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Current driven motions of domain walls in ferromagnetic, cylindrical nanowires are investigated by solving
the Landau-Lifshitz-Gilbert equation including the adiabatic and nonadiabatic spin torque terms. Depending on
the type of domain wall �transverse or vortex� and on the nonadiabaticity parameter � different behavior of the
domain wall motion has been found. A transverse domain wall shows a linear motion accompanied by a clock-
or anticlockwise precession of the wall depending on the relation between the nonadiabaticity parameter � and
the Gilbert damping �. For �=� no rotation occurs. Further, an easy way to derive the velocity equation is
presented. In the case of the vortex domain wall an unexpected chirality effect has been found. Depending on
the sense of rotation either a straight motion or a reversal of the rotation followed by a straight motion can be
seen. Furthermore, due to the impossibility of a Walker breakdown the averaged velocity of the domain wall v
is zero for all currents with �=0 while the motion is damped by the emission of spin waves for higher currents
and ���.
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I. INTRODUCTION

New concepts in the field of data storage media1–4 and
logic devices5 put magnetic nanowires into the focus of in-
terest. In the case of nanowires and other future magneto-
electronic devices domain wall motions are important be-
cause their switching and manipulation can easily be
controlled. During the last few years in particular domain
walls in artificial permalloy nanostructures have been inves-
tigated intensively.2,6,7 It has been shown that depending on
the aspect ratio two types of domain walls occur, namely,
transverse domain walls �TDW�, which are similar to a Néel
wall, and more complex vortex domain walls �VDW�. Both
types of domain walls can be found also in cylindrical
nanowires.8–11 The difference between both concepts of wire
architecture leads to differences in the magnetization dynam-
ics. It has been postulated recently that field driven vortex
domain walls in flat nanowires show complex motions.6,7

Later similar results were obtained for current-driven domain
walls.12 In contrast to flat structures vortex domain walls in
cylindrical nanowires move uniformly,9,11 which in turn
should be more convenient for applications. Yan et al.13

made a detailed numerical investigation of the motion of the
TDW in cylindrical nanowires. It could be shown that the
TDW shows a similar dynamics as in the field driven case.
Further, it has been shown that the TDW has a velocity
which is proportional to the applied current. The same result
has been proposed by Mougin et al.14 for the velocity of a
TDW just after the Walker breakdown. While the dynamics
of domain walls in one-dimensional �1D� structures and flat
nanowires is rather well understood,14–18 there is much less
information on the domain wall velocity in cylindrical wires.
In this publication we show an easy way to derive the veloc-
ity equations of a TDW in a uniaxial cylindrical nanowire.
Further we point out that in the case of a biaxial anisotropy
the velocity of the TDW changes and become similar to the
velocity of the VDW. Another important point, which has

been found in terms of numerical simulations, is that field
driven vortex domain walls in cylindrical nanowires do not
show a so-called Walker breakdown8 as is the case in biaxial
transverse domain wall systems.14,15,19 Instead a reduction in
the velocity due to the emission of spin waves �SW� has been
found.8 In this manuscript, we generalize this effect to the
case of current driven vortex domain walls in a cylindrical
wire geometry.

The paper is organized as follows. In Sec. II we give a
description of the underlying model. Section III gives an
overview of the results of transverse domain walls in cylin-
drical wires. These results are already published in.13 Here
we present an alternative way just by simple deductions to
get exactly the same results. Section IV is devoted to the
investigation of the motion of vortex domain walls, followed
by a summary �Sec. V�.

II. MODEL

Since we do not intend to describe a particular material
the following Heisenberg Hamiltonian:

H = − J�
�ij�

Si · S j − Dz�
i

�Si
z�2 − ��

i�j

3�Si · eij��eij · S j�
rij

3

�1�

is applied, where Si=�i /�s, �s= ��i�, is the direction of the
magnetic moment �i at site i, Si

z being its z component along
the wire. The first sum in Eq. �1� corresponds to an exchange
interaction between first nearest neighbors with a ferromag-
netic coupling constant J�0, the second one to a uniaxial
anisotropy term with the z axis as the easy axis of the system,
and the last one to a magnetic dipole-dipole interaction. In
Eq. �1�
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eij = �Ri − Ri�/rij, rij = �Ri − Ri�; � = �0�s
2/�4�a3� ,

�2�

where the Ri refers to the lattice positions in a simple cubic
lattice of spacing a. In the following Dz=0.005J, �=0.2J,
and all energies will be given in units of J.

For the equation of motion of the magnetic moments
caused by a current in z direction a modified Gilbert equation
that includes spin torque terms was suggested20–22

�Si

�t
= −

	

�s
Si 
 Hi + �Si 


�Si

�t
− ��u · ��Si�

+ �Si 
 ��u · ��Si� , �3�

where 	=g�B /� is the gyromagnetic ratio, Hi=−�H /�Si the
internal field, � the Gilbert damping factor, and u= �u� is
given by

u = jePg�B/�2eMs�; Ms = �s/a3 �4�

with je being the current density, P the polarization, Ms the
saturation magnetization, and � the nonadiabaticity param-
eter. Written in the form of Eq. �3�, one can immediately see
that for u=0 the “usual” Gilbert form is recovered. Due to
the time derivative on both sides this differential equation is
not easy to manage. To get a more manageable equation one
has to transform this Gilbert equation into a modified
Landau-Lifshitz-Gilbert equation. Therefore, the product
Si
 is usually added to both sides of Eq. �3� which leads to

Si 

�Si

�t
= −

	

�s
Si 
 �Si 
 Hi� + �Si 
 	Si 


�Si

�t



− ��u · ��Si� + �Si 
 ��u · ��Si� . �5�

Inserting the last expression into Eq. �3� and using the rule
a
 �b
c�=b�a ·c�−c�a ·b�

Si � �Si �
�Si

�t
� = �Si ·

�Si

�t
�

=0

− Si
2�Si

�t
= −

�Si

�t

�6�

�the first term on the right-hand side vanishes because of the
orthogonality

�Si

�t �Si� one gets

�1 + �2�
�Si

�t
= −

	

�s
Si 
 �Hi + ��Si 
 Hi�� − �u · ��Si

− �� − ��Si 
 ��u · ��Si�

+ ��Si 
 �Si 
 ��u · ��Si�� . �7�

This equation can be simplified to

Si � �Si � ��u · ��Si�� = �Si · ��u · ��Si��Si − Si
2��u · ��Si�

=0

= − ��u · ��Si� . �8�

Here we have used the fact that �u ·��Si�Si. Finally, one
gets the modified Landau-Lifshitz-Gilbert �LLG� equation15

�Si

�t
= −

	

�1 + �2��s
Si 
 Hi −

�	

�1 + �2��s
Si


 �Si 
 Hi� −
� − �

�1 + �2�
Si 
 ��u · ��Si�

+
1 + ��

�1 + �2�
Si 
 �Si 
 ��u · ��Si�� �9�

which is identical to the usual LLG equation in the limit of
u→0.

III. TRANSVERSE DOMAIN WALLS

A quick inspection of Eq. �9� already leads to interesting
conclusions. According to Eq. �1� a relaxation of transverse
domain walls in cylindrical wires leads to a “translational”
and “rotational invariance” of the dynamics of such domain
walls since Si
Hi=0, i.e., since the first and second term in
Eq. �9�, describing the precession and the relaxation due to
the internal field Hi, do not contribute to the time evolution
of the magnetic moments. In this particular case the time
evolution appears entirely due to the terms induced by the
electric current, namely, the third �relaxation� and fourth
�precession� term in Eq. �9�. If an additional hard axis aniso-
tropy is present the situation changes: a rotation of the do-
main wall leads to a change in the internal field Hi. Further-
more, depending on the sign of �−�, the fourth term
describes either a clockwise ��−��0� or an anticlockwise
��−��0� rotation. For �=� the precessional term is zero,
and the time evolution is described solely by a direct reversal
of the magnetization. In this particular case the velocity of
the domain wall can be read off directly from the prefactor of
the remaining third term, i.e.,

v�=� = u . �10�

In the case ���, a similar deduction leads to the two de-
coupled terms on the right-hand side of Eq. �9�. The first
term �initially the third term� is responsible for the preces-
sion. The second term �initially the fourth term� is respon-
sible for the relaxation. Due to the mentioned decoupling
above the velocity can be obtained directly from the prefac-
tor of the relaxation term

vTDW =
1 + ��

�1 + �2�
u . �11�

The precessional term in Eq. �9� leads to a decoupled
rotation of the out-of-plane components of TDW’s with a
precession speed equal to

vprec. =
� − �

1 + �2u �12�

the sense of rotation as already mentioned being determined
by the sign of �−�. It is important to notice that these ve-
locity Eqs. �11� and �12� describe the motion of a current
driven TDW performing a precessional motion. The results
are independent on the wire geometry, similar results could
be found also for thin-film geometries, quadratic rods or lin-
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ear chains.16–18 The only condition which has to be fulfilled
is just precession of the domain wall. That means that a
current driven TDW after the Walker breakdown moves with
a velocity which can be calculated using Eq. �11� �see Refs.
14 and 23�.

To test the above analytical reasoning we have performed
numerical spin dynamics simulations. In the following we
present results of the simulations for cylindrical nanowires
oriented parallel to the z axis. The wires are considered to
consist out of a set of lattice sites forming a cylinder of
length 1024d1 and diameter 8d2, where d1 and d2 are the
interlayer and next nearest-neighbor distance, respectively.
For TDW’s the results of the simulations performed for wires
or linear chains of the same length led to identical results
caused by the quasi-1D behavior of such objects. Due to the
shape and the crystalline magnetic anisotropy the equilib-
rium magnetization is aligned along the long axis of the sys-
tem �z axis�. The current flow is along the wire �z axis� which
means that u ·�=ux

�
�x +uy

�
�y +uz

�
�z becomes u ·�=uz

�
�z and,

hence, u=uz. The simulations have been started with a re-
laxed TDW �� /J=0� or VDW �� /J=0.2�.8,9 Switching on
the current leads to the acceleration of the domain wall. The
velocity of this motion can be calculated from the time de-
pendence of the magnetization as

v =
N

2

dS̄N
z

dt
, S̄N

z = �
n=1

N

Sn
z , �13�

where N refers to the number of atomic planes intersecting
the chosen cylinder.

Figure 1 shows the velocity vTDW of a TDW, as a function
of the Gilbert damping � for different nonadiabaticity pa-
rameters �. The filled symbols correspond to the numerical
data while the solid lines are the analytical results given in
Eq. �11�. In the inset the corresponding velocity curves are
displayed as a function of the current u.

From Fig. 1 it can be seen that the influence of � on the
velocity is rather small whereas a change in the Gilbert
damping causes a sizeable change in the velocity. It should
be noted that in Fig. 1 vTDW is directly proportional to u �see
the prefactor of the third term in Eq. �9�� and is identical to
the velocity of a TDW after the Walker breakdown.14 This
remarkable fact means that during the motion of a TDW any
relaxations via precessions of the magnetization are absent.
Thus, in contrast to the usual picture of domain wall motions
in which both, precessional and relaxation movements occur
simultaneously, they are decoupled in TDW’s formed in cy-
lindrical wires.

Figure 2 shows the time evolution of the out-of-plane
components of the magnetization profile of a TDW corre-
sponding to �=0.02,

Mx = sin � sech
z


, Mx = cos � sech

z


, �14�

where � is the time-dependent azimuthal angle and  the
domain wall width. The sense and the velocity of the preces-
sion can be obtained by analyzing the time evolution of the
height of the sech peaks. In Fig. 2�a� one sees a slow clock-
wise rotation ��−�=0.02�0� while in Fig. 2�b� a faster
anticlockwise rotation ��−�=0.02–0.1�0�. In the case cor-
responding to �=� our simulations show a straight domain
wall motion without any precession. These results are in ex-
cellent agreement with the analytical prediction Eq. �12�. In
realistic materials ���. For instance the values of �=0.01
and ��0.13 reported for permalloy24 imply an anticlock-
wise rotation in wire made out of this material. It seems that
the sense and the speed of the rotation can be manipulated by
doping of this alloy, e.g., with holmium.24 Unfortunately, this
also leads to a decrease in the domain wall velocity.

In a recent publication13 the authors call this type of do-
main wall massless in the presence of an external field. The
reason is that the missing hard axis anisotropy, as in thin film
structures, leads to the precession of the domain wall. There-
fore, there is no change in the domain wall energy and cor-
responding effective mass m� :E�v�0�−E�v=0�= 1

2m�v2 is
equal to zero. Here E is the domain wall energy and v the
velocity of the domain wall. This means that there is no
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FIG. 1. �Color online� Domain wall velocity of a TDW as a
function of the Gilbert damping � for different values of � in cy-
lindrical wires. Here u=0.2 is assumed. The inset shows the veloc-
ity as a function of u for �=0.02.
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FIG. 2. �Color online� Time
evolution of the out-of-plane com-
ponents of a TDW corresponding
to u=0.2, �=0.02 and �a� �=0,
�b� �=0.1; t0� t1� t2 are equidis-
tant steps in time. The wire cross
sections are depicted in the insets.
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change in the shape of the domain wall during motion. In
this case the driving field leads to the precession of the do-
main wall �see, Refs. 9 and 25� We, however, did not use any
external field leading to a energy change. Current driven do-
main wall motion appears just due to the conservation of
momentum and, therefore, there is no change neither in the
domain wall energy nor in the mass.

The dynamics of domain wall changes in the case of bi-
axial TDW’s.15,26 Here, a direct reversal occurs. This means
that the velocity equation applying to TDW’s with uniaxial
anisotropy is no longer valid because now the first two terms
in Eq. �9� do not remain constant in time. In this case the
velocity equation coincides with that of domain walls in a
planar film geometries22

v =
�

�
u . �15�

IV. VORTEX DOMAIN WALLS

In the case �=0 a vortex domain wall passes a small
distance and then stops: there is no further domain wall mo-
tion, i.e., v�u�=0, for the current values used in our simula-
tions. The reason is the compensation of the microscopic
torques in a perfect vortex. This phenomenon is in agreement
with previous simulations of biaxial transverse domain
walls.15,22 A domain wall motion above a certain critical cur-
rent has not been investigated. Nontrivial results occur for
��0. Here one has to distinguish between two cases, which
correspond to the two senses of rotation and the direction of
motion. Figure 3 shows the wall displacement of a VDW
with a counterclockwise �dotted-dashed line� and with clock-
wise sense of rotation �solid line�. The dash lines are just
guide for the eyes. Figure 4 shows the cross section of the
wire at different times: 1: clockwise rotation of the VDW at
time 	tJ /�S=0 ��z=0�, 2a–2c: VDW with clockwise rota-
tion passing the 480th layer ��z=30a� at 	tJ /�S�90, and
3a–3c: after rotation reversal ��z=250a, 	tJ /�S�400�. The

domain wall moves in +z direction, which corresponds to a
movement in the direction of the observer. In the case of the
VDW with clockwise rotation one sees a linear displacement
followed by a small backward motion and an additional lin-
ear motion at the end. During the backward motion the sense
of rotation changes from clockwise to counterclockwise. The
same behavior occurs if one starts with one one type of
VDW �clockwise or counterclockwise� and drives the do-
main wall in +z or −z direction.

The physical reason for that is the specified sense of ro-
tation of the vector products �right-hand rule� of the preces-
sional terms in the Landau-Lifshitz-Gilbert equation. De-
pending on the sense of rotation the precession terms lead to
a clockwise or counterclockwise rotation of the magnetic
moment. Due to the double cross products the relaxation
terms do not distinguish between different senses of rotation.
These terms always lead to a linear domain wall motion in
the direction of the driving force �external field or current�.
The direct reversal together with the clockwise or counter-
clockwise rotation due to the precession terms lead to differ-
ent reversal paths. The first path shown in Fig. 4, 2a–2c leads
to volume and surface charges. This is not the case for the
second reversal’s path �see Fig. 4, 3a–3c�. This behavior is
independent on the driving force and depends only on the
rotation sense of the VDW and the direction of the vector
product. Or study suggests the following rule: if the sense of
rotation of the VDW �domain wall moving to the observer� is
identical with the sense of rotation given by the torque be-
tween the magnetic moments and the driving force a straight
domain wall motion occurs. If they are different the VDW
change its sense of rotation. After that the domain wall mo-
tion becomes straight and posses the same velocity. The ve-
locity is identical with the velocity of the biaxial TDW’s

vVDW =
�

�
u . �16�

This agreement is because of the identical magnetization re-
versal mechanism �direct reversal�. For �=�, we find a
steady-state domain wall motion with a linear increase in the
domain wall velocity, vVDW=u.

The mostly fascinating result can be seen for ���. In
this case a biaxial transverse domain wall shows typically a
linear increase in the velocity followed by a Walker break-
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FIG. 3. �Color online� Current driven domain wall motion of a
VDW: wall displacement as function of time for a VDW with coun-
terclockwise sense of rotation �dotted-dashed line� and a VDW with
clockwise sense of rotation in the beginning �solid line�. The current
flow is along the wire in +z direction �u=0.35, �=0.02, �=0.1, and
� /J=0.07�. The dashed lines are guide for the eyes. The slopes of
these lines are equal to the velocity of the VDW. The numbers 1,
2a−c and 3a−c correspond with the pictures in Fig. 4.
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FIG. 4. �Color online� Current driven domain wall motion of a
VDW: crossection of the wire, at different times and different lay-
ers. 1: clockwise VDW at time 	tJ /�S=0, 2a–2c: moving clock-
wise VDW passing the 480th layer at 	tJ /�S�90 �a to c: equidis-
tant time steps� and 3a–3c: counterclockwise VDW after changing
the sense of rotation �passing the 700th layer at 	tJ /�S�400, a to
c: equidistant time steps�.
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down. In the case of a VDW the increase is followed by a
saturation of the velocity, without any Walker breakdown.
The saturation of the velocity corresponds to the emission of
spin waves. In order to understand the underlying physics we
calculated the so-called winding number Z,

Z =
1

2�r
� �curl S�zdxdy �17�

for a wire of radius r, at each plane intersecting the wire �z
=const.� and at each time step. Figure 6 shows the time
dependent winding number of the 550th layer after passage
of the vortex domain wall. The inset shows the winding
number during the whole simulation. The peak found at t
�138	J /�s marks the passage of the VDW while the sub-
sequent oscillations of the circulation show the occurrence of
SW behind the domain wall.

Identical phenomena can be observed for field driven vor-
tex domain walls in cylindrical wires in the limit of �→0
and/or large external fields.8 Just as in the case of current-
driven domain walls the spin wave is emitted due to the

impossibility of the occurrence of a Walker breakdown. In
the field-driven case the energy necessary for the appearance
of spin waves is due to the Zeeman term,

HB = − �sB�
i

Si
z, �18�

which describes the coupling of the magnetic moments to an
external field and which has to be added to the Hamiltonian
in Eq. �1�.

Figure 7 shows the emitted spin wave behind the domain
wall in the field driven case. Additionally to the winding
number Z the perpendicular to the layer magnetization

M� = Mx
2 + My

2 �19�

with

M� =
1

L
�
l=1

L

Sl
�, � = �x,y� �20�

has been used to characterize the spin wave. The numbers in
Fig. 7 correspond to snapshots of the cross section of the
wire shown in Fig. 8. Figure 8, 1 shows the counterclockwise
VDW while the Fig. 8, 2–6 correspond to snapshots of the
spin wave behind the domain wall. Because of the dipolar
interaction this spin wave shows a rotational symmetry,
changing periodically in time. A detailed description of the
spin wave emission during domain wall motion can be found
in.26

Viewed in terms of Eqs. �1� and �9� the difference be-
tween the field driven and the current-driven domain wall
motion is that in the first case the underlying principle is
conservation of energy while in the second one it is the con-
servation of the spin torque. In the latter situation ideally no
change in energy is involved. Therefore the occurrence of
spin waves seems to be unexpected at the first moment. In
order to shed light on this peculiar behavior one has to in-
vestigate the magnetic properties of a domain wall itself and
its interaction with the current.

Figure 5 shows the domain wall profile Sz of a vortex
domain wall at different radii r along the wire axis �z axis�.
The transversal section of the wire is depicted in the inset. A
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radius dependent domain wall width can be determined from
the magnetization profile. The smallest domain wall width is
formed along the central axis �r=0, central spot labeled with
1, see inset of Fig. 9�. This extremely narrow part of the wall
appears as a singularity �Bloch point� in the center of the
VDW. With increasing radius �increasing number in Fig. 9�
the domain wall width increases. Therefore, depending on
the radius r, different gradients �Si /�z arise in Eq. �9�. This
means that the current “sees” a radius-dependent spin torque
�adiabatic term in the LLG equation� and also a radius-
dependent reflection coefficient �nonadiabatic term�. There-
fore, the current leads to a deformation of the vortex, espe-
cially in the vicinity of the Bloch point. This deformation
then causes a change in the domain wall energy and an emis-
sion of spin waves due to the magnetic dipole-dipole inter-
action, see also Fig. 6.

V. SUMMARY

In summary, current induced motions of domain walls in a
cylindrical wire have been investigated. The well known fact
that the nonadiabaticity parameter � plays an important role
for the dynamics of a domain wall is shown to hold for
cylindrical nanowires. Depending on �−� a clockwise or
anticlockwise rotation of the TDW can be seen. Such a pre-
cessional motion leads to a lower velocity limit similar to the
lower velocity limit of field driven domain walls.8,25 Further,
this precession protects the TDW from the Walker break-
down.

For the VDW, we show that its motion depends on the
sense of rotation of the VDW in comparison to the specified
sense of the cross product of the precessional term in the

LLG Eq. �9�. If the sense of rotation of the VDW is identical
to that from the torque of the precessional term a straight
domain wall motion with direct reversal occurs. Otherwise
the VDW changes the sense of rotation and after that the
same straight motion with direct reversal occurs. The relax-
ation terms do not affect this effect as they lead to the direct
magnetization reversal which drives the domain wall in the
direction of the driving force �current or external field�. A
Walker breakdown does not occur due to the stability of the
VDW with correct sense of rotation. Therefore no continuous
domain wall motions have been found provided that the spin
torque is adiabatic ��=0�. For ��0 the velocity of the
VDW is given by the well known formula for current driven
domain walls for direct reversal v= �

�u. If �=� the negative
damping due to the spin torque term and the positive damp-
ing due to the Gilbert damping � are equal and therefore a
steady state motion occurs. If the nonadiabaticity is larger
than the Gilbert damping, ���, we find—as expected—in
the regime of small currents a linear behavior of the velocity
with respect to the current and a decrease in the velocity at
higher currents but no Walker breakdown. The decrease in
the velocity can be explained by the emission of spin waves
behind the domain wall, which in turn can be explained by
considering radius-dependent domain wall widths. This leads
to different gradients in Eq. �9�, which in turn lead to a
deformation of a vortex domain wall, especially in the center
of the wire. Due to this deformation, the energy of the do-
main wall decreases and the energy dissipates via an emis-
sion of spin waves, implying a decrease in the kinetic energy
of a vortex domain wall, and thus a decrease in velocity.
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FIG. 9. �Color online� Domain wall profile �ground state: the z
component of magnetization� of a vortex domain wall.
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FIG. 8. �Color online� Spin wave behind a field driven VDW:
Upper figure shows side view of the cylindrical wire. The domain
wall with the spin wave wake behind can be clearly seen. Lower
figures 1–6: cross section of the wire �550th layer� at different
times. 1: VDW, 2–6: spin wave. This pictures correspond with the
numbers shown in Fig. 7.
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