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In viewing layer-resolved components of physical properties as a function of multiples of the interlayer
spacing and by using a Taylor expansion structural relaxation effects can be described not only for the
free-energy part of the magnetic anisotropy energy but directly also for electric and magneto-optical transport
properties. Examples for such a procedure are shown for the anisotropy energy of free surfaces and magnetic
tunneling junctions, for tunneling currents and for permittivities, which in turn determine Kerr angles. Con-
sidered as a test case, the already well-studied magnetic anisotropy energy of Co2 /Cu�111� turns out to be in
excellent agreement with very recent experiment data.
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I. INTRODUCTION

In nanoscience, in particular, in nanomagnetism, “relax-
ation effects” are apodictically said to be important. Unfor-
tunately, before confirming or refuting such a statement, it
needs a proper definition of what actually is meant by the
term “relaxation effects.” Assuming three-dimensional cyclic
boundary conditions, i.e., the “bulk” case, which is rather
uninteresting in the context of nanomagnetism, relaxation ef-
fects are easy to deal with, since only scaling of the lattice
constant�s� is required. The ground state of a bulk system is
then defined by the minimum of the total energy with respect
to the lattice spacing. There are quite a few density-
functional-theory �DFT� approaches specialized to find this
minimum very accurately. Whether or not to be in the neigh-
borhood of the theoretically found equilibrium spacing is
important for particular physical properties has then to be
found out in separate investigations.

Is only two-dimensional translational symmetry present
such as in layered systems then by the term “relaxation ef-
fects” usually only changes in the interlayer distances are
meant. The reason for this restriction is quite clear: if trans-
lational symmetry is used for computational reasons �Bril-
louin zone integrals or sums� then one and the same transla-
tional group has to apply for all layers in such a system.1

There is no way to keep the condition of a single translation
group common to all layers and concomitantly relax indi-
vidual in-plane lattice constants. Of course the seemingly
easiest way out in order to relax also in-plane spacings
would be to abandon translational symmetry completely and
move into real space. Unfortunately then essential parts of a
nanosystem, namely, substrates and/or leads no longer can be
treated properly: the total energy is a function of �arbitrarily�
chosen outer boundaries.

Since the total energy is not an observable the question
arises whether there are ways by which relaxation effects for
particular physical properties can at least be estimated di-
rectly, in particular, since for many systems of technological
interest proper total energy calculations as a function of all
relevant interlayer spacings are simply prohibitive or become
meaningless. Imagine a typical spin valve or tunneling junc-
tion. It is virtually impossible to vary all interlayer distances

in such system in order to find the minimum in the total
energy. Assume for matters of illustration an average contri-
bution per atomic layer to the total energy on the order of
104 Ry. For �typically� a hundred relevant layers in a tun-
neling junction the total energy then amounts to 106 Ry im-
plying that even the third decimal place will be rather shaky,
i.e., the accuracy will be confined at best to a few milliryd-
berg.

Furthermore, it seems to be rather unclear when in the
course of evaluating total energy differences as is necessary,
for example, to compute free energies that relaxation plays
an important role. Also open remains the question of the
sensitivity of electric or �magneto-� optical transport proper-
ties with respect to relaxation effects. Can they be estimated
for realistically large systems? Clearly, electric or optical
properties are of primary interest in spintronics, since they
are actually measured, and not total energies; since they are
at the very heart of any switching device.

In the present paper an attempt is made to address the
above problems by making use of two-dimensional transla-
tional symmetry by which so-called layer-projected �or layer-
resolved� properties can be defined. This approach is then
applied to discuss possible relaxation effects for the free-
energy �band-energy� contribution to the anisotropy energy
and then to electric and magneto-optical properties. As a fi-
nal example the switching mechanism in an almost techno-
logical system is considered.

II. TRANSLATIONAL INVARIANCE AND
MAGNETIC CONFIGURATIONS

As follows directly from the condition of translational in-
variance for the Dirac equation1 magnetic configurations of
layered system �two-dimensional translational symmetry�
corresponding to a simple parent lattice can be defined un-
ambiguously by assigning to each atomic layer a particular
orientation of the magnetization.2,3 For a free surface, spin
valve or tunneling junction such a magnetic configuration is
of the following form:

C� = �n� l;n�1,n�2, . . . ,n�N;n�r� , �1�
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C0 = �z�l;z�k;z�r = z�, ∀ k� , �2�

where n� l is the uniform orientation of the “left” semi-infinite
system �substrate, lead�, n�r that of the “right” semi-infinite
system �vacuum, lead�, and n�k refer to the orientations of the
magnetization in all �remaining� layers between the two
semi-infinite systems. These layers consist of magnetic over-
layers �free surface�, a spacer �spin valve, tunneling junc-
tion�, or magnetic overlayers plus vacuum and a tip in the
case of spin-polarized scanning tunneling microscopy
�STM�, see Table I.4,5 Clearly in Eq. �1� N has to comprise
also a sufficiently large number of atomic layers of the ma-
terial of the left and the right semi-infinite systems to be
determined self-consistently in order to guarantee a smooth
transition to the respective bulk properties, i.e., to take care
of occurring Friedel oscillations.7 All data referenced and
used in here were originally obtained by means of the fully
relativistic screened Korringa-Kohn-Rostoker method3 with
a minimum of 12 atomic layers in the transitional regime to
the substrate or leads.

III. STRUCTURAL RELAXATION EFFECTS FOR THE
FREE ENERGY AT 0 K

In order to evaluate energy differences between magnetic
configurations it is useful to define a reference configuration
such as for example C0 in Eq. �2�, in which the orientation of
the magnetization points uniformly along z� �surface normal�.
The free energy at 0 K, the so-called band-energy contribu-
tion to a particular anisotropy energy, is then defined as3

�E�C�� = E�C�� − E�C0� , �3�

where the E�C�� refer to sums over layer-wise contributions
Ek�C��

�E�C�� = �
k=1,N

�Ek�C�� − Ek�C0�� , �4�

which in turn are given by

Ek�C�� = �
Eb

EF

nk�C�;���� − EF�d� . �5�

In Eq. �5� Eb is the �valence� band bottom, EF the Fermi
energy, and nk�C� ;�� refers to the density of states of the kth
atomic layer and configuration C�. If in Eq. �1�

C� = �n� l;n�k;n�r = x�, ∀ k� �6�

then �E�C�� is the free-energy or band-energy contribution
to the anisotropy energy in the “usual sense:” the transition
from a uniform perpendicular to a uniform in-plane orienta-
tion of the magnetization is usually called “reorientation
transition.”

Consider now a Taylor-series expansion

f�u� = �
n=0,P

f �n��u0�
n!

�u − u0�n, f �n� =
d�n�

dun �7�

for the layer-resolved band energies, see Eq. �5�, reformu-
lated in Eq. �8� for matters of clarity such that the layer index

can be associated with multiples of the interlayer distance d�

of the parent lattice used

f:�xk = kd�� → ��Ek�C��� 	 ��Ek�C�;xk�� . �8�

In defining a set U of displacement vectors u�k
= �0,0 ,uk� , uk=xk�−xk, in direction of the surface normal
�layer relaxation�, it is easy to see that layer-resolved band
energies shifted along the surface normal can be written as

�Ek�C�;xk�� = �Ek�C�;xk� + �kuk + �kuk
2 + �kuk

3 + ¯ ,

k = 1,N . �9�

In Eq. �9� the coefficients �k, �k , . . . denote in turn the first,
second, and so on derivative in Eq. �7�. In defining U0 for a
moment as

U0 = �u�k
u�k = �0,0,0�, ∀ k � N� �10�

then the band energy that belongs to the original spacing of
layers is given by

�E�C�,U0� = �
k=1,N

�Ek�C�,xk� �11�

and that corresponding to the system with the displaced lay-
ers by

�E�C�,U� = �
k=1,N

�Ek�C�,xk�� . �12�

Clearly, the set U can consist of an arbitrary number M �N
of nonvanishing displacements. Note that since the uk are the
z components of vectors in coordinate space and not in func-
tion space, u�k= �0,0 ,uk�, a particular vector u�k / 
u�k
�0
moves the kth atomic layer in direction of the surface nor-
mal, while for u�k / 
u�k
	0 this layer is moved antiparallel
with respect to the surface normal. If a uniform relaxation is
performed, then per definition there are no changes in the
free energy, i.e.,

�E�C�,U� = �E�C�,U0�, U = �u�k
u�k = �0,0,u�, ∀ k� .

�13�

Furthermore, if uk=d� , ∀k, then a simple reindexing of
atomic layers takes place, i.e.,

C� = �n� l;n�2,n�3, . . . ,n�N+1;n�r� 	 C0

since, as follows immediately from the definitions of n� l and
n�r, the origin of counting is irrelevant. Clearly, Eq. �13� of-
fers a unique condition for the numerical procedures that
have to be performed. It should be noted that the manifold
��E�C� ,U�� forms a hypersurface in the space of all possible
relaxations that can occur. For a given U in switching on a
current or an external magnetic field the path of minimal
changes on this surface is taken. It is therefore in many
cases, e.g., when trying to compare theoretical results with
experimental data, more important to explore the dependence
of this path on U than to know structural details of the
ground state. In the following for all data shown a fifth order
Taylor expansion, see Eq. �7�, was used. In all figures the
term “relaxation �%�” means �d�+u� /d� expressed in per-
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cent, where d� is the unperturbed interlayer distance of the
semi-infinite system.

A. Free surfaces

In the top part of Fig. 1 the band energy as a function of
the relaxation �contraction� of the top �Co� layer is displayed
for a free surface of a single Co overlayer on Cu�100�. Re-
laxing also adjacent Cu or vacuum layers has no further
effect.6 The bottom entry of this figure looks at the first
glance a bit boring. However, it is not. In this part of the
figure the accuracy of the numerical procedure in Eq. �9� is
checked by relaxing uniformly between −100% and 100%.
As can be seen between about 
30% the numerical scheme
seems to be most reliable. It should be noted that 
30% for
a relaxation is rather very big: the interlayer spacing in fcc
Pt, for example, is only by about 8% larger than the one in
fcc Cu.

In Fig. 2 relaxation effects for a single layer of Co on
Pt�111� �Ref. 7� are displayed. Two cases are shown in this
figure, namely, when only the Co layer is relaxed and also
when the Co layer and the adjacent vacuum layer are moved.
Other combinations of layer relaxations fall on top on these
two cases. While a variation in the spacing of the Co layer

with respect to that in Pt�111� is rather small, when also the
vacuum layer is moved distinctive changes occur. However,
in this case one has to keep in mind that the band energy is
rather small and an increase or decrease in the interlayer
spacing by about 10% only amounts to a change in
�E�C� ,U� of 0.02–0.03 meV.

B. Tunneling junctions

In Fig. 3 effects of interlayer relaxation for two Co layers
on top of Cu�111� are shown in systems that recently served
to interpret4,5 spin-polarized STM measurements considering
different kinds of tips. It is worthwhile to mention that in the
experimental study9 a value of 0.150 meV for the anisotropy
energy is reported for extended Co2 islands on Cu�111�,
which agrees very well indeed, in particular, with the values
in the fourth row of Table II, namely, for the system with a
reasonable thick tip. Whether or not one can conclude from
the experimental value and the entries in this row that a
contraction of about 2% applies is questionable. It seems that
relaxation effects for the anisotropy energy of extended Co2
islands on Cu�111� are of minor importance.
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FIG. 1. �Color online� �E�C� ,U� for Cu�100�/Co. Top: only the
Co layer is relaxed and bottom: uniform relaxation in all atomic
layers with respect to the interlayer distance in fcc Cu�100�. Co

refers to Eq. �2� and C� to Eq. �6�. The unrelaxed results are from
Ref. 7.
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FIG. 2. �Color online� �E�C� ,U� for Pt�111�/Co when only the
Co layer �squares� and when the Co and the adjacent vacuum layer
�circles� are relaxed with respect to the interlayer distance in fcc
Pt�111�. C0 refers to Eq. �2� and C� to Eq. �6�. The unrelaxed results
are from Ref. 7.

TABLE I. Systems investigated: systems 1 and 2 correspond to
free surfaces and systems 3–5 to tunneling junctions.

System Ref.

1 Cu�100� /Co /Vac6 7

2 Pt�111� /Co /Vac6 7

3 Cu�111� /Co2Vac3Cr3W7 /Cu-lead 4

4 Cu�111� /Co2Vac3Cr15W22 /Cu-lead 4

5 Cu�111� /Co2Vac3Fe2W7 /Cu-lead 5
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IV. RELAXATION EFFECTS IN ELECTRIC PROPERTIES

According to the Kubo equation of electric transport the
current in a two-dimensional translational invariant system
�corresponding to a simple parent lattice� in magnetic con-
figuration C� flowing at 0 K in direction of the surface nor-
mal is defined by2

jz�C�� = �
i,j=1,N

�zz
ij �C��Ez

j , �14�

where the �zz
ij �C�� are the layer-wise contributions of the

zz-like conductivity tensor and the Ez
j the z-like component

of the electric field in atomic layer j. Assuming that the
electric field remains constant throughout the whole system,
local and total current differences between a particular mag-
netic configuration and the reference configuration C0 can be
specified

�jz�C�� = Ez �
i=1,N

��zz
i �C�� , �15�

��zz
i �C�� = �

j=1,N
��zz

ij �C0� − �zz
ij �C��� , �16�

which in turn are important for an interpretation of spin-
polarized STM experiments, since they can, for example, be
used to point out from which part of a particular system the
main contribution in the measured contrast comes from.4,5

Applying the same procedure as before, namely, redefin-
ing �jz�C�� as

�jz�C�� 	 �jz�C�,U0� = Ez �
i=1,N

��zz
i �C�,xk� , �17�

�jz�C�,U� = Ez �
i=1,N

��zz
i �C�,xk�� �18�

then either the change in the current or of a difference cur-
rent with respect to relaxation effects can be investigated by
inspecting the corresponding layer-wise contributions. It
should be noted that in Eqs. �17� and �18� the differential
conductivity �current� that is measured experimentally is re-
placed by a finite difference.5

In Fig. 4 the value of the peak that corresponds to the
top Co layer is displayed versus changes in the inter-
layer distance. In the inset of this figure the unrelaxed
layer-resolved difference conductivities for the system
Cu�111� /Co2Vac3Cr15W22 /Cu lead4 are displayed. Figure 4
refers to the end point of the so-called reorientation transition
of the Co layers in this system. As can be seen, even when
the interlayer distance is contracted by about 10%, this peak
still remains the dominant contribution to the total difference
current. It seems therefore that at least in the case of
2-monolayer- �ML-� high extended islands on Cu�111� relax-

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.185

0.190

0.195

0.200

0.205

Cu(111)/Co2Vac3Fe2W7/Cu-lead

∆E
(C

α,
U

)
(m

eV
)

relaxation (% interlayer spacing)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.144

0.146

0.148

0.150

0.152

0.154

0.156

0.158

0.160

Cu(111)/Co2Vac3Cr15W22/Cu-lead

∆E
(C

α,
U

)
(m

eV
)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.144

0.146

0.148

0.150

0.152

0.154

0.156

0.158

0.160

Cu(111)/Co2Vac3Cr3W7/Cu-lead

∆E
(C

α,
U

)
(m

eV
)

FIG. 3. �Color online� �E�C� ,U� in
Cu�111� /Co2Vac3Cr3W7 /Cu-lead �top� �Ref. 4�,
Cu�111� /Co2Vac3Cr15W22 /Cu lead �middle� �Ref. 4�, and
Cu�111� /Fe2Vac3Cr3W7 /Cu lead �bottom� �Ref. 5� as a function of
the relaxation of the interlayer spacing in fcc Cu�111�. C0 refers to
Eq. �2� and C� to Eq. �6�.

TABLE II. Value of �E�C� ,U� �meV� for Cu�111� /Co2 as a function of the relaxation of the interlayer
spacing �in percent�. C0 refers to Eq. �2�, C� to Eq. �6�. The latest experimental value �Ref. 9� is 0.150 meV.
Including a 1% contraction self-consistently a theoretical value for �E�C� ,U� of 0.1468 meV was reported in
Ref. 8 for a free surface of 2 ML Co on Cu�111�.

System −5% −2% 0% 2% 5%

1 −0.4315 −0.4324 −0.4327 −0.4328 −0.4326

2 0.0918 0.0914 0.0910 0.0905 0.0894

3 0.1502 0.1522 0.1535 0.1548 0.1565

4 0.1482 0.1502 0.1515 0.1527 0.1544

5 0.1502 0.1522 0.1535 0.1548 0.1565
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ation effects do not change the view of spin-polarized STM
being a “surface-sensitive” technique: the contrast to be seen
arises mostly from the top Co layer,4,5 independent of relax-
ation effects.

V. RELAXATION EFFECTS IN MAGNETO-OPTICAL
PROPERTIES

By mapping the microscopically �quantum mechanically�
well-defined optical conductivity tensor ����= ������ ,�
=x ,y ,z� �Ref. 10�

���� = �
p=1,N

�
q=1,N

�pq��� , �19�

where � is the frequency, onto the macroscopic permittivity
tensor ����= ������ ,�=x ,y ,z�

f:���� → ����

such that

�pq��� =
1

N
�1 −

4�i

�
�pq���� �20�

one then can evaluate optical properties,11,12 or, for example,
establish a well-defined macroscopical model for the evalu-
ation of Kerr angles.11,13

It turned out13 that in most cases investigated up-to-now it
was sufficient to consider only layer-resolved permittivities
��

p ���

��
p ��� = �

q=1,N
��

pq ���, ����� = �
q=1,N

��
p ��� �21�

in order to describe accurately magneto-optical phenomena.
Clearly, the permittivity tensor ���� is a physical property
for which relaxation effects cannot even be guessed since
one has to investigate the real and the imaginary parts of the
diagonal and the off-diagonal components of all relevant
layer-resolved permittivity tensors.

In Figs. 5–7 the layer-resolved permittivities in the vicin-
ity of the Co/Pt interface in Pt�111� / �Co2Pt6�5 �Ref. 14� are
shown when changing the interlayer distance by 
20%. As
can be seen there are slight changes in the real and the imagi-
nary part of �xx

p ��� and �zz
p ���, mostly located in the two Co

layers, those in �xx
p ��� being more pronounced than in �zz

p ���.
It is interesting to note that the contributions of the two Co
layers to the total permittivity tensor are different whether
contraction or relaxation is considered. This particular fea-
ture, which also can be seen in the xy components, is most
likely caused by different kinds of magnetic interactions be-
tween the two Co layers with increasing �decreasing� inter-
layer distance.
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FIG. 4. �Color online� ��zz
i �C�� of

Cu�111� /Co2Vac3Cr15W22 /Cu lead: value of the peak correspond-
ing to the top Co layer as a function of the relaxation with respect to
the interlayer distance in fcc Cu�111�. The inset shows the unre-
laxed data �Ref. 4�. C0 refers to Eq. �2� and C� to Eq. �6�.
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FIG. 5. �Color online� Real �top� and imaginary �bottom� part of
the xx component of layer-resolved permittivity tensors in
Pt�111� / �Co2Pt6�5 relaxing the interlayer distance with respect to
that in fcc Pt�111� only in the interface PtCo2Pt and leaving all
other interlayer distances at the value corresponding to that in the
Pt�111� substrate. The unrelaxed data are from Ref. 14, ��=3 eV.
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Considering that relaxations on the order of 20% are
rather large, their effect on the permittivity has to be re-
garded as small. It should be noted that in using the so-called
two-matrix approach surface reflectivities subject to relax-
ations could now be evaluated including all reflections and
interferences. From the elements of the surface reflectivity
matrix finally Kerr rotation and ellipticity angles would
follow.11,13 However, since experimentally almost exclu-
sively only Kerr intensities are recorded and not �absolute�
Kerr angles, it can be expected that for these intensities re-
laxation effects might not be important at all: in most experi-
ments surface roughness is perhaps the much bigger prob-
lem.

VI. “ALMOST” TECHNOLOGICAL SAMPLES

While the above examples refer to experimentally well-
characterized systems, for the vast majority of samples that
might turn out to be of technological interest this is not the
case. In particular, in the case of nanopillars and nanowires,
the systems are mostly prepared by means of lithographic or
other rather crude techniques that provide virtually no infor-
mation about the actual interlayer spacing. Usually, all that is
known, are thickness parameters in nanometers. Exactly for
such systems the present approach offers unique possibilities
since without great effort the influence of relaxation effects
can easily be demonstrated. As a very typical example the
case of a nanopillar-shaped spin-valve-type system is chosen
with the following thickness parameters in �nanometer�:

Cu30Pt3�Co0.25Pt0.52�4�Co0.25�Ni0.6Co0.1Cu4�Co0.1Ni0.6�2Co0.25Pt3Cu20

for which ultrafast current-induced switching was claimed15 and which was cast theoretically16 into a two-dimensional trans-
lational invariant system with fcc-Cu�111� interlayer spacing

Cu�111�/Cu12Pt10/Pt4�CoPt2�4Co�Ni2Co�2Cu4

magnetic slab 1

/Cu11Cu4�CoNi2�2Co/Pt4
magnetic slab 2

/Pt10Cu11/Cu�111� .
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FIG. 6. �Color online� Real �top� and imaginary �bottom� part of
the zz component of layer-resolved permittivity tensors in
Pt�111� / �Co2Pt6�5 relaxing the interlayer distance with respect to
that in fcc Pt�111� only in the interface PtCo2Pt and leaving all
other interlayer distances at the value corresponding to that in the
Pt�111� substrate. The unrelaxed data are from Ref. 14, ��=3 eV.
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FIG. 7. �Color online� Real �top� and imaginary �bottom� part of
the xy component of layer-resolved permittivity tensors in
Pt�111� / �Co2Pt6�5 relaxing the interlayer distance with respect to
that in fcc Pt�111� only in the interface PtCo2Pt and leaving all
other interlayer distances at the value corresponding to that in the
Pt�111� substrate. The unrelaxed data are from Ref. 14, ��=3 eV.
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Of course in such a system immediately the question arises
whether the rather thick Pt slabs pick up an interlayer spac-
ing other than that of the leads, namely, a more fcc Pt�111�-
like interlayer spacing, and, even more important, whether an
increased interlayer spacing in the Pt layers influences the
switching properties in this spin valve. This is, in particular,
important since in contradiction to perhaps ad hoc believes it
was shown16 that by switching on a current first the first slab
�magnetic slab 1�, see Eq. �22�, is forced into an in-plane
orientation of the magnetization and only then the second
magnetic slab �magnetic slab 2� follows en suite. The critical
current necessary for the switching is therefore mostly deter-
mined by the reorientation energy of the first magnetic slab.
In Fig. 8 the interlayer spacing in “magnetic slab 1” or in
“magnetic slab 2” is increased up to a value that corresponds
to the interlayer spacing in Pt�111�. The inset of this figure
shows the variation in the band energy for the second mag-
netic slab on an enlarged scale. As can be seen from this
figure the changes with respect to relaxation are tiny on the
scale of the difference between these two reorientation ener-
gies. The reason for the surprisingly small changes with re-
spect to the interlayer spacing is Eq. �13�: because the Cu
spacer is rather thick the two magnetic slabs hardly interact.
Therefore Eq. �13� is nearly fulfilled.

Quite obviously the theoretical arguing in Ref. 16 con-
cerning the switching mechanism is robust as far as relax-
ation effects are concerned: the energetic path taken in
current-induced switching leads via the reorientation of the
first magnetic slab to a configuration in which the orientation
of the magnetization is in plane in both slabs. As Fig. 8
shows this mechanism is independent of relaxation effects:
the difference in reorientation energy is much too big to be
influenced by relaxation effects.

VII. CONCLUSION

It was shown that whenever physical properties can be
expressed in theoretical descriptions as sums over layer-
resolved quantities, then by means of Eq. �8� and by using
a Taylor expansion, see Eq. �7�, effects of layer relaxations
can readily be estimated. Once the �unrelaxed� layer-resolved
quantities are evaluated, which of course is the main com-

putational effort, effects of changing the interlayer spacing
can almost immediately be provided. Clearly, in the case of
free surfaces such as a few layers of Co on a suitable sub-
strate proper DFT calculations based on full potential ap-
proaches are preferable in order to discuss structural relax-
ation effects. For most systems in spintronics, however, this
kind of “traditional approach” is completely out of reach,
perhaps even not desirable, because not the structure of a
particular system is of primary interest, but most likely its
transport properties.
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FIG. 8. �Color online� Band energy �with respect to a uniform
perpendicular orientation of the magnetization� when the orienta-
tion of the magnetization in the first or in the second magnetic slab
is in-plane. Squares refer to the case when in slab 1, see Eq. �22�,
the interlayer distance changes from that in fcc Cu�111� to fcc
Pt�111� with all other interlayer distances corresponding to fcc
Cu�111�. Circles denote the case when the second slab is relaxed,
confining all other interlayer distances to the one in fcc Cu�111�.
The interlayer spacing in Cu�111� and Pt�111� is marked explicitly.
The inset shows the situation for the second magnetic slab on an
enlarged scale. The unrelaxed data are from Ref. 16.
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