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Laplace and the era of differential equations

Peter Weinberger*

Center for Computational Nanoscience,
Seilerstätte 10/22, A-1010 Vienna, Austria

(Received 7 February 2012; final version received 22 May 2012)

Between about 1790 and 1850 French mathematicians dominated not only
mathematics, but also all other sciences. The belief that a particular
physical phenomenon has to correspond to a single differential equation
originates from the enormous influence Laplace and his contemporary
compatriots had in all European learned circles. It will be shown that at the
beginning of the nineteenth century Newton’s ‘‘fluxionary calculus’’ finally
gave way to a French-type notation of handling differential equations.
A heated dispute in the Philosophical Magazine between Challis, Airy and
Stokes, all three of them famous Cambridge professors of mathematics,
then serves to illustrate the era of differential equations. A remark about
Schrödinger and his equation for the hydrogen atom finally will lead back
to present times.
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1. Introduction

The turn of the eighteenth to the nineteenth century was the epoch of French
mathematics. The names of all the famous mathematicians of that time such as
Jean le Rond d’Alembert (1717–1783), Alexandre-Théophile Vandermonde (1735–
1796), Joseph-Louis Lagrange (1736–1813), Pierre-Simon Laplace (1749–1827),
Jean Baptiste Joseph Fourier (1768–1830), Adrien-Marie Legendre (1752–1833),
Siméon Poisson (1781–1840), Augustin-Louis Cauchy (1789–1857), and Évariste
Galois (1811–1832) sound very familiar to us a posteriori. It is indeed amazing to
realize that perhaps with the exception of d’Alembert, who might be considered as
the spiritus rector1 of that splendid period, and Vandermonde, all of them were
contemporaries. But, no other intellectual influenced European science and
thinking in the first half of the nineteenth century more than Laplace, who, by
the way, became a count of the First French Empire in 1806 and – after the
Bourbon Restoration – was named a marquis in 1817. Or, using Fourier’s words
on the occasion of the obituary read at a public meeting of the Royal Academy
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of Science:

From Fourier’s obituary ‘‘pronounced at the public sitting of the Royal Academy of
Sciences on the 15th June 1829’’ [1]

2. British mathematics between 1800 and 1850

It is quite revealing to follow up the changes in attitude in British mathematics (and
therefore also in North America) that took place due to Laplace’s enormous
influence. Clearly Newton, the inventor of differential calculus2 or of fluxionary
calculus as it was termed then, had primarily the description of motions in mind,
from which he also derived his terminology and which still can be found in some
old-fashioned textbooks on mechanics, namely the use of dotted and doubled dotted
variables such as, e.g. _x and _x _y instead of dx and dxdy. In scanning in the

Philosophical Magazine Archives the years from around 1800 to about 1850, these
changes – and partially also the (then) existing admiration for French mathematics,
in particular for Laplace – become apparent.

2.1. The end of fluxionary calculus

As early as in 1801, Dickson [2] insisted in a longish article that differentials in fact

arise from applying geometrical concepts rather than from Newton’s laws of motion
(fluxionary calculus) and summarized rules for finding differentials. He even didn’t
hesitate to include a rather impolite footnote accusing more or less contemporary
British mathematicians of being stubborn:

‘‘Here one is almost tempted to ask, Whether the ingenious author considers the British
mathematicians as mere Differentials? For they have never agreed to use the notation he
mentions; but, instead of dx, dx dy, &c write, with Newton, the immortal inventor of
fluxions, _x, _x _y &c. The d’s only serve to embarrass the combinations, which should be
expressed with utmost clearness. W.D.’’

Footnote on p. 40 of his article [2].
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In the course of his treatise, however, he occasionally has to recall fluxionary
language to make sure that he is not misunderstood.

‘‘From what has be said, it appears that the differential here required is, that is we have
ydxþ x dyþ dx dy’’

Footnote indicated by y on pp. 44–45: ‘‘As the ingenious author has touched no farther on
the practise than seemed necessary to elucidate his theory. I shall endeavour to
show . . . how to find the differentials, or, which is the same thing, the fluxions of products,
powers, roots, and fractions.

To find the fluxions of products, such as xy, xyz, &c, Example 1. ðxþ _xÞ�
ð yþ _yÞ ¼ xyþ x _yþ y _xþ _x _y. But, with respect to this equation, I observe, that dx and
dy, being infinitely small, in comparison with x and y, the last. But, for reasons which the
author gives, _x _y (in his notation dx dy) may be rejected, and so the fluxion of xy is
x _yþ y _x.’’ [2]

It actually turned out that fluxions were rather long-lived. In 1810 an article with
the title ‘‘On prime and ultimate ratios; with their application to the first principle of
the fluxionary calculus’’ appeared [3] in which again the differential of xy was
formulated in terms of fluxions.

Before going ahead a remark has to be made with respect to the convention for
mathematical symbols. One has to be aware of the fact that essentially only because of
Adam Ries3 (1492–1559), i.e. from the sixteenth century on, Arab numerals started to
become customary for the purposes of counting and that operational signs such as a
plus (þ) for addition or the letter x for multiplication were by no means universally
accepted even at the beginning of the nineteenth century. In 1815, for example, the
following rules for algebraic multiplication were published [4]:

‘‘ a� b evidently means that a is to be taken b times. aþ b� c, that the sum of a and b is to
be taken c times: but as a and b cannot in this state be really added together, we can only
say that when they can, a is to be taken c times, and b is to be taken c times, and the mode
of writing this direction shortly is caþ cb.

Thatþ�� is minus, admits of an equally clear demonstration or rather explanation.
We must first remember that no quantity simply considered can be� minus. It must be
compared with some other quantity either greater than itself or of opposite direction. In the
common operations of algebra it is only used in the former sense, and a� b merely means
that b being less than a, it is when it can be done, to be subtracted from a; a� b therefor
really means the difference between a and b.’’ [4]

Quite clearly in the ‘‘present day understanding’’ caþ cb¼ c(aþ b), which,
however, is only a ‘‘practical’’ convention, since Gödl refuted rigorously
Wittgenstein’s command that in logical expressions the use of brackets is compulsory.
The use of set theory symbols such as \ or �, for example, only became customary in
the twentieth century. This short deviation is to remind us that also in mathematics –
like in all other sciences – certain topics can play an important role for a certain period
of time. One of these periods was the era of differential equations.

2.2. The Laplace equation

The British scientific community was fascinated by the Laplace equation [5,6], which
in fact, according to some historians, ought to be attributed rather to Laplace’s older
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colleague Lagrange. Laplace’s Mechanique Céleste seems to have been the favorite
book of the learned British public and societies. In a contribution [7] (1813) to the
Philosophical Magazine entitled ‘‘Derivation of one of the Equations in Laplace’s
Mechanique Céleste’’, for example, a very detailed derivation of the Laplace equation
in polar coordinates [8] is given, of course not using fluxionary calculus. This
contribution obviously increased further the public interest in the Mechanique
Céleste, since in the same year a reader [9] of that journal asked for help to
understand certain sections of Laplace’s book. Later on, even additional proofs for
certain theorems of Laplace and Lagrange appeared [10].

It would be incorrect to claim that mathematics in the English speaking world
was exclusively devoted to understanding the ideas of Laplace and all the other
French mathematicians: publications dealing with practical aspects of Taylor’s series
[11] or the method of least squares [12], or (quite a few) with algebraic descriptions of
geometrical problems appeared on a more or less regular basis. However, it was not
only the question of the origin of the universe that the title of Laplace’s book seemed
to address and that at all times attracted the attention of many, but also the firm
belief associated with it, namely that astronomy and physics per se can be described
by the proper knowledge of the corresponding differential equations. In this sense,
the first half of the nineteenth century can be viewed as an epoch in mathematics and
physics dominated by differential equations.

In addition to this belief the practicability of some of Laplace’s new concepts
obviously impressed the British scientific community quite a bit as can be judged for
example from an application of his probability function [13] to geodesic operations
discussed by him [14] in full detail in 1821.

2.3. Stokes and his equation

Probably the best example to prove the claim of the existence of an era of differential
equations in (mathematical) physics is to be found in a long lasting intellectual
controversy between three Cambridge scientists, namely James Challis4 (1803–1882,
Plumian Professor of Astronomy and Experimental Philosophy), George Airy5

(1801–1892, Lucasian Professor of Mathematics and Royal Astronomer) and George
Stokes6 (1819–1903, Lucasian Professor of Mathematics) fought in the Philosophical
Magazine. They first battled over the motion of fluids, then over certain optical
properties and the propagation of sound. In the following the motion of fluids shall
serve as an example.

Challis first started out in 1829 [15] to suggest an integration for a differential
equation listed by Poisson:

‘‘The theoretical investigation of the laws of motion of incompressible fluids, conducted in
the most general manner possible, leads to the equations

p

�
¼ V�

d�

dt
�
1

2
u2 þ v2 þ w2
� �

ð1Þ

d2�

dx2
þ
d2�

dy2
þ
d2�

dz2
¼ 0 ð2Þ
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u ¼
d�

dx
, v ¼

d�

dy
, w ¼

d�

dz

ðPoisson, Trait �e de M �ecanique, tom: ii p: 486Þ

ð3Þ

� is the density of the fluid, p the pressure at any point, the co-ordinates of which are x,
y, z; u, v, w are the velocities in the directions x, y, z, respectively; dV¼X dxþ
YdyþZ dz, X, Y, Z, being the accelerative forces impressed at the point; and � is a
function of x, y, z, and t, such that

ðd�Þ ¼ u dxþ v dyþ wdz: ð4Þ

Consequently the above equations apply only to cases in which u dxþ v dyþwdz is a
complete differential of x, y, and z.’’ [15]

It should be noted that Challis’s Equation (2) is in fact the Laplace equation. The
question of whether or not d� is indeed a complete differential will turn out to be the
main cause of that heated dispute.

In 1840 he published [16,17] yet another differential equation that however was
immediately disputed. The speed at which the dispute was carried out in the
Philosophical Magazine is quite astonishing, the wording by the way being rather
frostily polite.

‘‘If I am correct in the view I have taken of the connexion of these steps of the process, I
conceive that the investigation must be considered faulty’’, Airy [18], December 9, 1840,
commenting on Challis’s paper [17] from November 16, 1840.

‘‘Allow me . . . to express my thanks to Mr. Airy for calling my attention . . . to a step in my
solution of the problem of the resistance to a sphere vibrating in an elastic medium, which I
had left unexplained’’, Challis [19], January 18, 1841, in response to Airy’s critique [18].

‘‘Without professing to have examined the equation minutely, I can only say at present that
the three equations appear to me to be inconsistent, and therefore I consider that the
motion assumed by Professor Challis is impossible . . .’’, Airy [20], March 22, 1841 in
answering Challis’s reply [19].

‘‘. . . to avoid fruitlessly prolonging the present discussion, I willingly express the
satisfaction it has given me, that the Astronomer Royal . . . should have thought this subject
worthy of so much attention; and though I do not see reason for changing my first
views, I acknowledge that they have become clearer on several points by the remarks
which this discussion has elicited’’, Challis [21], June 19, 1841, replying to Airy’s
comment [20].

‘‘. . . As to the omission of certain terms in the process of differentiation, I confess that I am
surprised . . .
I will only, in conclusion, express my regret at finding myself compelled to place myself so
distinctly in opposition to my excellent friend Professor Challis . . . I have only to add, that
nothing could be further from my intention than to give a personal character to this
controversy, and that I trust no expression has escaped me which will bear such an
interpretation’’, Airy [22], July 10, 1841, closing his dispute with Challis.

In the meantime Challis started to worry [23] about Equation (4) in his original
paper [15] from 1829:

‘‘No general rule has hitherto been given for determining when it is allowable to assume
udxþ v dyþw dz to be an exact differential, nor has it been ascertained to what particular
circumstance of the motion this analytical condition refers. This must be considered a
defect in the mathematical theory of hydrodynamics.’’ [23]

3886 P. Weinberger

   



For this reason, he starts over again by proposing ‘‘a new equation in
hydrodynamics’’ [24,25] in the absence of extraneous forces,

d�

dt
þ
d � �u

dx
þ
d � �v

dy
þ
d � �w

dz
¼ 0 ð5Þ

ðdPÞ þ
du

dt

� �
dxþ

dv

dt

� �
dyþ

dw

dt

� �
dz ¼ 0 ð6Þ

where – as before – � is the density and p¼ k� the pressure, k being a constant; u, v, w
are the velocities in the direction of the coordinates x, y and z, and P¼ kNap.log �
with Nap.log referring to John Napier’s7 (1550–1617) definition8 of the logarithm. In
essence, however, his theoretical treatment condenses once again to the question of
whether or not u dxþ v dyþw dz can be made integrable. Later on, in a further
paper [26] on this topic he claims that if u dxþ v dyþw dz is a complete differential
then the motion of the fluid is rectilinear. This statement provoked an almost
immediate reply by another well-known Cambridge mathematician, namely Stokes:

‘‘In the August Number of this Magazine (p. 101), Professor Challis has written an
article, of which the object is to prove that, in all cases of fluid motion in which
udxþ v dyþw dz is an exact differential, the motion is rectilinear. The importance of this
question may apologize for these remarks, since, if the reasoning in that article be correct,
it will affect the validity of much that has been written on the subject. It appears to me
however that Professor Challis has made an assumption which is not allowable, and
consequently the conclusion founded on it is not allowable either’’, Stokes’s [27] comment
on Challis’s rectilinear motion.

‘‘Mr. Stokes has brought forward four arguments against a new theorem in hydrodynamics
which I have advanced, viz. that fluid motion is rectilinear whenever u dxþ v dyþw dz is
an exact differential . . .
In the first argument it is contended that my demonstration . . . takes no account of the
curvature of the lines of motion. I admit the validity of this objection. . . . I have given
proves only . . . if the surfaces of displacement are surfaces of equal velocity . . . ’’ Challis’s
[28] reply to Stokes.

‘‘I cannot see where Professor Challis conceives it to be proved that dx, dy, dz are
independent of time, in the equation u dxþ v dyþwdz¼ 0, which is the differential
equation to a surface of displacement, supposing the first side an exact differential.’’
Stokes [29] answering Challis’s reply.

Looking back, one has to say that although Challis seems to have only circled
around an adequate description of hydrodynamics, his contributions most likely
have added to the present day formulation of the Navier–Stokes equation(s), namely
a system of nonlinear partial differential equation(s)

�
@v

@t
þ v � rv

� �
¼ �rpþ r � Tþ f ð7Þ

where v is the flow velocity, � the fluid density, p the pressure, T the (deviatoric)
stress tensor and f represents the body forces (per unit volume) acting on the fluid. In
terms of appropriate models these equations are extremely useful for the prediction
of weather, ocean currents, or, e.g. for the air flow around airplane wings. Even now,
in the twenty-first century it seems that it cannot be proven in purely mathematical
terms that in three dimensions solutions of this equation always exist or that they

Philosophical Magazine 3887

   



would not contain singularities (perhaps somebody should tell Challis, Airy and
Stokes). The Navier–Stokes equations surely belong to the most prominent
equations in classical physics; their origin, however, has to be traced back to the
overwhelming influence French mathematics and mathematical physics had in the
nineteenth century. Laplace is just a synonym for this age in science.

3. Nineteenth century French mathematics and present day physics

The main idea in Schrödinger’s famous series of papers (1926) [30–33],
‘‘Quantisierung als Eigenwertproblem’’, for example, is based on putting proper
boundary conditions on already well-known differential equations. Recall for a
moment his time-independent equation for a central field V(r)¼�Ze2/r, r¼ jrj,

�
�h

2�
r2 þ VðrÞ

� �
 ðrÞ ¼ E ðrÞ,

which results from a separation of the motion of the nucleus from that of an electron
in terms of Lagrange parameters (� is the reduced mass). As is probably well-known,
by applying the Laplace operator in polar coordinates [8] a separation of
independent motions leads to Laguerre polynomials9 for the ‘‘radial motion’’ and
to Legendre polynomials as part of the angular motion. In this context it is perhaps
interesting to note that in his first paper, for the differential equation for the radial
motion, he needed a Laplace transformation [34] to argue, since obviously neither he
nor Weyl10 were aware of Laguerre polynomials. In his third paper, however, he even
discusses properties of these polynomials citing ‘‘Courant–Hilbert, Kap. II, x 11,5.
S. 78, Gleichung (72)’’ as a footnote, namely by making use of that book [35] that
only appeared two years earlier (1924).

Besides Quantum Mechanics, nineteenth century French mathematics still seems
to dominate essential parts of physics: spectroscopy, e.g. makes extensive use of
Fourier analysis or of distribution functions, and quite a few of the numerical recipes
in computational physics are related to mathematical ideas expressed in the first half
of the nineteenth century. The enormous number of so-called ab initio calculations
and applications of Density Functional Theory that were published over the last 30
years would not have been possible without the use of the Poisson equation.

The early stages of this development can easily be followed in a proper historical
(and social) context in the Philosophical Magazine Archives, for example in terms of
the Navier–Stokes equation(s), as discussed above.

Notes

1. In fact he was the ‘‘teacher’’ of Laplace.
2. Independently of the German philosopher and mathematician (Gottfried Wilhelm)

Leibniz (1646–1716).
3. http://en.wikipedia.org/wiki/Adam_Ries
4. http://en.wikipedia.org/wiki/James_Challis
5. http://en.wikipedia.org/wiki/George_Biddell_Airy
6. http://en.wikipedia.org/wiki/Sir_George_Stokes,_1st_Baronet
7. http://en.wikipedia.org/wiki/John_Napier
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8. Nap.log (107)¼ 0; Nap.log y¼ 107.log1/e(y/10
7)

9. Edmond Laguerre (1834–1886), http://en.wikipedia.org/wiki/Edmond_Laguerre
10. http://en.wikipedia.org/wiki/Hermann_Weyl
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