Figure 2). In a first set of experiments he found
that the work to operate the pump could be related to the heat caused by compressing air in
a receiver. This work he termed mechanical equivalent of heat. Furthermore, in connecting
that receiver with another receiver containing air under reduced pressure he managed to
show that no change of temperature occurs when air is allowed to expand in such a manner
as to develop mechanical power [7]. He even made sure that it did not matter whether the
two receivers were immersed in one water tank or in separate ones, see Figure 2.

The experiments with the two receivers proved that obviously a kind of conservation
law of heat had to be anticipated, since the heating up in one receiver and the cooling
in the other showed a vanishing net gain in temperature of the water tank(s). The effect
of cooling Joule encountered is now called Joule–Thomson effect and is the underlying
principle of refrigerators, air conditioners, heat pumps, etc. The idea of having discovered
an equivalent relation between heat and the ordinary forms of mechanical power led Joule
to also investigate the heat of friction [8,9]. To show his equivalent relation he had a paddle
wheel running in various kinds of liquids: it needed mechanical power to rotate the paddle
wheel, while at the same time the heating up of the liquid could be observed. Like his
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Figure 2. Second part of Joule’s set-up [7]. In his Figure 3, R is a receiver filled with about 20
atmospheres of dry air and E a receiver exhausted by means of an air pump. In his Figure 3 both
receivers were put in the same water bath, in his Figure 5 in separate baths. The two receivers were
connected by means of stop-cocks.

compatriot Michael Faraday, Joule was mainly interested in the factual outcome of his
experiments. He was perhaps less intrigued to attempt a formalization of the relations he
discovered.

3. Clausius and the first fundamental law of thermodynamics

In 1851 Clausius (Rudolf von, 1822–1888), a German mathematician and physicist, pub-
lished a series of papers in Poggendorff’s Annalen, all of which were translated and
published in the Philosophical Magazine [10–12]. In particular his paper entitled by On
the moving force of heat, and the laws regarding the nature of heat itself which are
deducible there from [11] made him internationally famous: it introduced a mathematically
oriented language that in essence is still the backbone of modern (phenomenological)
thermodynamics.

In this paper [11], he sets out by rephrasing Joule’s equivalent relation. In all cases where
work is produced by heat, a quantity of heat proportional to the work done is expended;
and inversely, by the expenditure of a like quantity of work, the same amount of heat may
be produced [11], namely as a hypothesis (maxim), from which a mathematical treatment
can be deduced.

Let a certain quantity of permanent gas … be given, he starts his argumentation in [11],
then in a union of the laws of [Boyle–] Mariotte and Gay-Lussac,

pv = R(a + t), (Clausius 1)

where p is the pressure, v the volume, t the temperature in centigrades, a [is] a constant
equal for all gases and also R [is] a constant … . This last constant is … different for
different gases … . In principle, as he explains in terms of an example, it is clear that by
investigating a gas (in ideal conditions) in two different states, say p0, v0, t0 and p1, v1, t1,
the constant a assumes the (universal) value of a = 273.

Being a mathematician, Clausius knew very well how to express empirical laws into
differential equations. He immediately concluded from the Boyle–Mariotte-Gay-Lussac
law that [11] the increase of pressure [at constant volume v] … due to the differential
t − τ = dt … can be expressed in terms of v and t … as follows:

dp = Rdt

v
. (Clausius 2)
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If the increase of volume … be denoted by dv, we obtain …

The work produced = Rdvdt

v
. (Clausius 3)

Thus, obviously only one more quantity was needed to complete the description: let the
amount of heat which must be imparted to change the gas by a definite process from any
given state to another, in which its volume is v and its temperature is t, be called Q [11],
then by neglecting all differentials of higher order, one obtains

The heat expended =
[

d

dt

(
d Q

dv

)
− d

dv

(
d Q

dt

)]
dvdt. (Clausius 4)

Finally, by defining the following quotient

A = The heat expended

The work produced
, (Clausius 5)

one gets
d

dt

(
d Q

dv

)
− d

dv

(
d Q

dt

)
= AR

v
, (Clausius 6)

which in turn can be brought under the form of a complete differential, thus:

d Q = dU + AR
a + t

v
dv, (Clausius 7)

where U denotes an arbitrary function of v and t [11].
In considering the case of a vapor in equilibrium with its fluid, Clausius was even able

to show that the function U … cannot contain v, and hence the equation changes to

d Q = cdt + AR
a + t

v
dv, (Clausius 8)

where c can only be a function of t … [11].
From this equation the consequences for the specific heat d Q/dt ,

v = const., dv = 0 : d Q

dt
= c, (Clausius 9)

p = const., dv = Rdt

p
: d Q

dt
= c′ = c + AR, (Clausius 10)

can immediately be read off, namely that the difference of both specific heats for every gas
is a constant quantity AR [11].

4. Thomson and the dynamical theory of heat

Clausius’ approach was very quickly adopted by the scientific community, since only one
year later, in 1852, Thomson, the later Lord Kelvin (William, 1824–1907), stated in an article
entitled by On the dynamical theory of heat, with numerical results deduced from Mr. Joule’
equivalent of a thermal unit, and M. Regnault’s observations on steam that the whole theory
of the motive power of heat is founded on … two … propositions, due respectively to Joule,
and to Carnot and Clausius [13].

It is worthwhile to follow Thomson’s argumentation, since, as compared to Clausius,
his style of formulation is much more physics oriented.
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Let the quantity of work which it [a mass of any substance] will produce … be

vdv ; (Thomson 1)

and the quantity of heat which must be added to it to make its temperature rise during the
expansion to t + dt may be denoted by

Mdv + Ndt. (Thomson 2)

The mechanical equivalent of this is

J (Mdv + Ndt), (Thomson 3)

if J denotes the mechanical equivalent of a unit of heat. Hence the mechanical measure of
the external effect produced … is [13]

(p − J M)dv − J Ndt. (Thomson 4)

In here v, p and t are again the volume, the pressure and the temperature. J is an absolute
constant, M and N seem to be function of t or v only, since

dp

dt
= J

(
d M

dt
− d N

dv

)
. (Thomson 5)

This equation, as Thomson insists, expresses in a perfectly comprehensive manner the
application of the first fundamental proposition to the thermal and mechanical circum-
stances of any substance whatever, … , when subjected to any possible variations of
temperature, volume and pressure [13].

As far as the second proposition is concerned, namely that due to Carnot and Clausius
[13], it is completely expressed by the equation

μ = 1

M

dp

dt
, (Thomson 6)

where μ denotes what is called “Carnot’s function”, a quantity which has an absolute value,
the same for all substances for any given temperature … [13].

In the third part of his paper [13], he added that Nmust be what is commonly called the
“specific heat at constant volume” [13] and if K denotes the specific heat under constant
pressure, i.e. (K − N )dt = Mdv, then M merely shows the meaning in terms of the two
specific heats …[13], which is what Clausius obtained in the case of an ideal gas, see
Equations (Clausius 9) and (Clausius 10).

5. A flash forward

Before going ahead with further methodological achievements and historical details, it is
perhaps quite useful to point out, how far Clausius and Thomson already got. Rewriting
Clausius’s main equation, see Equation (Clausius 7), in a more familiar notation (c = cv ,
Equation (Clausius 9), U internal energy), assuming one Mol of an ideal gas (A = 1) and
dividing by T , one gets

d Q

T
= cv

T
dT + R

v
dv︸ ︷︷ ︸

Clausius, 1851

≡ dU + pdv

T
. (4)
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Figure 3. pv- and T S diagrams corresponding to a Carnot cycle.

Integrated between states A and B “simply” yields the change in entropy

�S = SB − SA =
B∫

A

d Q

T
, or, Q =

B∫
A

T d S. (5)

“Simply” of course in terms of present days’ knowledge, since the term entropy still
had to be coined and its meaning to be discovered. It needed another almost 20 years till it
was recognized that d Q/T is not a kind of renormalized heat.

From Figure 3 one can guess, why in terms of a pressure (p) vs. volume (v) description
of the Carnot process seemed to be so complicated, but also that by using entropies an
explanation can be almost read off. If T1 denotes the temperature of a hot reservoir and T2
that of a cold one, then the heat (thermal energy) transferred between these two reservoirs
is given in terms of Equation (5) by

�Q = Q1 − Q2 = (T1 − T2) (SB − SA), (6)

and the efficiency of a Carnot machine – the then main topic of interest – by

η = �Q

Q1
= 1 − T2

T1
. (7)
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6. Clausius and the absolute temperature

In 1856 Clausius formulated a theorem of the equivalence of transformations [14] in which
he introduced the quantity Q/T , which he called equivalence-value. In the presence of
more than one reservoir the corresponding equivalence values had to be additive, i.e.

N =
∑

i

Qi

Ti
=
∫

d Q

T
, (Clausius 11)

and if the process is reversible, then, however complicated it may be, we can prove … that
the transformations which occur must exactly cancel each other, so that their algebraic sum
is zero. [14]

Furthermore, the equation ∫
d Q

T
= 0, (Clausius 12)

is the analytical expression of the second fundamental theorem in the mechanical theory of
heat [14].

Although his analytical expression, Equation (Clausius 12), already looks like the one
on the lhs of Equation (4), in Clausius’ formulation [14] f (T ) = 1/T was still assumed
to be an unknown function with values of T1, T2, . . . corresponding to the temperatures
t1, t2, . . . . Only in his second publication [15] of that year entitled by On the Application
of the Mechanical Theory of Heat to the Steam Engine he explicitly states that

T = 273 + t, (Clausius 13)

and calls T the absolute temperature, a term, which became customary since then. For
matters of curiosity, in Figure 4 Clausius’ concept of a steam engine is displayed.

It is interesting to note that Joule and Thomson, who in the mean time got interested
in the œconomical production of mechanical effect from chemical forces [16] and the heat
produced by an electric discharge [17], respectively, rushed to comment on Clausius’ paper
[15], trying to point out their own achievements: The results we [Joule and Thomson] have
arrived at in our joint investigation have tended certainly to develope our views, and to give
a more definite knowledge of the constitution of elastic fluids, but they do not contradict
our original statements, published before the appearance of Prof. Clausius’s papers.[18]

7. Maxwell and the dynamical theory

Around 1850 or even much before first ideas came up to relate the pressure in gases and
consequently also the heat to the motions of particles, considered as “hard spheres” or
“elastic bodies”. In the Philosophical Magazine, the stage was first set by Clausius, who –
very unusual for his approach to physics – first tried to describe [19] the new set of problems
in words and only then attempted to propose [20] an equation for the mean length of the
path of a “molecule”. It is hard to believe, but in 1860 Maxwell (James Clerk, 1831–1879)
solved most problems related to the motion of elastic bodies in just one longish paper [21].

So many of the properties of matter, especially when in the gaseous form, can be deduced
from the hypothesis that their minute parts are in rapid motion, the velocity increasing
with the temperature, that the precise nature of this motion becomes a subject of rational
curiosity. … certain phenomena, such as the internal friction of gases, the conduction of
heat through a gas, and the diffusion of one gas through another, seem to indicate the
possibility of determining accurately the mean length of path which a particle describes
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Figure 4. Clausius’s sketch of a steam energine: In the … figure … A represents the boiler whose
contents are maintained by the source of heat at a constant temperature T1. Apart of the C steam
passes from the boiler to the cylinder B and raises the piston a certain height. The cylinder and boiler
are next disconnected, and the vapour contained in the former raises the piston still higher by its own
expansion. After this the cylinder is put in communication with the space C, which shall represent the
condenser. We shall suppose the latter to be kept cold by external cooling …The constant temperature
of the condenser shall be To. During the connexion of the cylinder with the condenser the piston
retraces the whole of its former path, and thus all the vapour which did not immediately pass by itself
into the condenser is driven into it, and there becomes condensed. In order to complete the cycle of
operations, it is now necessary to convey the liquid produced by condensation back again into the
boiler. This is done by means of the small pump D … [15].

between two successive collisions. In order to lay the foundation of such investigations on
strict mechanical principles, I shall demonstrate the laws of motion of an indefinite number
of small, hard, and perfectly elastic spheres acting on one another only during impact. [21]

Retrospectively seen, Maxwell’s paper [21] was probably of considerable importance
for all future developments yet to come (including all of Maxwell’s own improvements). It
consists of three parts, organized as a sequence of “Propositions”, see alsoAppendixA, each
of them followed by a (at the time) complete mathematical treatment. The paper reads almost
like a publication in pure mathematics: the “Propositions” being called there theorems, their
formal handling corresponds to respective proofs; each “Proposition” follows logically
from the previous one(s). As it is not possible to reproduce Maxwell’s 31 pages of solid
mathematics in a few lines, the reader is referred to Appendix B, which contains a kind of
summary of the so-called kinetic theory of gases and of the Boltzmann–Maxwell distribution
of velocities. Appendix A is meant to give at least an impression of the precise language
Maxwell used.

8. Another flash forward

From Maxwell’s paper [21] follows, e.g. that the averaged kinetic energy εt of a gas molecule
(particle) of mass m is given by

εt = m

2
u2, (8)
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Figure 5. Some of Maxwell’s original illustrations [21]. Proposition I (top): Let P and Q be the
position of the centres at impact; AP, BQ the directions and magnitudes of the velocities before
impact; Pa, Qb the same after impact; then, resolving the velocities parallel and perpendicular to
PQ the line of centres, we find that the velocities parallel to the line of centres are exactly reversed,
while those perpendicular to that line are unchanged. Compounding these velocities again, we find
that the velocity of each ball is the same before and after impact, and that the directions before and
after impact lie in the same plane with the line of centres, and make equal angles with it. Proposition
III (bottom): Let 0A, 0B represent the velocities before impact, so that if there had been no action
between the bodies they would have been at A and B at the end of a second. Join A B, and let G
be their centre of gravity, the position of which is not affected by their mutual action. Draw G N
parallel to the line of centres at impact (not necessarily in the plane AOB). Draw a Gb in the plane
AGN, making NGa = NGA, and Ga − GA and Gb = GB; then by Prop. I. Ga and Gb will be the
velocities relative to G; and compounding these with OG, we have Oa and Ob for the true velocities
after impact.

where u2 denotes the averaged square velocity. The pressure p for an isotropic velocity
distribution can then be written as

p = 2

3

N

v
εt , (9)

where N is the total number of particles and v the volume. Alternatively formulated,

pv = 2

3
Nεt , (10)

and compared with the equation for an ideal gas,

pv = n RT, (11)

one immediately can deduce that for n = 1 and N referring to the Loschmidt (Avogadro)
number L

εt = 3

2

(
R

L

)
T = 3

2
kT, (12)

or,

T = 2

3
k−1εt , (13)

where k is the Boltzmann constant.
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The only one who immediately understood the importance of Maxwell’s paper was
Clausius [22]. In 1862, he published a long paper [23], in which he explicitly cited some
of Maxwell’s propositions. In dealing with problems similar to those of Maxwell, in some
cases he found different results. In a much later publication, Maxwell in fact admitted [33]
that there were several errors in my theory of the conduction of heat in gases, which M.
Clausius has pointed out in a eleborate memoir [quoted as Ref. [23] ] on that subject.

9. Scientific clashes: the first law of thermodynamics

Between 1863 and 1864, a formidable verbal battle between Tyndall (John, 1820–1893) on
the one side and Thomson and Tait (Peter Guthrie, † 1901) on the other side was waged
in the Philosophical Magazine concerning the credit of being the first to establish in all its
generality the principle of the Conservation of Energy. By referring to an article in Liebig’s
Annals of Chemistry and Pharmacy that appeared in 1842, Tyndall claimed it was Mayer
(Julius Robert von, 1814–1878), while the others insisted on Joule being the originator. The
style of their contributions to the Philosophical Magazine probably can at best be called only
“less than friendly”, which, as should be known, is not unique to the nineteenth century.

Tyndall: ... I was not aware of the existence of an article in the October Number of a
journal called “Good Words”, from the combined pens of … William Thomson and Tait,
in which, though not mentioned by name, I am referred to … . When, however, it is known
that the other articles in the number to which I refer, bear such titles as “The Childhood of
Jesus”, … &e., I think I may be excused if an article on Energy, in the scientific sense of
the term, imbedded in such matter as those titles indicate, escaped my attention.

Many will agree with me in thinking that it would hardly conduce to the interests or
the dignity of science, if the habit were to become general of taking difficult and disputed
points, which apparently involve imputations on individual character, into such a court
as that chosen by Professor Thomson and Professor Tait. It is very laudable and very
desirable that men in their high positions should instruct the readers of “Good Words” but
these respectable persons are placed in a false position when they are virtually called upon
to decide between the rival claims of Joule and Mayer, and to form an opinion as to the
scientific morality of myself. [24]

This dispute made Mayer to produce a friendly, philosophically minded account of his
achievements [25] by pointing out that his 1842 article even got translated into English and
had appeared in 1862 [26].

Joule: …but it is certain that the result of it as stated by M. Mayer, was not received
or remembered by the scientific world, so that M. Regnault and myself were considered
by others, as we considered ourselves, to be original inquirers on this subject. … This,
however, so far from detracting from the merit of M. Mayer, must, on the contrary, increase
our admiration of his wonderful prescience … [27].

Tait: I wish to make a few additional remarks on this subject: especially as it appears
to me, after a careful perusal of all that Dr. Tyndall has written upon it, that he does not
yet quite understand the points which Prof. Thomson and I wished to establish when, in
consequence of his lecture on “Force,” we wrote our article in “Good Words” nearly two
years ago. Hence, so far as regards the question of heat alone, Mayer has no title to the
position Dr. Tyndall claims for him. He did no more than repeat what Davy and Rumford had
done better; and he has never, so far as even Dr. Tyndall’s partisanship can show, attempted
anything of the nature of either the theoretical or experimental developments which have
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advanced thermo-dynamic science during the present century. What, in point of fact, did
Mayer do in thermo-dynamics? [28]

It seems that this dispute was a bit biased by national bride. One has to admit that to use
the word “prescience” can indeed be regarded as an insult. Speaking strictly historically,
Mayer surely was “the first one” to observe a conservation law for energy only he did not
get the same scientific response (and audience) as Joule.

10. At last: the term entropy is introduced

Clausius knew that something in his description of “thermodynamic” processes was still
missing. In 1862, he returned [29] to his analytical expression of the second fundamental
theorem [14], see Equation (Clausius 12), and stated that the relation∫

d Q

T
≥ 0 (Clausius 14)

must hold good for every circular process which is in any way possible [29]. Although
this relation is an important statement per se, implying severe consequences for future
developments, it was, however, only in1866 that he introduced [30] a notation and a
terminology for d Q/T , which presently is still in use.

In [30] he starts out again with the first fundamental equation of thermodynamics,
namely

d Q = dU + dw, (Clausius 15)

dw = AdW,

where A denotes the thermal equivalent of work …, d Q the quantity of heat [infinitely] ab-
sorbed and dW the external work simultaneously performed. Since according to
W. Thomson, who subsequently introduced this same magnitude into his equations, has
proposed for it [U ] the convenient name of Energy, I have adopted this expression. [30]

Immediately from there he addresses the second fundamental theorem in the form of
his Equation (Clausius 12) by coining a new term S,

d Q

T
= d S, (Clausius 16)

which he calls entropy. I have formed, namely, from the Greek word τρoπη, change, the
word Entropy, which expresses the meaning of the magnitude S, in the same way as the word
Energy denotes that of the magnitude U. [30] [en + tropein, Greek, meaning “transformation
content” (“Verwandlungsinhalt”)]

Combining Equation (Clausius 15) with Equation (Clausius 16) yields

−dw = dU − T d S, (Clausius 17)

which formally already looks like the very first equation in the introduction.
Suppose now that U , S and w are functions of the independent variables x and y, then,

for example,

dw =
(

dw

dx

)
dx +

(
dw

dy

)
dy,
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and thus the differentials dw, dU and d S can be formulated in terms of respective partial
derivatives. Equation (Clausius 17 ) can indeed be regarded as one of the key equations of
phenomenological thermodynamics, since at a given temperature T all occurring changes
are caused only by changes in the energy U and the entropy S.

It should be mentioned that the term entropy seems to have been quickly accepted by
the scientific community, as can be judged, e.g. from a paper [31] by Rankine (William John
Macquorn, 1820–1872), one of the major actors in the amazing history of thermodynamics.

11. The second law of thermodynamics

The second law of thermodynamics remained very much under discussion. In particular,
1868 must have been an inspiring year, since not only Clausius published [32] a by then
incredible theorem, see Equation (Clausius 14), but also Maxwell surprised the scientific
community with a modification of his dynamical theory of gases considering the molecules
of a gas, not as elastic spheres of definite radius, but as small bodies or groups of smaller
molecules repelling one another with a force whose direction always passes very nearly
through the centres of gravity of the molecules, and whose magnitude is represented very
nearly by some function of the distance of the centres of gravity [33].

Twelve years after his first ideas [14] about the additive character of the entropy, see
Equation (Clausius 11), and a subsequent proof of its positive definite character, Equation
(Clausius 14), Clausius could finally give a very general interpretation of this quantity,
which turned out to become one of the corner stones of physics:

Hence we must conclude that in all the phenomena of nature the total entropy must be
ever on the increase and can never decrease; and we thus get as a short expression for the
process of transformation which is everywhere unceasingly going on the following theorem:

The entropy of the universe tends towards a maximum

The more the universe approaches this limiting condition in which the entropy is a maximum,
the more do the occasions of further changes diminish; and supposing this condition to be
at last completely attained, no further change could evermore take place, and the universe
would be in a state of unchanging death [32].

12. Hamilton and thermodynamics

By around 1870, the (phenomenological) equation reflecting both, the first and the second
fundamental theorem of thermodynamics, seemed to be clear and generally accepted.
However, the meaning of Joule’s mechanical equivalent of heat remained unresolved. Within
10–15 years, a series of papers [34–45], appeared in the Philosophical Magazine, in which
such a connection was proposed. This “mechanical equivalent” seems to have been almost
an obsession and turned out to be a battle in classical mechanics. The main actors on the
stage were Boltzmann (Ludwig, 1844–1906), Clausius and Szily (Coloman), being joined
a couple of years later by Burbury (Samuel Hawksley, 1831–1911).

Since quite a few new concepts were introduced in these publications, it is worthwhile
to summarize briefly some of them. The first one to embark in hitherto unknown fields was
(again) Clausius.

Let there be any system whatever of material points in stationary motion. By stationary
motion I mean one in which the points do not continually remove further and further from
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their original position, and the velocities do not alter continuously in the same direction …
[34]. Then:

1

2

∑
i

miv
2

︸ ︷︷ ︸
mean “vis viva”

= −1

2

∑
i

(Xi xi + Yi yi + Zi zi )︸ ︷︷ ︸
“virial”

(Clausius 18)

= 1

2

∑
i

rφi (r)

︸ ︷︷ ︸
“ergal”

. (Clausius 19)

In here v2 is the mean square velocity at a particular time t , (xi , yi , zi ) are the coordinates
of materials points of mass mi and Xi , Yi and Zi are the components of the forces acting
on these material points. By the way, the term “vis viva” (latin, meaning living force)

1

2

∑
i

miv
2
i = 1

2

∑
i

((
dxi

dt

)2

+
(

dyi

dt

)2

+
(

dzi

dt

)2
)

was coined by Leibnitz (Gottfried Wilhelm, 1676–1689). For the term on the rhs of Equation
(Clausius 18), we will …give … the name of Virial of the system, from the Latin word vis
(force) [34].

For the rhs of Equation (Clausius 19) Clausius invented the name ergal, from the Greek
word εργ oν (work) [35]. It is worthwhile to mention that the terms vis viva, virial and
ergal were frequently used in this period of time, see for example [44].

Two important theorems are connected with the ergal and the virial [34]:

(1) the sum of the vis viva and the ergal is constant, and
(2) the mean vis via is equal to the virial,

which sound slightly mysterious unless “translated” into modern language. Theorem 1 states
that the total energy is the sum of the kinetic and the potential energy, while, as already
mentioned, Theorem 2 is nothing but the virial theorem2.

For heat (h) – the vis viva of the internal motions [34] – one therefore obtains the
expression,

h = 1

2

∑
i

rφi (r) + 3

2
pv, (Clausius 20)

where as before p and v denote the pressure and the volume, respectively.
At last heat, the quantity that was so much seeked for since the beginning of the

nineteenth century, got now a meaning, a proper theoretical description, namely as the
sum of the (internal) potential energy (ergal) and the external work.

The quoted series of papers were aimed at proving, disproving, agreeing or disagreeing
with the above claims. The main argument seems to have been whether or not Hamilton’s
principles were correctly or if a Jacobi-type description of (classical) mechanics should have
been applied. Szily disagreed [40,43,45], Boltzmann agreed mostly [44], while Clausius
tried to generalize and prove his claims in detail [36–39,41,42]. This dispute, however, was
not really surprising, since the mathematical treatments of mechanics by Hamilton (William
Rowan, 1805–1865) and Jacobi (Jacques Simon, 1804–1851) were also rather very new:
Clausius, e.g. was a contemporary of Hamilton and Jacobi.
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For matters of curiosity, it should be mentioned that in 1875, in a paper [42] describing the
motion of n material points along closed paths, Clausius changed his notation in response
to the at that time ongoing discussions. Let q1, q2, . . . qn be arbitrary variables. Then –
according to him – the ergal (potential energy) U can be considered as a function of these
variables

U = U (q1, q2, . . . , qn), (Clausius 21)

and the vis viva (kinetic energy) is given by

2T =
n∑

i=1

pi dqi , pi = dT

dqi
. (Clausius 22)

Note that the use of the capital letters U and T for the potential and kinetic energy, and
p for the momentum became almost standard since then.

13. Boltzmann and his distribution of energies

The English speaking scientific community became aware of Boltzmann’s contributions
in the field of thermodynamics rather late. Early references such as [44,48,49] can at best
be regarded only as abstracts or very short summaries. The first of his papers [52] that got
translated and published in the Philosophical Magazine is from 1882. For this reason, use has
to be made of the seemingly first paper [47] by a British scientist, whose treatise (memoir)
relied completely on Boltzmann’s 1871 reports to the Viennese Academy of Science [46],
namely Burbury (Samuel Hawksley, 1831–1911).

Burbury sets very carefully the stage for his derivations [47]:
In a memoir by Boltzmann [46] is contained an analytical proof of the second law of

thermodynamics, founded on results obtained in the earlier part of the same memoir. The
writer’s treatment of this part of the subject is not characterized by his usual lucidity, and
has given much trouble to some mathematicians. It is worth while to show that the second
law can be deduced by a simple process from Boltzmann’s results.

Boltzmann has shown that the mean kinetic energy is the same for every particle. Let
T be this mean kinetic energy, and let T = 3/2h. The mean kinetic energy of the system is
then 3λ/2h.

Let the positions of the particles at any instant be defined by reference to three rectan-
gular axes passing through the centre of the vessel, the coordinates of the several particles
being x1, y1, z1, ...xλ, yλ, zλ. Let v be the volume of the vessel.

The pressure …, if the motion be stationary, … must have on the average of any long
time a mean value P per unit area ... .

Let χ be the ergal for any given positions of the particles of all the forces acting on
the particles that is, of all the forces which act in any manner on the system … except the
external force P.

If in the case of a stationary motion M denotes a particular configuration of positions
such that

χ(x1, y1, z1, ...xλ, yλ, zλ)

= χ(x1 + dx1, y1 + dy1, z1 + dz1, ...xλ + dxλ, yλ + dyλ, zλ + +dzλ)
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then [47], as as Boltzmann has shown, the time during which on the average of any very
long time the system will be within configuration M is proportional to

e−hχ dx1dy1dz1 . . . dxλdyλdzλ. (Burbury 1)

Its actual value is therefore

e−hχ dx1dy1dz1 . . . dxλdyλdzλ∫
· · ·
∫

e−hχ dx1dy1dz1 . . . dxλdyλdzλ

. (Burbury 2)

The mean value of any function, f , of the position of the particles (which we denote as
usual f̄ ) is [47]

f̄ =

∫
· · ·
∫

f e−hχ dx1dy1dz1 . . . dxλdyλdzλ∫
· · ·
∫

e−hχ dx1dy1dz1 . . . dxλdyλdzλ

, (Burbury 3)

and therefore

χ̄ =

∫
· · ·
∫

χ e−hχ dx1dy1dz1 . . . dxλdyλdzλ∫
· · ·
∫

e−hχ dx1dy1dz1 . . . dxλdyλdzλ

. (Burbury 4)

One has to admit, Boltzmann’s ideas, as demonstrated by Burbury in the Philosophical
Magazine, were a huge step forward as now a concept of probabilities was introduced.
Calling the expression in Equation (Burbury 2) simply W , then quite obviously 0 ≤ W ≤ 1.

In using this concept, Burbury managed to show that the total change in u is given by

δu = −χ̄δh + λ
δv

v
− h

dχ

dv
δv, (Burbury 5)

and that
δQ

T
= δ

{
−λ log h + 2

3
hχ̄ + 2

3
u

}
(Burbury 6)

is an exact differential [47]. Note that the last two equations are still only of formal
significance, since, e.g. λ, the total number of particles was – as usual for this period
of time – assumed to be arbitrary.

In an attempt to compare his approach with that of Maxwell, Boltzmann added another
interesting step [52] in 1882, namely when the number of particles becomes very large:

Z1

Z2
= e−k/2K dk

k
√

2π
, K = E − V

n
, (Boltzmann 1)

where K is the mean value of the kinetic energy per particle, E being the total and V the
potential energy. In the above expression, Z1 is the number of configurations of n particles
with coordinates {xi + dxi , yi + dyi , zi + dzi , i = 1, n} and a kinetic energy correspond-
ing to a momenta k ≤ pq ≤ k + dk, q ≤ n, while Z2 is the number of configurations
with the same specification for the coordinates, but arbitrary kinetic energy. Note that the
conceptual step of considering a very large number of particles became important once it
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was generally acknowledged that n was indeed a natural constant (Avogadro (Loschmidt)
number).

14. Scientific clashes

14.1. The kinetic theory of gases

Interestingly enough, neither of Maxwell’s two publications in 1860 and 1868 [21,33] raised
any objections by British physicists at the time they appeared, it was only after Boltzmann
came forward with his ideas about the kinetic theory of gases and his concept of probabilities
that almost an opposition front formed. This front saw Tait, Thomson (Lord Kelvin) and to
some extent Raleigh (John William Strutt, 3. Baron Rayleigh, 1842–1919) on the one side,
and Burbury, Boltzmann and Clausius on the other side. The battle ground was mostly the
Philosophical Magazine. This battle extended well into the twentieth century and most likely
stopped only because internationally the scientific focus points had moved to Rutherford’s
radiation phenomena, Einstein’s relativity theory and to quantum phenomena.

Of course in this dispute not the mathematical details brought forward are of interest
(as is well known, they were settled in favour of Maxwell and Boltzmann, anyhow), but the
wording, which was again less than friendly. In 1886, i.e. almost 20 years after Maxwell’s
second article [33], Tait’s first attack appeared [53], followed immediately by answer by
Burbury [54].

Tait: In this Magazine for 1860 Clerk-Maxwell published his papers on the “Collision
of Elastic Spheres,” ... . …In the ardour of his research, Maxwell here and there contented
himself with very incomplete proofs (we can scarcely call them more than illustrations) of
some of the most important of his results. This is specially the case with the investigation
of the law of ultimate partition of energy in a mixture of smooth spherical particles of two
different kinds.

If it be shown … that certain preliminary conditions are absolutely necessary to the
proof even of Maxwell’s Theorem, and if these cannot be granted in the more general case
treated by Boltzmann, it is clear that Boltzmann’s Theorem must be abandoned [53].

Burbury: I think Professor Tait has postulated rather more than is necessary. …
I think it follows [from the proofs he gives in this paper] that collisions tend to bring

about Maxwell’s distribution [54].
Tait: Mr. Burbury now … raises an objection, which I do not understand, to an assump-

tion made (after Clerk-Maxwell and Clausius) in my second paper. This objection is based
upon a Theorem which Mr. Burbury supposes to have been established by Prof. Boltzmann.

If Mr. Burbury can show that solution [Tait’s view [55] on the kinetic theory of gases]
to be erroneous, he may possibly make out a presumptive case against the assumption on
which it was founded :–but not otherwise [58].

14.2. Avogadro’s law

Avogadro (Amadeo, 1776–1858) was an Italian physicist, whose ideas [50] about gases
were only very slowly accepted by the scientific community. His law,

v = nk, (Avogadro)

namely that the volume v of a gas is proportional (k) to the “amount of substance” n in the
gas, only became prominent once Loschmidt (Johann Joseph, 1821–1895) managed in 1866
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to actually evaluate the number of “gas molecules” per volume. This number, NL = NA =
2,686 7805 [1025 m−3], is usually nowadays termed Avogadro number, sometimes also
Loschmidt constant.

Since Tait in his 1886 paper stated that in seeking for a proof of Maxwell’s Theorem, I
found it absolutely essential to the application of the statistical method to premise : (A) That
the particles of the two systems are thoroughly mixed. (B) That, in any region containing a
very large number of particles, the particles of each kind acquire and maintain the error-
law distribution of velocities [53], he had of course also touched the formal problem behind
Avogadro’s law.

This was exactly the point Boltzmann picked up in a 29 (!) page-long article [56] entitled
by On the Assumptions necessary for the Theoretical Proof of Avogadro’s Law, in which
he addresses Tait directly: Professor Tait, by making a number of special assumptions, has
given a very exact proof of Avogadro’s Law – or, rather, of the proposition that in the case
of the heat-equilibrium of two mixed gases the mean potential energy of the molecules must
be equal. Prof. Tait does not appear to me, however, to have given the least proof that the
special assumptions which he makes as the basis of this proposition are necessary, or even
that the more general propositions stated by myseIf and Maxwell are incorrect. [56]

In this paper, Boltzmann not only treated in every detail the case of two impinging
elastic spheres of mass m and M and velocity v and V , see Figure 6, but also tried to
generalize the problem by considering the time evolution of the velocity distributions and
– most importantly – of their products3

∂ f (v, t)

∂t
,

∂ F(V, t)

∂t
and

∂ f (v′, t)

∂t
,

∂ F(V ′, t)

∂t
, (Boltzmann 2)

before and after the collision.
Perhaps besides proofing that Burbury’s answer [54] to Tait [53] was correct, the main

aspect of his paper is that he uses the entropy, denoted E by him,

E =
∞∫

0

f (v, t)(ln f (v, t) − 1)v2dv +
∞∫

0

F(V, t)(ln F(V, t) − 1)V 2dV, (Boltzmann 3)

its time evolution

d E

dt
=

∞∫
0

ln f (v, t)
∂ f (v, t)

∂t
v2dv +

∞∫
0

ln F(V, t)
∂ F(V, t)

∂t
V 2dV, (Boltzmann 4)

and the condition that (in equilibrium) d E/dt must vanish.
Tait’s reply [57] to Boltzmann’s paper on the Avogadro Law was almost rude:
Prof. Boltzmann says that I do not expressly state that my work applies only to hard

spheres. This is an absolutely unwarrantable charge, as I have taken most especial care
throughout to make this very point clear.

Prof. Boltzmann, while objecting to my remark about “playing with symbols,” has
unwittingly furnished a very striking illustration of its aptness. His paper bristles throughout
with formulae, not one of which has the slightest direct bearing on the special question he
has raised! …
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Figure 6. Boltzmann’s Figure 1: Let two elastic spheres (molecules) of masses m and M impinge
upon each other. Let v = �v and V = �V be their velocities before impact (see Figure 1), and
v′ = �v′ and V ′ = �V ′ their velocities after impact, δ the sum of radii of the spheres, r = vV their
relative velocity before impact, and suppose their relative velocity after impact to have the direction
′ = v′V ′. Let �C be the line of centre of the spheres at the moment of impact. Let �vV = T ,
�vr = G, �rr ′ = 2S, �r, �C = 90◦ + S, �v′V ′ = T ′, �v′r ′ = G′. Let O be the angle of the
planes r , v and r, �C; and O ′ the angle of the planes r ′, v′,and r ′, �C. … For the sake of clearness
I include in fig. 1 those lines of fig. 2 of my Theory of Gas Diffusion,…, which are here necessary.
[56] (�ab means angle between a and b).

I need only say that Prof. Boltzmann, while causelessly attributing to me a silly math-
ematical mistake, has evidently overlooked the special importance which I attach to the
assumed steadiness of the “average behaviour of the various groups of a community.” [57]

Needless to say that Burbury replied [60] almost immediately to Tait, who in turn
answered [61] quickly. In 1890, Burbury summarized [62] the whole dispute following
essentially Boltzmann’s arguments, but using substantial more transparent mathematics
than Boltzmann.

Perhaps the final and most decisive support for Maxwell and Boltzmann came from
Raleigh in an article [63] cleverly entitled by Remarks on Maxwells’s Investigations,
respecting Botzmann’s theorem.

Having found Maxwell’s demonstration of the fundamental theorem

dq ′
1 . . . dq ′

ndp′
1 . . . dp′

n = dq1 . . . dqndp1 . . . dpn (Raleigh 1)
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difficult to follow, I have sought to simplify it by an arrangement such that the initial and
final times t ′ and t may be considered as absolutely fixed throughout the discussion. [63]

In here the {qs} and {ps} are the coordinates and momenta of the particles at a given time
t , the corresponding dashed quantities at t ′. Making now use [63] of Hamilton’s “principal
function” S,

δS =
n∑

i=1

pi dqi −
n∑

i=1

p′
i dq ′

i , (Raleigh 2)

where all the motions contemplated are unconstrained, and occupy the fixed time t − t ′.
The total energy … is variable from one motion to another, and S is to be regarded as a
function of the q ′s and

(
q ′) ′s.

The initial and final momenta are thus expressed by means of S in the form

p′
r = − d S

dq ′
r
, pr = − d S

dqr
, (Raleigh 3)

so that
dp′

r

dqs
= − d2S

dq ′
r dqs

= −dps

dq ′
r
, (Raleigh 4)

Thus, using S with t − t ′ constant … we get [63]

dq ′
1 . . . dq ′

ndp′
1 . . . dp′

n (Raleigh 5)

= dq ′
1 . . . dq ′

ndq1 . . . dqn det

⎛
⎜⎜⎝

dp′
1

dq1
· · · dp′

n
dq1

...
...

dp′
1

dqn

dp′
n

dqn

⎞
⎟⎟⎠ ,

dq1 . . . dqndp1 . . . dpn (Raleigh 6)

= dq ′
1 . . . dq ′

ndq1 . . . dqn det

⎛
⎜⎜⎝

dp1
dq ′

1
· · · dpn

dq ′
1

...
...

dp1
dq ′

n

dpn
dq ′

n

⎞
⎟⎟⎠ .

Since both determinants are equal, Raleigh gave a very elegant proof4 of Equation
(Raleigh 1), i.e. of Maxwell’s important result.

One would have thought that after Raleigh’s perfectly clear proof no more doubts would
be raised with respect to Maxwell’s approach. In vain, Kelvin was not convinced at all. In
a short communication [64] entitled by On a Decisive Test-case disproving the Maxwell–
Boltzmann Doctrine regarding Distribution of Kinetic energy, he proposed a situation (a
test case) in which the average kinetic energy would not be uniform.

This conjecture provoked Boltzmann to reformulate [65] Maxwell’s theory (I can hardly
doubt that Lord Kelvin will be satisfied with this result of his test-case [65]) and his own
formulation for the entropy in general coordinates. At least in the view of Boltzmann, within
the mathematical language he had applied, there was nothing more to be added. Ref. [65],
by the way, turned out to be his last paper in the Philosophical Magazine. From there on,
it was essentially Burbury that carried the “probability torch” [66–76], seconded to some
extent by Natanson with a kinetic interpretation of the dissipation function [77]. The last of
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Figure 7. Lord Kelvin’s Figure 8 in [78], showing the trajectury of a single particle in a box with one
rippled wall.

Burbury’s papers, Boltzmann’s Law of Probability e−hx [76], perhaps gave rise to use the
term “The H theorem” or “Boltzmann’s H theorem”.

15. Nineteenth-century clouds over the dynamical theory of heat

The beauty and clearness of the dynamical theory, which asserts heat and light to be modes
of motion, is at present obscured by two clouds. (I) The first came into existence with the
undulatory theory of light, and was dealt with by Fresnel and Dr. Thomas Young … . (II)
The second is the Maxwell–Boltzmann doctrine regarding the partition of energy. …

Maxwell’s 1860 proof has always seemed to me quite inconclusive, and many times I
urged my colleague, Professor Tait, to enter on the subject. This he did, and in 1886 he
communicated … a paper on the foundations of the kinetic theory of gases, which contained
a critical examination of Maxwell’s 1860 paper, highly appreciative of the great originality
and splendid value, for the kinetic theory of gases, of the ideas and principles set forth in
it; but showing that the demonstration of the theorem of the partition of energy in a mixed
assemblage of particles of different masses was inconclusive, and successfully substituting
for it a conclusive demonstration. …

With magnificent boldness Boltzmann and Maxwell declared that the ratio [between the
averaged kinetic energy of rotation and that of translation] is equality; Boltzmann having
found what seemed to him a demonstration of this remarkable proposition, and Maxwell
having accepted the supposed demonstration as valid. …

The simplest way of arriving at this desired result [some escape from the destructive
simplicity of the general conclusion] is to deny the conclusion; and so, in the beginning
of the twentieth century, to lose sight of a cloud which has obscured the brilliance of the
molecular theory of heat and light during the last quarter of the nineteenth century. [78]
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Table 1. Units or constants related to thermodynamics.

Property or constant Unit Name

Heat, work [J] Joule
Energy transfer [W] = [J][s]−1 Watt
Temperature [K] Kelvin
k, kB 1.3806488(13)×10−23 [J][K]−1 Boltzmann constant
NA, NL 2,686 7805 [1025 m−3] Avogadro number

Loschmidt constant
Entropy 1 [Cl] = 4.1868 [J][K]−1 Clausius, no longer in use

In 1901, Kelvin summarized in a very long paper (42 pages!) [78] his disgust about the
direction theoretical molecular dynamics had taken. By repeating or setting up new cases,
in which Maxwell’s and/or Boltzmann’s approach would fail, and by compiling various
critical citations from other authors, he seemingly looked forward to the moment the dark
clouds over “thermodynamics” would lift.

Figure 7, in which one of his “special” cases, namely the trajectory of a single particle in
“box” with one rippled wall, is reproduced, illustrates best his fear that in future simplicity
will be lost in a theoretical concept based only on probabilities. If Maxwell and Boltzmann
were right, then all the exotic cases – the one displayed in Figure 7 was just one of them –
would become meaningless.

16. Summary

Kelvin’s “farewell” paper [78] to molecular dynamics based on classical mechanics
appeared almost 100 years after Gay-Lussac had published his law. As is well known,
some physical units or universal constants, see Table 1, are named in honour of famous
scientists in the field of thermodynamics.

Like many others, Kelvin [78] witnessed at the arrival of the twentieth century the
end of an era in physics, which was dominated by the beauty of classical mechanics, by
the fascination of being able to describe the movements of (unspecified) particles of some
mass m entirely in terms of differential equations in a monocausal manner [79]. A new type
of physics was about to take over: radiation phenomena, quantum and relativity effects,
and probability concepts started to dominate all areas of interest. The famous Boltzmann
statistics, for example, that was so much disputed, turned out to be a limiting case of the
Bose–Einstein statistics (1924), see also Appendix C. There is a lot more to be said as far as
the history of thermodynamics is concerned in the twentieth century: elastic hard spheres
became “real” atoms, molecules were represented by oscillators, etc. What remained from
the nineteenth-century approaches is the mathematical formulation of phenomenological
thermodynamics, see Equations (1)–(3), which is still of great importance in technology.

However, there is one additional point that has to be made. In viewing the conceptual
history of thermodynamics from 1801 till 1910 as published in the Philosophical Magazine,
there is not the slightest trace of the political and social changes that took place during the
nineteenth century, neither in England [80,81] nor in continental Europe. Perhaps, Kelvin
regretted also something else, namely the end of a Victorian type of society. The slow social
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changes in the last decades of the nineteenth century caused by the revolution in 1848, the
liberation of up-to-then politically marginal (and rightless) strata of the population, women,
jews, etc., had changed society fundamentally. Kelvin most likely felt that the age of the
well-to-do, of Victorian gentlemen being exclusively in charge of science, had ended. The
agoras of the twentieth century reflected a completely different social structure.

Notes
1. all quotations are shown in italics.
2. Virial Theorem:

2 〈T 〉 = −
N∑

i=1
〈Fi · ri 〉

where 〈T 〉 is the time average over the total kinetic energy of a stable system consisting of N
particels located at ri and the Fi are the forces acting on each of the particles.

3. The product AB of two incidences A and B is an incidence AB where A as well as B occur. If
the incidences A and B are “statistically” independent, i.e. the probability of A is independent
of the probability of B, then

p(AB) = p(A)p(B) .

Similar definitions apply for probability densities.
4. Taking for matters of simplicityin Equation (Raleigh 4) r = s = i and using Clausius expression

for the kinetic energy, Equation (Clausius 22), is probably the best way to illustrate Raleigh’s
proof:

T (t) =∑Ti (t),

Ti (t) = Ti = (pi + dpi ) (qi + dqi ) ,

Ti (t
′) = T ′

i = (p′
i + dp′

i
) (

q ′
i + d ′qi

)
,

T ′
i − Ti = [p′

i
(
q ′

i + dq ′
i
)− pi (qi + dqi )

+ (
p′

i dq ′
i − pi dqi

)︸ ︷︷ ︸
δSi , see Eq.(Raleigh 2)

+ (
dp′

i dq ′
i − dpi dqi

)]︸ ︷︷ ︸
= 0 (Maxwell)

.
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Appendix A. Maxwell’s propositions
In order to show the perfect logical order in Maxwell’s first paper [21], and also to give an impression
of his minimalist use of words, in the following a list of his “propositions” is compiled.

Part I. On the Motions and Collisions of Perfectly Elastic Spheres

Prop. I. Two spheres moving in opposite directions with velocities inversely as their masses strike
one another; to determine their motions after impact.

Prop. II. To find the probability of the direction of the velocity after impact lying between given
limits.

Prop. III. Given the direction and magnitude of the velocities of two spheres before impact, and
the line of centres at impact; to find the velocities after impact.

Prop. IV. To find the average number of particles whose velocities lie between given limits, after
a great number of collisions among a great number of equal particles.

Prop. V. Two systems of particles move each according to the law stated in Prop. IV.; to find the
number of pairs of particles, one of each system, whose relative velocity lies between given limits.

Prop. VI. Two systems of particles move in the same vessel; to prove that the mean vis viva of
each particle will become the same in the two systems.

Prop. VII. A particle moves with velocity r relatively to a number of particles of which there are
N in unit of volume; to find the number of these which it approaches within a distance s in unit of
time.

Prop. VIII. A particle moves with velocity v in a system moving according to the law of Prop. IV.;
to find the number of particles which have a velocity relative to the moving particle between r and
r + dr.

Prop. IX. Two sets of particles move as in Prop. V.; to find the number of pairs which approach
within a distance s in unit of time.

Prop. X. To find the probability of a particle reaching a given distance before striking any other.
Prop. XI. In a mixture of particles of two different kinds, to find the mean path of each particle.
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Prop. XII. To find the pressure on unit of area of the side of the vessel due to the impact of the
particles upon it.

Prop. XIII. To find the internal friction in a system of moving particles.

Part II. On the Process of Diffusion of two or more kinds of moving particles among one another

Prop. XIV. In a system of particles whose density, velocity, &c. are functions of x, to find the
quantity of matter transferred across the plane of yz, due to the motion of agitation alone.

Prop. XV. The quantity transferred, in consequence of a mean motion of translation V , would
obviously be Q = Vρ.

Prop. XVI. To find the resultant dynamical effect of all the collisions which take place in a given
stratum.

Prop. XVII. To find the resultant effect of the collisions upon each of several different systems of
particles mixed together.

Prop. XVIII. To find the mechanical effect of a difference in the mean velocity of translation of
two systems of moving particles.

Prop. XIX. To find the law of diffusion in the case of two gases diffusing into each other through
a plug made of a porous material, as in the case of the experiments of Graham.

Prop. XX. To find the rate of diffusion between two vessels connected by a tube.
Prop. XXI. To find the amount of energy which crosses unit of area in unit of time when the velocity

of agitation is greater on one side of the area than on the other.

Part III. On the Collision of Perfectly Elastic Bodies of any Form

Prop. XXII. Two perfectly elastic bodies of any form strike each other: given their motions before
impact, and the line of impact, to find their motions after impact.

Prop. XXIII. To find the relations between the average velocities of translation and rotation after
many collisions among many bodies.

Appendix B. The kinetic theory of gases and the Maxwell–Boltzmann (velocity) dis-
tribution

In this Appendix a short, simplified summary of the Maxwell–Boltzmann approach to the kinetic
theory of gases and their famous velocity distribution is compiled.

B.1. The “molecular” distribution function
Let

f (r, u, t)dxdydz︸ ︷︷ ︸
dr

dux duyduz︸ ︷︷ ︸
du

(B.1)

be the number of molecules (atoms, hard spheres), which are at the time t at r in the volume element dr
and whose component velocities are in the intervals [ux , ux +dux ], [uy , uy +duy] and [uz, uz +duz].
The six-dimensional space of the coordinates x, y, z, ux , uy, uz is called phase space. Integrating
over all velocities, ∫∫∫

{ux ,uy ,uz}
f (r, u, t)drdu = n(r, t)dr , (B.2)

yields the so-called particle density, namely the number of (velocity independent) particles which
at the time t are located within the volume element dr. Integration over the volume element dr,∫∫∫

n(r, t)dr = N (t), (B.3)

determines the total number of particles at a given time t . Quite clearly the molecular distribution
function f (r, u, t) is not normalized to unity, but to the number of particles. In the following, only
equilibrium situations shall be considered. Obviously, the individual gas molecules can move around
quite a bit, the averaged number of particles per volume, however, shall be assumed to be not time
dependent (“steady state approximation”, “stationary state”), i.e. to be a constant.
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B.2. Atomistic picture of the pressure of an ideal gas
Suppose one wants to calculate the pressure p exerted by a monoatomic gas on the walls of the
container. Phenomenologically, the averaged force F⊥ perpendicular to a surface element �A is
given by

F⊥ = p�A. (B.4)

This force can also be viewed as a time average in the interval [t, t + �t] of the forces exerted by the
individual molecules hitting the wall:

p�A = (F⊥)gas on wall = 1

�t

∫
�t

(F⊥)gas on wall dt. (B.5)

If p⊥ denotes the momentum of a gas particle perpendicular to �A, then the force the wall exerts on
to this particle is given by

(F⊥)wall on gas = dp⊥
dt

, (B.6)

and oppositely the force exerted by the gas on the wall by

(F⊥)gas on wall = −dp⊥
dt

, (B.7)

The equilibrium obviously is given by

(F⊥)wall on gas = − (F⊥)gas on wall . (B.8)

Combining, therefore, (B.5) and (B.7) one gets

p�A�t =
∫
�t

(
−dp⊥

dt

)
dt = (p⊥)1 − (p⊥)2 = − �p⊥, (B.9)

where (p⊥)1 is the perpendicular component of the momentum of the particle before the collision
with the wall and (p⊥)2 after the collision. From Figure 8, one can see that for one particular velocity
u, whose direction forms an angle θ , 0 ≤ θ ≤ π/2, with the surface normal, all those particles with
velocity u that are within the length |u| �t from the wall will hit the wall within the time interval �t ,
i.e. one can see that all those molecules that are within the volume element dV = �A |u| �t cos θ
will arrive at the wall within �t . If one assumes now a distribution function of velocities, f (u), the
number of particles actually hitting the wall is given by

f (u)�A |u| �t cos θ︸ ︷︷ ︸
dV

du. (B.10)

Let m denote the mass of the particles then the momentum perpendicular to the wall for one
particular particle is given by m |u| cos θ and the total momentum therefore by this momentum times
the total number of particles, namely

m |u| cos θ ( f (u)�A |u| �t cos θdu ) = m�t�A
(
|u|2 cos2 θ

)
f (u)du.

The total momentum before the collision ((p⊥)1, (B.9)) is therefore given by

(p⊥)1 = m�t�A
∫∫∫

|u|2 cos2 θ f (u)du ; 0 ≤ θ ≤ π/2 , (B.11)

whereas after the collision with the wall the individual momentum is given by − m |u| cos θ and the
total momentum by

(p⊥)2 = − m�t�A
∫∫∫

|u|2 cos2 θ f (u)du ; π/2 ≤ θ ≤ π . (B.12)



Philosophical Magazine 2603

Figure 8. Atomistic picture of the pressure of an ideal gas.

Going now back to (B.9), one can see that by combining the last two equations,

p�A�t = (p⊥)1 − (p⊥)2 (B.13)

= m�A�t
∫∫∫

|u|2 cos2 θ f (u)du ; 0 ≤ θ ≤ π , (B.14)

or, that the pressure p can be written as

p = mn
∫∫∫

|u|2 cos2 θ f (u)n−1︸ ︷︷ ︸du ; 0 ≤ θ ≤ π , (B.15)

where n is the particle density as given by the total number of particles N divided by the volume
V and N is according to the “steady state approximation” a constant. By including the particle density
n to the integral, the quantity f (u)n−1 is a probability density, since it is normalized to the “ total”
particle density, i.e. since

0 ≤ f (u)n−1 ≤ 1.

Denoting now by u2⊥, the average of the square of the velocity in z-direction (direction of the
surface normal), then the pressure is given by

p = mnu2⊥. (B.16)

If one finally assumes that the velocity distribution is isotropical, i.e. all directions of the velocity,
ux , uy and uz, are equally probable,

u2⊥ = u2
x = u2

y = u2
z = 1

3
(u2

x + u2
y + u2

z ) = 1

3
u2, (B.17)

one gets

p = 1

3
nm u2. (B.18)

Denoting the averaged kinetic energy of a gas molecule (particle) by εt ,

εt = m

2
u2, (B.19)

for an isotropic velocity distribution the pressure is then defined by

p = 2

3
nεt = 2

3

N

V
εt . (B.20)
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Since the total number of particles N can be written as a multiple of the Avogadro (Loschmidt)
number L , N = νL , the pressure can be written also in the following form

p = 2

3

νL

V
εt , (B.21)

or, alternatively one gets

pV = 2

3
νLεt . (B.22)

If one compares this equation with the famous equation for an ideal gas,

pV = vRT, (B.23)

where T is the temperature, one immediately can deduce that

εt = 3

2

(
R

L

)
T = 3

2
kT, (B.24)

or alternatively find an “atomistic-like” definition for the temperature

T = 2

3
k−1εt . (B.25)

In the last two equations k is the famous Boltzmann constant. Using (B.19) and (B.24),

u2 = 3kT

m
= 3RT

mL
= 3RT

μ
, (B.26)

where μ = mL is the molecular weight [g].

B.3. Maxwell–Boltzmann distribution of velocities
Suppose the velocity distribution f (r, u, t) is rewritten as a product of the particle density n(r, t) and
a distribution F(r, u, t) normalized to unity,

f (r, u, t) = n(r, t)n(r, t)−1 f (r, u, t)︸ ︷︷ ︸ = n(r, t)F(r, u, t). (B.27)

In equilibrium, this new distribution function has to be time and space independent, i.e. F(r, u, t) ≡
F(u). By imposing the following two conditions,

F(u) = F(|u|) ≡ F(u), (B.28)

F(u) = F1(ux )F2(uy)F3(uz), (B.29)

namely that F(u) is isotropical and that the components of the velocity are mutually independent,
F(u) can be determined.

From (B.29) follows immediately that

ln F(u) = ln F1(ux ) + ln F2(uy) + ln F3(uz), (B.30)

which partially differentiated with respect to ux gives

∂ ln F(u)

∂ux
= d ln F(u)

du

∂u

∂ux
= ux

u

d ln F(u)

du
= d ln F1(ux )

dux
, (B.31)

since u =
√

u2
x + u2

y + u2
z . From the similar derivatives with respect to uy and uz follows

1

u

d ln F(u)

du
= 1

ux

d ln F1(ux )

dux
= 1

uy

d ln F2(uy)

duy
= 1

uz

d ln F3(uz)

duz
. (B.32)
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These expressions can only be equal to each other, if they are equal the same constant, say −2γ .
For example,

1

ux

d ln F1(ux )

dux
= −2γ. (B.33)

The solution of this differential equation is simply given by

F1(ux ) = a exp(−γ u2
x ), (B.34)

where a and γ are constants yet to be determined. The distribution function F(u) is therefore given
by

F(u) = a3 exp(−γ (u2
x + u2

y + u2
z )) = a3 exp(−γ u2). (B.35)

Since F(u) is normalized to unity, i.e.∫
F(u)du = 1 , (du = u2du sin θdθdφ), (B.36)

a3 has to be (γ /π)3/2.
Finally, the constant γ can be evaluated by determining the averaged square of the velocity u2,

u2 =
∫

u2 F(u)du

= (γ /π)3/2
∞∫

0

π∫
0

2π∫
0

u4 exp(−γ u2)du sin θdθdφ

= 4π(γ /π)3/2
∞∫

0

u4 exp(−γ u2)du = 3

2γ
. (B.37)

If one associates now this result with that for u2 in (B.26), one gets

γ = m

2kT
, (B.38)

i.e. F(u) is given by

F(u) =
( m

2πkT

)3/2
exp(−mu2

2kT
) =

( m

2πkT

)3/2
exp

(
− εt

kT

)
, (B.39)

where εt = mu2/2 is the translational energy. Equation (B.39) is nothing but the famous Maxwell–
Boltzmann (velocity) distribution.

Appendix C. Statistical mechanics
Since nowadays Boltzmann’s statistics is usually derived as a special case of the Bose–Einstein
statistics, this appendix serves as a short summary of statistical mechanics in a more modern sense
and hopefully will make Boltzmann’s statistics more transparent. Experienced readers can of course
skip this appendix.

C.1. Phase space
For one particle the phase space, that is the collection of space (r)- and momentum (p) coordinates
of this particle, is six dimensional. For N particles, the dimension of the phase space is 6N . If one
considers the phase space to be partitioned into cells of the volume dφ,

dφ = dxdydzdpx dpydpz, (C.1)
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then each particle (atoms, molecules) has to belong to one cell. If furthermore i numbers these cells,
then in each cell the number of particles Ni can be assumed to be much larger than one, Ni 
 1, since
dφ only has to be small as compared to the macroscopical dimensions of the system. The fundamental
problem of statistical mechanics is to find out how these numbers Ni can be related to the phase space
coordinates.

C.2. Microstates and macrostates
As is well known from quantum mechanics, because of the uncertainty relation, the space and
momentum coordinates of a microscopical particle cannot be determined simultaneously exact:

�x�px = �y�py = �z�pz � h. (C.2)

This implies that the space- and momentum coordinates of such a particle can only be pinned
down to the volume h3 in phase space. Such a volume shall be called a subcell. It should be noted
that while the volume of a cell, dφ, is arbitrary, the volume of a subcell is fixed to h3. In general, the
volume of a cell can be assumed to be large enough so as to contain a large number of subcells. Quite
clearly, the number of subcells in a particular cell is given by

g = dφ

h3
. (C.3)

The complete specification of all six coordinates of the subcell in which a particular particle is
located is called a microstate. The specification of the number of particles in each cell of the phase
space is called a macrostate.

Up to now implicitly only monoatomic gases were considered for which it is sufficient to specify
the subcell into which a particular atom is located. For molecules, for example, one has to deal also
with internal degrees of freedom in addition to the translational energies.

C.3. Thermodynamical probabilities
The number of microstates that belong to each macrostate is called thermodynamical probability.
However, before this number can be determined, one has to distinguish between bosons (arbitrary
number of phase points per cell) and fermions (only two phase points per cell). As for the Boltzmann
statistics, the Fermi-Dirac statistics is of no relevance, it is not dealt with in here.

C.4. Bose–Einstein statistics
In general for an arbitrary number M of cells i with individual probabilities Wi the total probability
W is given by

W =
M∏

i=1

Wi . (C.4)

Suppose that the subcells in one particular cell i can be labelled by 1, 2, . . . , gi , whereas the phase
points (particles) in this cell are labelled by a, b, c, . . . , Ni . The number of permutations is then given
by (Ni + gi − 1)! The number of sequences that start with a number is therefore gi (Ni + gi − 1)! All
permutations, however, that result from a pairwise interchange of phase points have to be excluded.
There are altogether Ni ! such pairwise permutations. Furthermore, the numbering of cells has to be
in natural order, otherwise gi ! double countings occur. The total number of microstates in cell i is
therefore given by the following individual probability Wi ,

Wi = gi (Ni + gi − 1)!
gi !Ni ! = (Ni + gi − 1)!

(gi − 1)!Ni ! , (C.5)
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and consequently the thermodynamical probability is defined by

W =
M∏

i=1

(Ni + gi − 1)!
(gi − 1)!Ni ! . (C.6)

By taking the logarithm of W,

ln W =
M∑

i=1

⎧⎪⎨
⎪⎩ln(Ni + gi − 1︸ ︷︷ ︸

� gi

)! − ln(gi − 1︸ ︷︷ ︸
� gi

)! − ln(Ni !)

⎫⎪⎬
⎪⎭ , (C.7)

and using the Stirling formula,

ln(n!) = n ln n − n, n 
 1, (C.8)

one obtains the following expression,

ln W �
M∑

i=1

{(Ni + gi ) ln(Ni + gi ) − gi ln gi − Ni ln Ni } , (C.9)

where (gi − 1) was replaced by gi , since gi 
 1.
Since particles in motion change their positions in phase space with respect to time, the number

of phase points Ni in the various cells also changes with time. Quite clearly, if W has a maximum
W 0, then also ln W is at its maximal value. Considering, therefore, small finite changes δNi (finite,
because the Ni are integer numbers!) and remembering that the number of subcells gi = dφi /h3 is
fixed by the uncertainty relation, such changes results in the following change δ ln W for ln W :

δ ln W =
M∑

i=1

{ln(Ni + gi )δNi + (Ni + gi )δ ln(Ni + gi )︸ ︷︷ ︸− ln Ni δNi − Ni δ ln Ni︸ ︷︷ ︸}. (C.10)

From the relations

δ ln Ni = δNi

Ni
, δ ln(Ni + gi ) = δNi

Ni + gi
, (C.11)

one easily can see that

M∑
i=1

Ni δ ln Ni =
M∑

i=1

(Ni + gi )δ ln(Ni + gi ) =
M∑

i=1

δNi , (C.12)

which reduces Equation (C.10) to

δ ln W =
M∑

i=1

{ln(Ni + gi )δNi − ln Ni δNi } =
M∑

i=1

ln

(
Ni + gi

Ni

)
δNi . (C.13)

The set of Ni for which δ ln W 0 = 0, shall be denoted by {N0
i },

δ ln W 0 =
M∑

i=1

ln

(
N 0

i + gi

N 0
i

)
δNi = 0. (C.14)

and obviously corresponds to the thermodynamical equilibrium. The variation of the Ni , however, is
restricted by the following two conditions,

M∑
i=1

Ni = N = const →
M∑

i=1

δNi = 0, (C.15)
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M∑
i=1

Ni εi = U = const →
M∑

i=1

δNi εi = 0, (C.16)

namely that total number particles and the total energy of the system has to be constant, εi being the
energy of an individual particle. This implies that Lagrange parameters have to be used of the form

λ1

M∑
i=1

δNi = 0 , λ2

M∑
i=1

δNi εi = 0, (C.17)

such that
M∑

i=1

{
ln

(
N 0

i + gi

N 0
i

)
+ λ1 + λ2εi

}
δNi = 0. (C.18)

Since in Equation (C.18) each factor of δNi has to vanish, by choosing for matters of convenience

λ1 = − ln B , λ2 = −β, (C.19)

one easily can see that

ln

(
N 0

i + gi

N 0
i

)
− ln B1 − βεi = 0, (C.20)

from which immediately follows that

ln

(
N 0

i + gi

B N 0
i

)
= βεi → gi

N 0
i

= B exp(βεi ) − 1. (C.21)

The ratio of the number of phase points Ni per cell and the number of subcells (gi ) is therefore
given by

N 0
i

gi
= 1

B exp(βεi ) − 1
. (C.22)

This ratio is called the Bose–Einstein distribution function.

C.5. Maxwell–Boltzmann statistics
If the number of particles per cell is much smaller than the number of subcells, i.e.

N 0
i � gi → N 0

i
gi

� 1 → B exp(βεi ) − 1 
 1 → B exp(βεi ) − 1 � B exp(βεi ), (C.23)

then

N 0
i

gi
= 1

B
exp(−βεi ) , B 
 1. (C.24)

This last equation is exactly of the form of the Maxwell–Boltzmann distribution, see also
Appendix B. The inequalities in Equation (C.23) imply that within a gedanken experiment where
the subcells become smaller and smaller, i.e. position and momentum of a particle becomes sharper
and sharper, the Bose–Einstein distribution reduces to the Maxwell–Boltzmann distribution.
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C.6. Partition function
The constant B appearing in Equations (C.22) and (C.24) can be obtained from the condition that
the number of particles has to be constant. Assuming now always maximal probability, the super-
script specifying the “optimal” set of numbers Ni can be dropped. From Equation (C.15) follows
immediately that

M∑
i=1

Ni = N = 1

B

M∑
i=1

gi exp(−βεi ). (C.25)

The sum appearing on the rhs of this equation is called partition function and traditionally is abbreviated
by Z or Q

Z =
M∑

i=1

gi exp(−βεi ). (C.26)

With this notation, the constant B is given by

B = Z

N
, (C.27)

and the Maxwell–Boltzmann distribution can be formulated as

Ni = N

Z
gi exp(−βεi ). (C.28)

The evaluation of the constant β will be given below.

C.7. Entropy and thermodynamical probability
Consider an isolated thermodynamical system that is partitioned into two isolated subsystems 1 and
2 with thermodynamical probabilities W1 and W2.

1
S1
W1

2
S2
W2

Let S1 and S2 be two functions such that in thermodynamical equilibrium

S = S1 + S2. (C.29)

S is called entropy. If there is a connection between this phenomenological quantity S and the
thermodynamical probability W = W1W2 (in thermodynamical equilibrium) then S has to be a
function of W such that

S = S1 + S2 = f (W ) = f (W1W2) = f (W1) + f (W2). (C.30)

Quite clearly, S can only be proportional to the logarithm of the thermodynamical probability W ,
if

S = k ln W. (C.31)

Going now back to Equation (C.9)

ln W 0 ≡ ln W =
M∑

i=1

(Ni + gi ) ln(Ni + gi )︸ ︷︷ ︸−gi ln gi − Ni ln Ni , (C.32)
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the first term on the rhs of this equation can be rewritten as follows

(Ni + gi ) ln(Ni + gi ) = gi

(
1 + Ni

gi

)
ln

(
gi

(
1 + Ni

gi

))

= gi

(
1 + Ni

gi

)⎛⎝ln gi + ln

(
1 + Ni

gi

)
︸ ︷︷ ︸

⎞
⎠ . (C.33)

Using the following expansion of ln(1 + x) = x − x2/2 + x3/3 ± · · · ; (−1 ≤ x ≤ 1), it is
obvious that for gi 
 Ni (Maxwell–Boltzmann distribution)

ln

(
1 + Ni

gi

)
� Ni

gi
,

and therefore

(Ni + gi ) ln(Ni + gi ) = gi ln gi + Ni ln gi + Ni + N 2
i

gi
� gi ln gi + Ni ln gi + Ni . (C.34)

In the case of the Maxwell–Boltzmann distribution, Equation (C.32) reduces therefore to

ln W =
M∑

i=1

Ni ln gi + Ni − Ni ln Ni =
M∑

i=1

Ni

(
ln

gi

Ni
+ 1

)
. (C.35)

By using now in this equation the definition for the partition function Z , Equation (C.28), which
was derived from the condition that the number of particles has to stay constant,

Ni

gi
= N

Z
exp(−βεi ) → ln

gi

Ni
= ln

Z

N
+ βεi , Z =

M∑
i=1

gi exp(−βεi ), (C.36)

one gets for the entropy S:

S = k ln W

= k
M∑

i=1

Ni

(
ln

Z

N
+ βεi + 1

)

= k ln
Z

N

M∑
i=1

Ni + kβ
M∑

i=1

εi Ni

︸ ︷︷ ︸
= U

+ k
M∑

i=1

Ni

= k N ln
Z

N
+ kβU + k N . (C.37)

From classical (phenomenological) thermodynamics, however, it is known that in the case of
only one type of particles the partial derivative of the entropy with respect to the energy U at constant
volume v is given by the inverse of the temperature T ,(

∂S

∂U

)
v

= 1

T
. (C.38)

In evaluating this derivative,(
∂S

∂U

)
v

= k N

Z

d Z

dβ

(
∂β

∂U

)
v

+ kβ + kU

(
∂β

∂U

)
v

, (C.39)
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one can make use of the fact that

d Z

dβ
= −

M∑
i=1

εi gi exp(−βεi ) = −U Z

N
, (C.40)

since from the definition of the partition function

Ni = N

Z
gi exp(−βεi )

it follows that
M∑

i=1

εi Ni = U = N

Z

M∑
i=1

gi εi exp(−βεi ). (C.41)

Using now the expression for d Z/dβ, Equation (C.40) in Equation (C.39) one gets(
∂S

∂U

)
v

= −k N

Z

U Z

N

(
∂β

∂U

)
v

+ kβ + kU

(
∂β

∂U

)
v

= kβ. (C.42)

Comparing finally this result with the classical expression in Equation (C.38) one can see that
obviously the constant β has to be of the form

β = 1

kT
. (C.43)

Now all Lagrange parameters are evaluated and the Boltzmann distribution in Equation (C.28) –
and for that matter also the Bose–Einstein distribution – can be completed:

Ni = Ngi

Z
exp

(
− εi

kT

)
. (C.44)

The partition function Z is then given by

Z =
M∑

i=1

gi exp
(
− εi

kT

)
, (C.45)

and the total energy U by

U = N

Z

M∑
i=1

gi εi exp
(
− εi

kT

)
= NkT 2

Z

d Z

dT
= NkT 2 d ln Z

dT
. (C.46)

C.8. Partition functions
In the Maxwell–Boltzmann statistics, which shall be applied in the following, the partition function
Z , Equation (C.26), is given by a sum over the exponential functions only

Z =
M∑

i=1

exp(−εi /kT ). (C.47)

C.9. Summary of thermodynamical functions for weakly interacting particles
In summarizing all the above expressions for the various thermodynamical quantities or functions, one
can see at one glance the overall importance of the partition function in statistical thermodynamics:

U = −n R

(
∂ ln Z

d(1/T )

)
v

,
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cv = R

T 2

(
∂2 ln Z

∂(1/T )2

)
v

,

S = n R

(
ln

(
Z

N

)
− 1

T

(
∂ ln Z

∂(1/T )

)
v

+ 1

)
,

F = −n RT

(
ln

(
Z

N

)
+ 1

)
,

p = n RT

(
∂ ln Z

∂v

)
T

,

G = −n RT

(
ln

(
Z

N

)
+ 1 − v

(
∂ ln Z

∂v

)
T

)
,

H = n RT

((
∂ ln Z

∂ ln T

)
v

+
(

∂ ln Z

∂ ln v

)
T

)
.




