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In using the fully relativistic versions of the screened Korringa-Kohn-Rostoker method and of the
Kubo-Greenwod equation equilibrium domain wall widths and corresponding domain wall resistivities are
calculated for CocFe1�c and CocNi1�c making use of a multiscale approach. It is found that in CocFe1�c
the domain wall width becomes rather large at about c � 0:4, but does not show an obvious singularity in
the vicinity of the bcc to fcc phase transition. In CocNi1�c the domain wall width varies much less in size
with respect to the concentration. In particular, it is demonstrated that as compared to the homogeneous
infinite systems the anisotropic magnetoresistance is reduced in the presence of a domain wall. This
reduction is rather big for CocNi1�c, namely, about 6%, while for CocFe1�c it is only of the order of
1%–2%. The results clearly indicate that CocNi1�c might be a useful candidate for race track memories.
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One of the most fascinating new ideas in the field of
spintronics is the concept of race track memories [1–3],
which is based on the experimental finding that in a given
length of a nanowire the size of the anisotropic magneto-
resistance (AMR) changes whether a domain wall is
present or not. Since domain walls can be moved in and
out such a predefined region by applying an electric field
[4], it was proposed to use this effect for a new, all-solid-
state archival storage with about the same density of mag-
netic disks, however, with no moving parts at all. Very
recently it was shown that already very short pulses of the
order of a few picoseconds of an electric field [5,6] are
sufficient to cause a domain wall to move. Quite clearly
there are still quite a few experimental difficulties to re-
solve such as, e.g., the problem of depinning [7–9]; how-
ever, once all obstacles are removed, it seems that such a
device will depend only on the speed by which changes in
the AMR can be recorded. Surprisingly enough, up-to-now
all (reported) experimental investigations were confined to
permalloy with a nickel concentration near 85%.

From a theoretical standpoint of view two, rather very
different aspects of race track memories have to be ad-
dressed, namely, (i) what causes a domain wall to move
when an electric field is applied, and (ii) can the experi-
mental evidence be confirmed that the AMR is reduced [7]
in the presence of a domain wall, and if so, are there other
magnetic materials than permalloy equally suitable for the
envisaged purpose? With respect to the first question only
very recently first attempt were made to describe the
interaction of an external (time-dependent) electromag-
netic field with a magnetic system by using the time-
dependent Dirac equation [10], a concept, which in turn
offers the possibility to define all occurring torque terms
rigorously. The second question, which is addressed in
here, not only requires to determine equilibrium domain
wall widths, but also to calculate respective domain wall
resistivities and the AMR in the absence of domains walls
for statistically disordered systems.

As is well known, two of the three possible binary
substitutional alloys of magnetic 3d-metals, namely
FecNi1�c and CocFe1�c, show phase transitions from bcc
to fcc and are therefore only useful in certain concentration
regimes. CocNi1�c, however, with the exception of very
diluted alloys remains fcc over the whole concentration
range. In here the systems CocFe1�c and CocNi1�c are
considered in response to the second question raised above.

Suppose L denotes the width of a domain wall, C its
magnetic configuration, c the concentration and A0�c� the
unit area in a magnetic substitutional binary alloy AcB1�c
then the domain wall formation energy can be written as
[11,12]

 E�L;C; c� � A0�c�
�
��C; c�
L

� ��C; c�L
�
; (1)

where the constants ��C; c� and ��C; c� correspond to the
exchange and anisotropy energy, respectively. Given the
values of E�L;C; c� at two points L1 and L2, the constants
��C; c� and ��C; c� can be evaluated and therefore also the
minimum of E�L;C; c� and the corresponding equilibrium
domain wall width L0.

Suppose now that C0 and C1 denote the following mag-
netic reference configurations,

 C0 � f ~nl � ~x; ~ni � ~x; ~nr � ~x; i � 1; Lg; (2)

 C1 � f ~nl � ~z; ~ni � ~z; ~nr � ~z; i � 1; Lg; (3)

where ~nl and ~nr denote the orientations of the magnetiza-
tion in the ‘‘left’’ and the ‘‘right’’ domain, the ~ni those in
the atomic planes forming the wall, ~x is parallel to the in-
plane x axis, and ~z is parallel to the surface normal.
Suppose further a magnetic configuration Cd such that
within the atomic layers forming the domain wall the
orientation of the magnetization in the individual planes
changes continuously from ~x to � ~x

 Cd � f ~nl � ~x; ~ni; ~nr � � ~x; i � 1; Lg; (4)
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~ni � D��i� ~x, �i � 180i=L, i � 1; . . . ; L, D��i� being a
rotation by an angle �i around the surface normal. For a
particular value of L the domain wall formation energy
E�L;Cd; c� can now be evaluated as the difference in the
grand canonical potentials between two configurations,
e.g., Cd and C0,

 E�L;Cd;c��
Z EF

Eb
�n�L;Cd;c;���n�L;C0;c;������EF�d�;

(5)

where n�L; Ci; c; �� is the density of states (in L unit cells)
corresponding to a particular configuration Ci, and Eb and
EF denote the valence band bottom and the Fermi energy,
respectively. It should be noted that by adding Ll and/or Lr
layers from the left or right domain, the domain wall
formation energy remains unchanged, i.e., E�L� Ll �
Lr;Cd; c� � E�L;Cd; c�.

In principle for a particular magnetic configuration Ci
the current perpendicular to the planes of atoms (CPP)
defined over a certain length L is given by [13]

 �CPP�L;Ci; c� �
1

L

ZZ 1
�1

��z; z0;Ci; c�dzdz0; (6)

and the corresponding sheet resistance by

 r�L;Ci; c� � L�CPP�L;Ci; c�: (7)

For large enough L the resistivity �CPP�L;Ci; c� can be
obtained from the zz component of the conductivity tensor,
�zz�L;Ci; c�,

 �CPP�L;Ci; c� � �zz�L;Ci; c� � ��1
zz �L;Ci; c�: (8)

As it is virtually impossible to calculate the conductivity
tensor by means of ab initio methods for very large L one
can make use of the fact that r�L;Ci; c� is linear in L,

 r�L;Ci; c� � L�zz�L;Ci; c� � a�Ci; c� � b�Ci; c�L: (9)

If used in practical terms this linear form has to yield the
below limiting properties

 0< c< 1: lim
L!1

�zz�L;Cd; c� � b�Cd; c� � �zz�C0; c�;

(10)

 c � 0; 1: lim
L!1

�zz�L;Cd; c� � �zz�C0; c� � 0; (11)

where �zz�C0; c�, 0< c< 1, is the zz component of the
residual (bulk) resistivity corresponding to configuration
C0; see Eq. (2). As is well-known for pure systems (c � 0,
1) the constant b�C; c� has to be exactly zero. Equation (11)
can therefore be used to check the accuracy of the applied
numerical procedure, in particular, since �zz�L;C; c� is
evaluated by means of an analytical continuation of resis-
tivities defined for complex Fermi energies [14].

Clearly enough the ‘‘standard’’ expression for the aniso-
tropic magnetoresistance [15] for bulk cubic systems, c �

0, 1, no longer makes sense in the presence of domain

walls. However, for L0 	 0 one can define a similar ratio,

 AMR �L0;Ci; c� �
�zz�L0;C1; c� � �zz�L0;Ci; c�

�zz�L0;C1; c�
; (12)

Ci � C0, Cd, where L0 now refers to the equilibrium
domain wall width. Similarly, in the absence of domain
walls use can be made of Eq. (10), i.e.,

 AMR �c� � ��zz�C1; c� � �zz�C0; c��=�zz�C1; c�: (13)

Finally, a difference in these anisotropic magnetoresistan-
ces can be evaluated,

 �AMR � AMR�L0;Ci; c� � AMR�c�; (14)

which indicates how much the AMR is changed due to the
presence of a domain wall.

All ab initio calculations were performed using the spin-
polarized relativistic screened Korringa-Kohn-Rostoker
(SPR-KKR) method in the atomic sphere approximation
(ASA), for details see Ref. [16], and the local density
functional parametrization given in Ref. [17]. For each
concentration of CocFe1�c and CocNi1�c the effective
potentials and exchange fields were calculated self-
consistently at the corresponding experimental lattice
spacing by means of the inhomogeneous coherent potential
approximation [16] using 45 k points in irreducible part of
the surface Brillouin zone (ISBZ) placing the orientation of
the magnetization uniformly along ~x (configuration C0).
Using these potentials and exchange fields the grand po-
tentials E�L;Cd; c� in Eq. (5) were evaluated by means of a
contour integration along a semicircle using a 16 point
Gaussian-quadrature and 1830 k points per ISBZ. The
electric transport properties were evaluated at complex
Fermi energies by means of the fully relativistic Kubo
equation [14] using also 1830 k points per ISBZ and then
analytically continued to the real axis. It turns out that in
using Eqs. (8)–(11) the inherent numerical errors are rather
very small. For bcc Fe �zz�C0; c � 1� is predicted to be
�0:063 ��� 
 cm� instead of being exactly zero, for fcc
Co the remaining error amounts to 0:060 ��� 
 cm�.

In Fig. 1 the exchange and anisotropy energies � and �
for CocFe1�c and CocNi1�c, see Eq. (1), are displayed
versus the Co concentration together with the correspond-
ing equilibrium domain wall width L0. While for CocNi1�c
�, � and L0 vary fairly smoothly with c, in CocFe1�c both
� and� show a break in the vicinity of the phase transition:
they change from higher values in the bcc regime to lower
values in the fcc regime. It is interesting to note that
although there is this discontinuity for � and � across
the regime of the phase transition, by continuing ‘‘artifi-
cially’’ the bcc regime to c � 0:8 no obvious jump in L0

occurs at that concentration. Since the structural phase
transition extends over about 20% in concentration and
since the � and� are defined strictly only for either the bcc
or the fcc regime, unfortunately nothing can be said about
how they would change in the concentration range of the
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phase transition. Furthermore, since for CocFe1�c �
reaches a minimum while � increases continuously with
c, there is a peak in L0 near c� 0:4. This minimum in �
looks like as if the system attempts to head for a structural
phase transition. In NicFe1�c, for example, both � and �
tend to zero right before the structural phase transition
from fcc to bcc [12]. In CocFe1�c the actual value of the
minimum in � might be overrated by the lack of short
range order, which in the so-called single site coherent
potential approximation [16] is not included. However,
since coming from lower and from higher Co concentra-
tions � has different slopes, similarly to the case of
CocNi1�c a minimum must occur .

In Figs. 2 and 3 the resistivities ��C0; c� and ��C1; c�,
namely, the so-called bulk residual resistivities, see
Eq. (10), are displayed versus the Co concentration to-
gether with ��L0;C0; c�, ��L0;C1; c� and ��L0;Cd; c�. In
the case of CocNi1�c also the experimental room tempera-

ture values of Ref. [18] are shown. Note that for illustrative
purposes these values were shifted uniformly by�5 ��� 

cm� such that for pure Co the experimental value is zero.
As can be seen from Fig. 3 for CocNi1�c the experimental
and the theoretically calculated ‘‘bulk’’ resistivities vary in
a similar manner with respect to the Co concentration.
There is a peak at about c � 0:15, for higher Co concen-
trations the resistivities fall off continuously. For both
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FIG. 3 (color online). Domain wall resistivities �zz�L0;Ci; c�
and bulk resistivities �zz�Ci; c�, for CocNi1�c. The various en-
tries are denoted explicitly, the experimental values [18] at
273� K, are shifted uniformly by �5 ��� 
 cm�.
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FIG. 2 (color online). Domain wall resistivities �zz�L0;Ci; c�
and bulk resistivities �zz�Ci; c�, for CocFe1�c. The various en-
tries are denoted explicitly.
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FIG. 1 (color online). Fitting parameters � and �, see Eq. (1),
and equilibrium domain wall width [nm] in CocFe1�c and
CocNi1�c with respect to the Co concentration.
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systems ��L0;C0; c� and ��L0;Cd; c� are very similar in
value, since the so-called in-plane anisotropy is very small.

Finally Fig. 4 comprises the main result of this study,
namely, the difference in the anisotropic magnetoresis-
tance with respect to the presence and the absence of a
domain wall; see Eqs. (12)–(14). From this figure one can
immediately see that the system CocFe1�c obviously is not
suitable for technological purposes, while the results for
CocNi1�c suggest that for 0:15 � c � 0:75 on the average
a reduction of the AMR amounting to about 6% can be
expected.

In order to understand these results properly consider a
segment of a ‘‘wire’’ consisting of L  L0 atomic layers,
namely, exactly of that length that corresponds to the
definition in Eq. (6), i.e., of that length that separates the
(prefixed) contacts. If there is no domain wall present, the
AMR to be recorded refers to the bulk value. If, however, a
domain wall (of length L0) occurs within these L atomic
layers, the corresponding AMR is different, namely,
smaller than the bulk value. Moving therefore the domain
wall in and out the predefined segment by applying an
electric current, the difference in the AMR, �AMR, jumps
by about 1% in the case of CocFe1�c and about 6% for
CocNi1�c. In permalloy, NicFe1�c the reduction of the
AMR is confined to 0:6 � c < 1. Near 80% Ni, where
experimental studies up to now were performed, theoreti-
cal investigations [19] showed that this reduction amounts
to about 16%. Reduction of the AMR as should be recalled

is exactly the underlying idea for a race track memory.
Clearly enough the present results do not contain an inter-
action with the applied electric field beyond the linear
response regime and can therefore not describe the actual
motion of domain walls. This, however, is a completely
different aspect of generating race track memories, which
has to be dealt with separately using different theoretical
means [10].
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FIG. 4 (color online). Difference in the AMR due to the
presence of a domain wall, see Eq. (14).
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