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Domain walls and domain wall resistivities in CoxPd1Zx(111)

and CoxPt1Zx(111)

P. Weinberger*

Center for Computational Nanoscience, Seilerstätte 10/22, A-1010 Vienna, Austria

(Received 19 November 2008; final version received 16 December 2008)

In using the relativistic screened Korringa–Kohn–Rostoker method and
a multi-scale approach based on a parametrization of the Ginzburg–
Landau expansion of the free energy as a functional of the magnetization
density, domain wall widths in CoxPd1�x and CoxPt1�x are determined by
considering these substitutionally disordered alloys as two-dimensionally
invariant systems. It is shown that in CoxPd1�x, domains are formed nearly
over the whole concentration range, while in CoxPt1�x, domain wall
formation only occurs near 50% Co and for Co-rich alloys. Based on these
results resistivities in the presence and absence of domains walls are
evaluated in terms of the relativistic Kubo–Greenwood equation. In
contrast to CoxNi1�x, it turns out that both systems are unsuitable as race
track materials.

Keywords: magnetic structure; magnetic alloys; electrical transport;
magneto-resistance

1. Introduction

The (bulk) phase diagram of CoxPd1�x [1] shows no ordered phases: Co and Pd form
a continuous series of fcc solid solutions with complete solubility at all compositions.
The phase diagram of CoxPt1�x [1] on the other hand exhibits two superstructures,
namely at x¼ 0.25 and 0.5, but otherwise seems to be statistically disordered on an
fcc lattice. Co/Pd and Co/Pt are well-studied systems in the literature with available
investigations ranging from typical bulk studies [2–5], free surfaces of Co on Pd and
Pt [6], (phenomenological) micromagnetic studies of magnetization switching [7–10],
ab initio attempts thereof [11], small Co clusters or nanostructures on top of Pt [12–
14], ab initio descriptions of magneto-optical properties [15,16], to attempts to
measure and characterize domain wall resistivities [17].

Studies of domain walls in nanowires and their resistivities suddenly became very
prominent once the idea of race track memories was coined, namely the suggestion to
use current driven domain wall motions as an underlying physical principle for
a completely new type of solid state memory device [18–23]. This idea started a series
of theoretical investigations dealing with exactly the set-up used in the experimental
studies [24–27], partially performed in the hope of suggesting other systems [26,27]
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than permalloy [24,25]. In this context also the present paper has to be seen, namely

as an attempt to learn more about domain wall formation in CoxPd1�x and CoxPt1�x
and to find out whether at least one of these systems could serve as a race track

material.

2. Formal concepts and computational details

2.1. Magnetic configurations and domain wall formation energies

In principle, the orientations of the magnetization in an infinite layered system

characterized by two-dimensional translational invariance (one atom per unit cell),

see Figure 1, are defined by the following set of unit vectors

C ¼ ~nl, ~n1, ~n2, . . . , ~ni, . . . , ~nL, ~nr
� �

, ð1Þ

where ~nl refers to the uniform direction of the magnetization in the left domain (semi-

infinite system), ~nr to that in the right domain (semi-infinite system) and the ~ni to
those in the L atomic layers forming the domain wall. Equation (1) specifies a typical

non-collinear magnetic configuration in a layered system corresponding to a simple

parent lattice. There are two special cases, namely C0,

C0 : ~nl ¼ ~nr ¼ ~ni ¼ ~z, i ¼ 1,L, ð2Þ

in which the magnetization in all atomic layers of the system points along the surface

normal (~z), and C1,

C1 : ~nl ¼ ~nr ¼ ~ni ¼ ~x, i ¼ 1,L, ð3Þ

referring to a uniform orientation of the magnetization along the in-plane ~x axis. C0

and C1 are of course so-called collinear magnetic configurations. In principle, in the

domain wall, the ~ni can vary in an arbitrary manner implying that for a given L the

total energy of the whole system has to be minimized with respect to all possible non-

Figure 1. Schematic view of a 180� domain wall.
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collinear arrangements in the domain wall in order to determine the most favorable

configuration. Since such a procedure is usually computationally not feasible,

a model for the orientations in the various atomic layers in the domain wall is

adopted. Here the following scheme for a 180� domain wall is applied:

Cd : ~nl ¼ ~z, ~nr ¼ �~z, ~ni ¼ Dð�iÞ~y, ð4Þ

�i ¼ 180i=L, i ¼ 1,L,

which describes a quasi-continuous change of the orientation of the magnetization

from ~z to �~z. In Equation (4), D(�i) is the three-dimensional representative of

a rotation around the ~y axis (perpendicular to ~x and ~z ) by an angle �i.
In using the so-called magnetic force theorem the domain wall formation energy

at a given value of L is then defined by the difference in the grand potentials between

configurations Cd and C0,

EðL, xÞ ¼ EðL, x,CdÞ � EðL, x,C0Þ ð5Þ

¼
XN
p¼1

E pðL, x,CdÞ � E pðL,x,C0Þð Þ, ð6Þ

where x is the concentration, p denotes atomic layers, and N includes a sufficient

number m of ‘buffer’ atomic layers in the left and right domain in order to guarantee

a smooth transition between the domain wall and its adjacent domains,

N ¼ Lþ 2m: ð7Þ

The layer-resolved contributions Ep(L, x,Ci) to the grand potential are given by

EpðL, x,CiÞ ¼

Z EF

Eb

npðL, x,Ci, zÞðz� EFÞdz, ð8Þ

where np(L, x,Ci, z) is the density-of-states of the p-th atomic layer in a domain wall

of width L corresponding to a magnetic configuration Ci¼C0, C1 or Cd. In

Equation (8), z¼ �þ i� is, in general, a complex energy, Eb the valence band bottom

and EF the Fermi energy. It should be noted that Equation (5) implies that for

E(L, x)4 0 configuration Cd (domain wall formation) is preferred, while for

E(L, x)� 0 configuration C0 is the stable one (the system forms a single domain with

the direction of the magnetization pointing uniformly along ~z ).
Since the minimum in E(L, x) with respect to L,

dEðL, xÞ

dL

����
L0

¼ 0, ð9Þ

usually occurs at rather large values of L, it was suggested [28] casting the Ginzburg–

Landau expansion of the (generalized) free energy as a functional of the

magnetization density into a multi-scale approach, since then the E(L, x) can be

formulated in terms of two constants a(x) and b(x),

EðL, xÞ ¼ AðxÞ
aðxÞ

L
þ bðxÞL

� �
, ð10Þ
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the first one being the so-called exchange, the second one the anisotropy energy

parameter. The equilibrium width of the domain wall for a given concentration x is

then simply given by

L0ðxÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðxÞ=bðxÞ

p
: ð11Þ

It should be noted that since E(L, x) is quadratic in L, in principle the value of

E(L, x) needs to be determined only at two (large enough) values of L in order to

evaluate L0(x). The above described multi-scale approach was rigorously tested [28]

and successfully applied to permalloy [24,26,27] and CoxFe1�x and CoxNi1�x [25].

2.2. Sheet resistances and resistivities

In principle, for a particular magnetic configuration Ci the current perpendicular

to the planes of atoms (CPP) defined over a certain length L is given by (see, for

example, [29])

�CPPðL, x,CiÞ ¼
1

L

ZZ 1
�1

�ðz, z0;x,CiÞdz dz
0, ð12Þ

and the corresponding sheet resistance by

rðL, x,CiÞ ¼ L�CPPðL, x,CiÞ: ð13Þ

For large enough L the resistivity �CPP(L, x,Ci) can be obtained from the zz-

component of the conductivity tensor, �zz(L, x,Ci),

�CPPðL, x,CiÞ � �zzðL, x,CiÞ ¼ �
�1
zz ðL, x,CiÞ: ð14Þ

As it is virtually impossible to calculate the conductivity tensor by means of ab initio

methods for very large L one can make use of the fact that r(L, x,Ci) is linear in L,

rðL,x,CiÞ ¼ L�zzðL, x,CiÞ ¼ �ðx,CiÞ þ �ðx,CiÞL, ð15Þ

which, furthermore, has the useful limiting properties

05 x5 1 : lim
L!1

�zzðL, x,CdÞ ¼ �ðx,CdÞ ¼ �zzðx,C0Þ, ð16Þ

x ¼ 0, 1 : lim
L!1

�zzðL, x,CdÞ ¼ �zzðC0Þ ¼ 0: ð17Þ

In Equation (16), �zz(x,C0), 05 x5 1, is the zz-component of the residual (‘bulk’)

resistivity corresponding to configuration C0 (see Equation (2)). As is well-known for

pure systems (c¼ 0, 1) the constant �(C, c) has to be exactly zero. Equation (17) can

therefore be used to check the accuracy of the applied numerical procedure, in

particular, since �zz(L, x,Ci) is evaluated by means of an analytical continuation of

resistivities defined for complex Fermi energies; for a review see [30].

1936 P. Weinberger
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3. Numerical details

All ab initio calculations for CoxPd1�x(111) and CoxPt1�x(111) were performed at

the experimental lattice constant using Vegard’s law, e.g.

a0ðxÞ ¼ xa0ðCoÞ þ ð1� xÞa0ðPdÞ,

(Co: 6.5509, Pd: 7.3530, Pt: 7.4137 [a.u.]) in terms of the spin-polarized (fully)

relativistic screened Korringa–Kohn–Rostoker (SPR-KKR) method within the

framework of the inhomogeneous Coherent Potential Approximation [31]. It

should be noted that Vegard’s law describes the variation of the experimental lattice

parameter of CoxPd1�x and CoxPt1�xwith respect to the concentration rather well [1].
In using the self-consistent potentials and exchange fields corresponding to

configuration C0, the grand potentials E(L, x), see Equation (5), were evaluated by

means of a contour integration along a semicircle using a 16-point Gaussian

quadrature and 1830 k points per irreducible part of the surface Brillouin zone

(ISBZ). The equilibrium domain wall width was then determined at L¼ 222 and 324

[ML]. For an extensive discussion of the accuracy of the fit based on Equation (10)

using the same numerical parameters see [24].
The electric transport properties were evaluated at complex Fermi energies by

means of the fully relativistic Kubo–Greenwood equation (for a review see [30]) also

using 1830 k points per ISBZ and then analytically continued to the real axis. All

resistivities at L0 and L¼1 (bulk) were determined via Equation (15) using the

calculated values of r(L,x,Ci) at L¼ 60 and 120 [ML]. A detailed study of the

numerical properties of Equation (15) is to be found in [32], in which not only the L

dependence is discussed but also the accuracy of the analytical continuation to the

real axis. It should be noted that for both fits, namely employing Equations (10) and

(15), sufficiently large values of L, well separated from each other, were used in order

to exclude any kind of ‘neighborhood effects’. For computational reasons, the two

values had to be smaller in the case of the electric properties. However, in principle –

as was already mentioned and was amply discussed in [24,32] – for these fits an

arbitrary pair of values of L can be chosen. In both types of calculations the number

of ‘buffer layers’, see Equation (7), was three.
Since a (111) stacking sequence was chosen for both systems, the equilibrium

domain wall width in [nm] and the unit area in [nm]2 is defined by

L0½nm� ¼
a0ðxÞffiffiffi

3
p L, AðxÞ½nm�2 ¼

ffiffiffi
3
p

a20ðxÞ

4
,

where L is the number of atomic layers at which Equation (9) is fulfilled.

4. Discussion of results

4.1. Spin and orbital moments

As already stated in the introduction, the bulk systems CoxPd1�x and CoxPt1�x are

well-studied in the literature, and yet surprising features are found when they are

directly compared to each other. In Figure 2 the spin and orbital moments of Co and

Philosophical Magazine 1937
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Pd (Pt) are shown versus the concentration x. As can be seen the spin moments in the
two substitutionally disordered systems are very much alike. There are hardly any

differences in the Co spin moment whether Co is alloyed with Pd or Pt. Also, the
induced spin moments for Pd and Pt are very similar in value through the whole
studied concentration range. However, the orbital moments behave completely

differently: with decreasing Co content in CoxPd1�x the Co orbital moments increase
substantially while in CoxPt1�x they decrease. Taking for example the values at
x¼ 0.25 the difference is about 0.07 [�B]. This per se is quite a big value for an orbital

moment! Also, the induced orbital moments at Pd or Pt sites are remarkably
different. For large Co concentrations they differ by nearly a factor of 2.
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Figure 2. Spin and orbital moments in fcc CoxPd1�x(111) and fcc CoxPt1�x(111).
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4.2. Domain wall formation energies and domain wall widths

Turning now to the domain wall formation energies, see Equation (5), displayed

in Figure 3 for L¼ 222 and L¼ 324, it seems that two completely different systems

are dealt with, in particular since in the case of CoxPt1�x the domain wall energy for

L¼ 324 is negative for x5 0.4 and 0.65 x5 0.9. From Equation (5) – as should be

recalled – it follows directly that in these concentration ranges the magnetic

configuration C0 is preferred, i.e. the magnetization is uniformly aligned in all atomic

layers of the system along the surface normal. This of course implies that no domains

and therefore domain walls are formed.
It is interesting to explore from which parts in a domain wall of given width the

main contributions to the domain wall formation energy arise. In order to illustrate

corresponding changes with respect to the concentration in Figure 4 the

layer-resolved quantities, see Equations (5) and (6), are displayed for L¼ 324 and

x¼ 0.1, 0.3 and 0.5 in the case of CoxPd1�x. Quite obviously these layer-resolved

domain wall energies vary rapidly at the very beginning and end of the domain

wall. In the lower part of this figure, this particular feature is shown for the first

10 atomic layers. As can be seen, the rise to a certain value occurs within the first

five layers.
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Figure 3. Domain wall formation energies in fcc CoxPd1�x(111) and fcc CoxPt1�x(111).
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In the interior of a domain wall, the layer-resolved domain wall formation
energies vary differently for different concentrations. For example, at x¼ 0.5 there is
a minimum in the middle of the domain wall, while for x¼ 0.3 a maximum is present.
In the middle of a domain wall the orientation of the magnetization is perpendicular
to that in the adjacent domains, indicating a higher (Co30Pd70) or lower (Co50Pd50)
contribution to the in-plane anisotropy of the respective atomic layers. In the case of
Co10Pd90, there are even two maxima, which occur separated symmetrically by
a minimum in the middle of the wall. From Figure 4 it follows that obviously the
‘interface’ of the domain wall with its adjacent domains is of crucial importance,
a fact that most likely will have to enter an ab initio description of domain wall
motions. In Figure 5 for Co50Pd50, L¼ 324, the contributions of the components Co
and Pd to the domain wall formation energy are depicted. As can be seen, the
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Figure 4. Layer-resolved domain wall formation energies in fcc CoxPd1�x(111).
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contribution from Pd is surprisingly large in particular in the middle of the domain

wall.
To illustrate the variation of E(x,L) with L, in Figure 6 a few characteristic cases

are shown for CoxPd1�x. It should be noted that in this figure, L is deliberately given

in units of [ML] in order to prove the usefulness of Equation (10). From this figure it

can be seen that for x¼ 0.9 the minimum is very shallow, while for x¼ 0.1 it is

reasonably deep. In all cases, the actual equilibrium domain wall formation energy is

rather small, namely less than about 50 [meV]. The parameters for the fit, the

exchange and the anisotropy energy, are displayed together with the equilibrium

domain wall width in Figure 7. In particular from this figure the enormous

differences between CoxPd1�x and CoxPt1�x become transparent; these were already

present when discussing the orbital moments. With the exception of very dilute alloys

of Co with Pd, over the whole concentration range in CoxPd1�x, 180
� domains are

formed. The width of these domain walls is surprisingly small for x5 0.3 and

0.55 x5 0.7. Because of the minimum in the anisotropy parameter at about x¼ 0.4,

the domain wall width at this concentration becomes rather large, in the same

manner as a decreasing anisotropy for high Co concentrations causes a steady
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Figure 5. Component and layer-resolved domain wall formation energies in fcc
Co50Pd50(111).
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increase of the domain wall width. This behavior follows directly from Equation (11)

since the anisotropy parameter serves as denominator.
For CoxPt1�x, the situation is completely different, since, as was already said, for

x5 0.4 and 0.65 x5 0.9 the domain wall formation energies are negative causing

the exchange parameter in Equation (11) to vanish. These are the concentration

regimes in which no domain wall formation occurs. For x4 0.9, both the

exchange as well as the anisotropy parameter vary rapidly. It seems that the

anisotropy parameter is increasing in order to overcome the fast decline in

the exchange parameter. Consequently, in this concentration regime, the

equilibrium width changes very fast, with the concentration being very small

indeed for x¼ 0.9.

4.3. Domain wall resistivities

Nowadays the main interest in domain walls is of course directed at their resistivities,

in particular to the change in the anisotropic magnetoresistance (AMR) of
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Figure 6. Fitted domain wall formation energies in fcc CoxPd1�x(111).
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a statistically disordered system in the presence,

AMRðL0, xÞ ¼
�zzðL0, x,CdÞ � �zzðL0,x,C1Þ

�zzðL0, x,CdÞ
, ð18Þ

and absence,

AMRðxÞ ¼
�zzðx,C0Þ � �zzðx,C1Þ

�zzðx,C0Þ
, ð19Þ

Figure 7. Exchange energy parameter (top), anisotropy parameter (middle) and equilibrium
domain wall width in fcc CoxPd1�x(111) and fcc CoxPt1�x(111).
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