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Switching properties of a tunneling junction connected to a spin valve
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The switching properties of a prototype system containing a spin valve as well as a tunneling junction are
investigated by means of a spin-polarized fully relativistic approach. Shown are the changes in the free energy
and in the magnetoresistance when the orientation of the magnetization in the magnetic slabs of such a system
is changed individually. It is demonstrated that the existence of a stable and a metastable state, a necessary
condition for a switching device, is essentially determined by the free energy contributions of the interfaces of
that magnetic slab that is part of the spin valve as well as of the tunneling junction. Furthermore, in estimating
individual switching times, it is found that most of the gain in magnetoresistance occurs within a time range of
about 20 ps, the time to achieve complete switching, however, being about 1.5 ns, which is close to what is found
in recent experimental results.
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I. INTRODUCTION

In the past there seemed to be a strict separation between
spin valves and tunneling junctions, or, to speak loosely,
between giant magnetoresistance and tunneling magnetoresis-
tance; see, e.g., Refs. 1–12. Lately, however, systems have been
investigated experimentally13–16 as well as theoretically17–19

that contain a spin-valve-type part and a tunneling part, since
it turned out that a combination of both might be (is) of
considerable technological interest. Furthermore, nowadays no
longer is only the size of the change in magnetoresistance when
applying an external magnetic field or a current important, but
also the switching time.16,20–22 While the design of suitable
systems consisting of a spin valve and a tunneling junction
is a materials science problem and therefore falls into the
realm of industrial research, the question of the switching time
can only be solved using time-resolvable instrumentations.
In particular, the use of pulsed electric fields and of suitable
time-resolved means to record the response has led already to
quite an accurate characterization of the temporal aspects of
switching.

From a theoretical standpoint of view of course both of
these new developments are challenging, in particular, if a
microscopic description and interpretation is to be given.
To characterize the switching of a spin valve plus tunneling
junction (SV-TJ) system on an ab initio level not only implies
(a) investigation of the various interface effects and monitoring
of changes caused by changes in the orientation of the
magnetization and (b) evaluation of the corresponding electric
transport properties, but also (c) estimation of the time needed
to achieve complete switching.

II. COMBINED SPIN VALVES AND TUNNELING
JUNCTIONS

A typical SV-TJ system (see Fig. 1) consists of three
magnetic slabs, the one in the middle being part of the spin
valve as well as of the tunneling junction. Suppose that in each
of these magnetic slabs the orientation of the magnetization
assumes a particular (uniform) direction. If x and y denote the
in-plane coordinates and z the orthogonal complement (surface

normal) then these directions can in principle be characterized
by three pairs of angles (�i,�i) , i = 1,2,3, where �i refers
to a (clockwise) rotation around the in-plane y axis and �i

to such a rotation around the z axis. For example, keeping �i

fixed to 0, by varying �i from 0 to 90◦, the orientation of the
magnetization in the ith magnetic slab changes in the xz plane
from z to x, i.e., from out of plane to in plane.

Since experimentally studied magnetic tunneling junctions
with a spin-valve part very often consist of a rather complicated
sequence of functional layers, sometimes of unspecified
thickness, mostly prepared by combining e-beam and optical
lithography, in the following a model system is chosen [see
(1)], in which the tunneling barrier is represented by a vacuum
barrier of width of about 10 Å, i.e., a barrier that indeed
guarantees tunneling between the two magnetic slabs forming
the tunneling junction. The magnetic slabs are Co connected
to a Cu lead, and Co90Fe10, one of them being connected to a
Permalloy lead (Ni80Fe20) which in turn serves also as a soft
magnet. As the center of the vacuum barrier contains nearly
no electric charge, this system can be viewed as a stack of
two subsystems, whose electronic structures can be evaluated
separately as free surfaces.23 Here it is assumed that the Fermi
energy of subsystem 1 [see (1)] applies throughout the whole
system. It should be noted that considered as bulk materials the
lattice mismatch between fcc Cu and fcc Ni80Fe20 is less than
2%. All calculations were performed using the spin-polarized
relativistic screened Korringa-Kohn-Rostoker method24,25 and
by means of the fully relativistic Kubo equation,24,25 applying
the same numerical setup as described in Ref. 17.

Ni80Fe20(111)/

(�1,�1)︷ ︸︸ ︷
(Co90Fe10)5/Cun/

(�2,�2)︷ ︸︸ ︷
(Co90Fe10)5 /Vac2︸ ︷︷ ︸

subsystem 1

· · ·

· · · Vac

(�3,�3)︷ ︸︸ ︷
Vac2/Co2/Cu(111)︸ ︷︷ ︸

subsystem 2

. (1)

In the following first one particular case, namely, n = 7 in
(1), is considered in full detail, and only then will n be varied.
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FIG. 1. Schematic view of a tunneling junction connected to a
spin valve: x and y are the in-plane coordinate axes; z is parallel to
the surface normal. In realistic samples AF usually denotes a synthetic
antiferromagnet. Here the left lead and the AF part are replaced by a
semi-infinite Permalloy lead with the orientation of the magnetization
pointing uniformly along the surface normal (z).

A. Free energy

In principle, apart from the direction of the magnetization in
the Ni80Fe20 lead, which was chosen to point along the surface
normal, the free energy in this system forms a hypersurface
with respect to the six angles specifying the orientations of the
magnetization in the three magnetic slabs,

�E (C,C0; n) = E(C; n) − E(C0; n) (2)

=
∑
i=1,n

�Ei (C,C0; n) =
∑
i=1,n

Ei(C; n)−Ei(C0; n),

(3)
C = {(�1,�1) ; (�2,�2); (�3,�3)} ,

C0 = {(�1,�1)(r) ; (�2,�2)(r); (�3,�3)(r)},
where C0 corresponds to a suitable reference configuration
and the �Ei (C,C0; n) are the so-called layer-resolved free
energies.24,25 The orientation of the magnetization in the leads
is chosen to point along the surface normal.

Let (x,y,z) be a shorthand notation for the case that in the
first magnetic slab the orientation of the magnetization points
along x, (�1 = 90◦,�1 = 0), in the second along y, (�2 =
90◦,�2 = 90◦), and in the third along z, (�3 = 0,�3 = 0).
Since the magnetic slab in the center of the system is part of
a spin valve as well as of a tunneling junction, in particular
the switching properties of this slab are of quite some interest
not only in experimental (technological) studies but also from
a theoretical point of view. Fortunately the orientation of the
magnetization in the left Co90Fe10 slab [see (1)] is tightly
bound to that in the left lead. As shown in Fig. 2, even small
deviations from the surface normal give rise to substantial
anisotropy effects caused by the Ni80Fe20/Co90Fe10 interface,
implying that only the orientations of the magnetization in
the magnetic slabs forming the tunneling junction have to be
varied, i.e., in Eq. (2) �1,�1can be set to zero.

By using (z,z,x) as reference configuration in Eq. (2) the
corresponding free energy is calculated and shown in the top
part of Fig. 3 as the orientation of the magnetization changes
continuously within the xz plane to (z,z,z), and from there
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FIG. 2. (Color online) Layer-resolved free energies
�Ei(C,C0; n). C = ((�1,0); (0,0),(0,0)), �1 = 5,10, n = 7,
i.e., the orientation in the first CoFe slab is slightly moved out of a
direction along the surface normal. The reference configuration is
(z,z,z).

to (z, − z,z). For the presentation in this figure a “running”
angle � is used, the individual regimes of the rotations being
separated by vertical lines. Note that by definition, at � =
90◦, 180◦, and 270◦, the slope of �E (C,C0) with respect to
�� is zero. In Fig. 4 (z,z,z) serves as reference configuration
C0. Depicted there are the layer-resolved energies when C =
(z,z,x) (top), (z,x,z) (middle), and (z,−z,z)(bottom). As can
be seen in all three cases the contribution from the Co slab
to the free energy is negative, i.e., the Co slab prefers to be
oriented in plane. Actually, the top figure “only” reproduces the
well-known fact that two monolayers (ML) of Co on Cu(111)
are oriented in plane. Exactly for this reason in Fig. 3 (z,z,x)
is chosen as reference configuration, namely, the one with the
lowest energy.

Returning to the top entry in Fig. 3, one can see that (z,z,x)
is separated from (z, − z,z) by a maximum of the anisotropy
energy at (z,z,z) such that (z, − z,z) is a metastable state. From
the middle entry in Fig. 4 it is evident that this maximum in
the anisotropy energy at (z,z,z) is caused by the interfaces
of the center magnetic slab with the tunneling part of the
system and partially also with the spin-valve part, augmented
by some contributions from the spacer. The anisotropy energy
at (z, − z,z), on the other hand (see the bottom entry of Fig. 4)
is mainly due to contributions from the spacer. This alone is
already an interesting finding since the actual value of the
anisotropy energy at (z,x,z) can be modified by the choice of
the nonmetallic slab causing tunneling.
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FIG. 3. (Color online) Free energy corresponding to rotations of
the orientation of the magnetization in the third magnetic slab, 0 �
� � 90◦, and the magnetic slab in the middle of the system, 90◦ �
� � 270◦. Special magnetic configurations are marked explicitly.

B. Magnetoresistance

In a similar manner as in Eq. (2) the difference in the
zz-like resistivity �ρzz (C,C0) between two configurations can
be defined and the corresponding magnetoresistance ratio
(MR), RMR (C,C0; n),

�ρzz (C,C0; n) = ρzz(C; n) − ρzz(C0; n), (4)

RMR (C,C0; n) = �ρzz (C,C0; n) /ρzz(C; n). (5)

As can be seen from Fig. 3, by changing the configuration
from (z,z,x) to (z, − z,z) the magnetoresistance changes by
about 20%. It is interesting to note that because from (z,z,x)
to (z,z,z) and then from (z,x,z) to (z, − z,z) the MR changes
very little, the MR seems to be determined by a change
of orientation in the center magnetic layer only: the local
maximum in �E (C,C0) at (z,x,z) is not reflected as such in
the magnetoresistance.
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FIG. 4. (Color online) Layer-resolved free energies �Ei

(C,C0; n). For all three entries the reference configuration is (z,z,z).
The top entry refers to rotations from C0 = (z,z,z) to C = (z,x,z),
the middle one to C = (z,x,z), the bottom one to C = (z, − z,x).

C. Switching times

Since the derivative of the free energy �E(C,C0; n) with
respect to the orientation of the magnetization is nothing but
the internal field �H eff(C,C0; n) in the Landau-Lifshitz-Gilbert
equation, the so-called relaxation term in that equation,

d �n(C,C0,t ; n)

dt
= α�n(C,C0,t) × [�n(C,C0,t) �H eff(C,C0; n)],

(6)

�n(C,C0,t ; n) = �m(C,C0,t ; n)/m0(n), (7)

m0(n) = L−1
∑
i=1,L

mi(n), (8)

can be used to estimate the time τ (C,C0; n) needed to move
from configuration C0 to configuration C. In Eq. (7) m0(n)
is an average over those layers in which the orientation of
the magnetization is rotated; see, e.g., Ref. 17. By using a
Gilbert damping constant of α = 1, in the bottom part of
Fig. 3 the switching time is displayed versus the running
angle �. It should be noted that in Eq. (6) both m0(n)
and �H eff(C,C0), refer to ab initio data obtained on a fully
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FIG. 5. (Color online) Magnetoresistance (top) and switching
probability (middle) versus the switching time. Bottom: current
versus rotation angle. 0 � � � 90◦ refers to the Co slab and 90◦ �
� � 270◦ to the magnetic slab in the middle of the system. Special
magnetic configurations are marked explicitly. Also indicated is the
effect of applying a small external magnetic field to switch the Co
slab from in plane to perpendicular.

relativistic level. The only adjustable parameter is therefore
α.26 Use of a value of α < 1 gives the corresponding switching
time τα<1(C,C0; n) = α−1τα=1(C,C0; n); see Ref. 27.

In order to understand Fig. 3 properly one has to recall that
(a) most of an individual switching time is used up in leaving a
configuration with zero derivative in �E(C,C0; n), and (b) the
switching times are additive. If τ1(n) denotes the time needed
to reorient from (z,z,x) to (z,z,z) and τ2(n) that from (z,z,z)
to (z,x,z) then the switching time from (z,z,x) to (z,x,z) is
τ1(n) + τ2(n). As can be guessed from the top part of Fig. 3,
most of the total switching time τ (n) = τ1(n) + τ2(n) + τ3(n)
is needed for the reorientation of the Co slab, which is the slow
process.

In the top part of Fig. 5 RMR (C,C0; n) is displayed as
an implicit function of the switching times τ (C,C0; n) along
these three paths. As can be seen the major drop in the
magnetoresistance occurs within about 20 ps.

D. Switching probabilities

Suppose a simple first-order rate differential equation can be
used for the switching of the orientation of the magnetization
in a spin valve,28 then the following probability function for
the switching can be assumed:

Pk(t ; n) = 1 − exp[−t/τk(n)] (9)

with τk(n) being as before the switching time along a particular
path. In the middle part of Fig. 5 the switching probabilities
are displayed for the individual processes and for the total
switching time τ0(n). Obviously complete switching from
(z,z,x) to (z, − z,x) takes about 1.5 ns, although some of the
individual processes are much faster.

E. Critical currents

Although the studied system only serves as an academic
example, the critical currents needed to achieve switching
might be of interest. Assuming a particular cross section A0

(in the present case 100 × 100 nm2), an approximate relation
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configurations (bottom) versus the number of Cu spacer layers.
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for the current can be given as discussed in detail in Ref. 27:

i(C,C0; n) =
√

A0

τ (C,C0; n)

√
�E(C,C0; n)

nd⊥ρzz(C; n)
. (10)

The critical current is then defined as the current that has to
be applied in order to reach the maximum in the free energy;
see Fig. 3. As can be seen from the bottom entry of Fig. 5
about 2.7 mA are needed to switch the system from (z,z,x)
to (z, − z,x). It should be noted that in Eq. (10) nd⊥ρzz(C; n)
refers to the so-called sheet resistance, d⊥ being the interplane
spacing. Clearly enough, for a given value of A0 because of
τ (C,C0; n) the value of i(C,C0; n) does depend on the choice
for the Gilbert damping parameter.

Also indicated in Fig. 5 is the effect of an external magnetic
field that can be used to reorient the magnetization in the Co
slab to be perpendicular to the planes of the atoms (before
applying a current). For two Co layers on a Cu(111) lead this
field is about 0.4 T. Obviously, to achieve complete switching
Pk(t ; n) = 1, use of such an external field in addition to a
current driving the switching process can reduce the necessary
time t by almost one order of magnitude.

III. DISCUSSION

Since now one particular case, namely, for n = 7, has been
discussed in detail, the remaining question is what changes
are to be expected when the number of spacer layers n or the
width of the tunneling barrier is varied. In Fig. 6 the variation of
�E(C,C0; n) corresponding to (z,x,x) and (z, − z,x) and their
difference with respect to the number of Cu spacers layers,
n, are shown. As is to be expected both free energies show
typical oscillations with respect to n. The main conclusion to
be drawn is that the free energy corresponding to (z,x,x) has to
be bigger than that for (z, − z,x), since only then do two states

exist, a stable and a metastable one: a necessary precondition
for switching, as already said. Of course the actual size
of the difference does depend on the number of spacer
layers.

In the present system the width of the tunneling barrier is
only of minor importance as long as electric contact between
the magnetic slabs forming the tunneling junction is prevented.
Furthermore, since the maximum in the free energy (see Figs. 3
and 4) is to some extent caused by the interface of the center
magnetic slab with the material forming the tunneling barrier,
it seems that in terms of critical currents an optimal switching
(see Fig. 4) can be achieved by varying those parameters that
determine the difference in free energies shown in Fig. 6.

As in other cases17,22 the critical current needed to switch
from (z, − z,z) (antiparallel, AP) to (z,z,x) (parallel, P) is
substantially smaller than that required to switch from P to
AP. However, considering that a switching device needs to be
switched back and forth, in the end only the bigger of the two
critical currents counts.

Finally, it should be clear that the present investigation
can only be of an academic kind, since a vacuum barrier is
used instead of a realistic tunneling barrier of well-defined
properties. Therefore only indirect comparisons to experiment
can be made. For example, in Ref. 16 it was found that the
switching time with a MgO-type barrier of unspecified width
is about 5 ns, which compares reasonably well with the present
value of 1.5 ns for complete switching. For the spin-valve
system in Ref. 28 a switching time (at the critical current) of
about 5 ns was reported. It seems therefore that between 1
and 5 ns is what presently can be achieved experimentally at
room temperature. Although this is only an academic system, it
seems therefore that the results shown here pinpoint reasonably
well the microscopic origin of the switching properties of
SV-TJ systems.
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