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We study a model of charge transfer in alloys proposed by Bruno, Zingales, and Wang �Phys. Rev. Lett. 91,
166401 �2003�� and show its connection with electron-electron correlations. We then investigate in detail the
properties of Madelung and related matrices, the mechanism leading to the screening of the electrostatic
interactions between atomic net charges in random alloys, and calculate the screened interactions. Furthermore,
we derive an expression for the total energy and show that the fluctuation contributions to the local and
Madelung energy mutually cancel. We then derive and discuss the probability distribution function of local
charges and make a comparison with calculations for large supercells. Finally, we discuss the relation of the
present approach to other theories aimed at the description of Coulomb effects in alloys.
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I. INTRODUCTION

There are two important and difficult problems in an
ab initio theory of disordered alloys, namely, �i� the effect of
different sizes of the constituent atoms, which in turn leads
to local strains and structural deformations, and �ii� the
charge transfer between different atomic species and the
screening of electrostatic interactions.

Here we wish to concentrate on the charge transfer and
screening phenomena. These, as it was criticized by Magri
et al.,1 are neglected in the isomorphous model of alloys in
which it is assumed that the net charges qQ and the Madelung
potentials VQ are identical for all atoms of type Q. Several
attempts were made to include Coulomb effects within the
isomorphous model. The screened impurity model �SIM�,2
which is based on calculations3 for a single impurity in an
otherwise perfect metallic host, showed that the charge on an
impurity site is screened approximately within the first coor-
dination shell. In the SIM, each atom in the alloy is sur-
rounded by a screening charge located at the radius R1 of the
first coordination shell, which completely screens the charge
of the atom. As a result, an additional term �the so-called
local Madelung correction� is added to the potential. The
corresponding contribution to the total energy is often con-
sidered to be insufficient and for practical purposes is multi-
plied by a correction factor �. A closely related method is the
screened CPA �Ref. 4� that differs from the SIM by setting
�=1.

The charge-correlated �CC� CPA is based on the observa-
tion that the charge on an atom is approximately proportional
to the difference between numbers of like and unlike atoms
in the first coordination shell.4 This leads quite naturally to
the polymorphous model of an alloy5 in which each atom of
type Q is characterized by individual values of qi

Q and Vi
Q

that depend on its environment due to the electrostatic field
and electronic structure effects beyond the single-site ap-
proximation.

The charge-transfer problem can be circumvented by em-
ploying neutral atomic spheres.6 In this method, the atomic

radii are changed so as to achieve vanishing net charges un-
der the condition of constant total volume of the alloy. This
scheme works well for small charge transfer, but with in-
creasing charge transfer the necessary changes of the atomic
radii become too large, which leads to uneven overlaps be-
tween the spheres and a loss of accuracy.

A reliable and detailed information on the charge transfer
and electrostatic potentials in alloys is provided by calcula-
tions for large supercells that serve as models of alloys. The
locally self-consistent multiple scattering �LSMS�7 and lo-
cally self-consistent Green’s function8 �LSGF� methods were
used to treat supercells containing hundreds and even thou-
sands of atoms.

Detailed studies of screening in alloys based on the LSGF
calculations and using the concept of the screening charge9,10

have shown that the results of the single-site CPA are almost
identical to those of the LSGF with a single-site interaction
zone and that the screening is universal, i.e., it is almost
independent of the alloy composition, lattice spacing, and
crystal structure. Intersite-screened Coulomb interaction that
should be added to the effective pair interaction calculated
within the generalized perturbation method �GPM� were de-
rived. It was shown that a correct description of local envi-
ronment effects requires one to account for multipole elec-
trostatic interactions beyond the atomic-sphere and single-
site approximations.

One of the important results of the supercell calculations
is the linear relationship between the net charge and Made-
lung potential11 at a lattice site i,

aiqi + Vi = ki, �1�

the so-called qV relation. Here, ai and ki are constants that
depend on the type of atom-occupying site i, i.e., they as-
sume the values aA or aB and kA or kB, respectively, and are
almost independent of the alloy concentration. The constants
aQ and kQ can be derived from the results for large supercells
or from local-field CPA calculations.12 Although relation �1�
is fulfilled with a good accuracy, it need not be valid in
general. For details, see Ref. 9.
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In order to achieve a better understanding of the charge
transfer and screening in alloys, Bruno, Zingales, and
Wang13 �BZW� proposed a simple phenomenological model,
which captures rather well the main features of these phe-
nomena. The expression for the energy connected with the
distribution of local net charges �qi� in a binary random alloy
AxBy �y=1−x� reads

E��qi�� = Eloc��qi�� + EMad��qi��

=
1

2�
i

ai�qi − bi�2 +
1

2�
i,j

Mijqiqj , �2�

where the parameters ai are closely connected to the strength
of electron-electron interactions, bi=ki /ai are bare net
charges of atom i, and

Mij = �e2/Rij for i � j

0 for i = j ,
� �3�

are elements of the Madelung matrix.
In this paper we wish to investigate the properties of the

BZW model in more detail. The paper is organized as fol-
lows: in Sec. II we develop the theoretical description in-
cluding the properties of Madelung and related matrices and
screening of on-site and intersite Madelung interactions. In
Sec. II we also present the statistics of local charges and
derive an improved expression for the Madelung energy. In
Sec. III we present a comparison with the supercell calcula-
tions of Ref. 14, and in Sec. IV we discuss the approximate
treatments of charge transfer in SIM and CCM. The Appen-
dix contains a derivation of screened Madelung interactions
�Appendix A�.

II. THEORY

The admissible values of net charges qi may be limited by
the inequalities qi

min�qi�qi
max. The requirement of the

charge neutrality

�
i

qi = 0 �4�

could be accounted for by introducing a Lagrange multiplier
�,

���q�,�� = E − ��
i

qi, �5�

as was done in Ref. 13, but, as we will see later, this is a
superfluous complication and need not be introduced. The
charge neutrality is fulfilled automatically due to the long-
range character of the electrostatic interactions because the
charged system always has a higher energy than the neutral
system.

The minimization of Eq. �2� with respect to the charge
field �qi� leads to a set of equations,

ai�qi − bi� + �
j

Mijqj = 0, �6�

the solution thereof is given by

qi = �
j

Gijajbj , �7�

where G is defined as

G = H−1, H = A + M, Aij = ai�i,j, Hij = ai�i,j + Mij .

�8�

The matrix H is the Hessian of the energy �Eq. �2��, and the
matrix G is, in fact, the resolvent G�z�= �H−z�−1 of H calcu-
lated at z=0. �Note that Bruno et al.13 denote this matrix as
�.� The model is very similar to a one-particle single-band
tight-binding theory of the electronic structure with the Hes-
sian H playing the role of a model Hamiltonian.

A. Properties of the Madelung and related matrices

The Madelung matrix �3� is a real symmetric matrix and
thus its eigenvalues are real. It depends on the difference
Rij = �Ri−R j� only, so its lattice Fourier transform is given by

M�k� = �
i

eik�Ri−Rj�Mij , �9�

and the back transform by

Mij =
1

��BZ�
	

�BZ�
d3k e−ik�Ri−Rj�M�k� , �10�

where �BZ is the volume of the first Brillouin zone. The
lattice Fourier transform M�k� can be found with high accu-
racy by employing the Ewald summation technique,15 which
leads to

e−2M�k� = �
R�0

exp�ikR�
�R�

= −
1

	


+

4


�0
�
K

exp�− �	�k + K��2�
�k + K�2

+ �
R�0

exp�ikR�
erfc��R�/�2	��

�R�
, �11�

where �0 is the volume of an elementary cell, K denotes
lattice vectors of the reciprocal lattice, and the optimal value
of 	 is 	=�0

1/3 / �2

�.
For �k�→0 M�k� diverges as

M�k� 
4


�0

1

�k�2
. �12�

The spectral density,

n�x� =
1

��BZ�
	

�BZ�
d3k��x − M�k�� , �13�

thus extends to +� and has a tail �for x�1� as follows

n�x� 
2



�0

x−5/2. �14�

We can partition M�k� into a divergent and a finite part,
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M�k� =
4


�0

1

k2 + m�k� . �15�

The spectra of the Madelung matrix for the bcc and fcc lat-
tice are shown in Figs. 1 and 2, while the densities of states
are shown in Figs. 3 and 4. The minimum of M�k� is attained
at k0= �2k0 ,k0 ,0�, where k0=2
0.630/afcc for the fcc lat-
tice, and k0= �k0 ,0 ,0�, where k0=2
0.794/abcc for the bcc
lattice.

In order to avoid the dependence of calculated quantities
on the lattice constant alatt of a particular material, we use the
units in which alatt=1, e2=1, and the unit of energy is �0
=e2 /alatt. The relation to Rydberg atomic units is shown by
the following example: consider Cu-Zn alloy �Sec. III A�
with alatt=5.5 bohrs, e2=2 Ry bohrs. Then �0=2/5.5 Ry
=0.3636 Ry.

The matrix G defined in Eq. �8� fulfills a rather important
relation,

�
j

Gij = 0, �16�

which follows from the long-range character of Mij and
which will be used several times below. It is derived as fol-
lows. The matrix G can be represented as

G = M−1 − GAM−1, �17�

where M−1 is given by

�M−1�ij =
1

�BZ
	

�BZ�
d3k e−ik�Ri−Rj�

1

M�k�
. �18�

Using the relation

�
j

eikRij = �BZ�
K

��k − K� , �19�

we find

�
j

�M−1�ij =
1

�BZ
	

�BZ�
d3k �BZ�

K
��k − K�

1

M�k�
= 0,

�20�

because M�k� diverges for k→0. Equation �17� written in
the site representation then gives

FIG. 1. Spectrum of the Madelung matrix along rays between
points of higher symmetry in the Brillouin zone for the bcc lattice.
The full line denotes M�k�, the broken line m�k�.

FIG. 2. Spectrum of the Madelung matrix along rays between
points of higher symmetry in the Brillouin zone for the fcc lattice.
The full line denotes M�k� and the broken line denotes m�k�.

FIG. 3. Spectral density of the Madelung matrix for the bcc
lattice as a function of x �see Eq. �13��.

FIG. 4. Spectral density of the Madelung matrix for the fcc
lattice as a function of x �see Eq. �13��.
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�
j

Gij = �
j

�M−1�ij − �
n

GinAnn�
j

�M−1�nj = 0, �21�

as follows from Eq. �20�. The matrix Gij is symmetric, there-
fore the qi’s calculated from Eq. �7� fulfill the condition �4�
automatically.

The energy �2� is a quadratic function of the net charges
qi. The solution �7� of the equation �6� corresponds to a
minimum of the energy, if and only if the Hessian H is a
positive-definite matrix. The matrix H is positive definite if
all its eigenvalues are positive. A sufficient condition is that

min
i

ai + min
k

M�k� � 0. �22�

We will always assume that the matrix H is positive definite.
In the opposite case, the minimum of the energy would be
attained at the boundary of the admissible region for the qi’s.
A good example is an ionic crystal: qi�bi for cations be-
cause a further electron can be removed from a cation only at
a high energy cost. Consequently, in purely ionic crystals,
qi=bi for all sites i.

The Madelung potential

Vi =
�EMad��qi��

�qi
= �

j

Mijqj , �23�

according to Eq. �6�, obeys the qV relation

aiqi + Vi = aiqi + �
j

Mijqj = aibi = ki. �24�

This is a built-in property of the model in Eq. �2�.

B. Randomness of on-site interactions

In general, aA�aB, i.e., the interactions ai are random. In
this case we can use the CPA to calculate the averaged and
the conditionally averaged resolvent. Note that the Soven
equation has to be solved just for one energy �z=0� outside
the band. We expect that the CPA is a suitable approximation
for our purposes, because we need the overall characteristics
of the averaged resolvent, which in turn is well reproduced
by the CPA that gives correctly several first moments of the
DOS. Moreover, in many alloys the disorder in ai is rather
weak as we will see for the example of Cu-Zn alloys �Sec.
III A�.

Below we present theoretical results valid for random ai,
however, in some cases, in order to avoid technical details,
we resort to the nonrandom approximation aA=aB=a.

C. Screening of on-site interactions

The strength ai of local electron-electron interactions can
be expressed as a second derivative of the energy �2�,

ai =
�2E��qi��

�qi
2 . �25�

This can be compared with a similar formula valid for the
Hubbard U,

Eint =
1

2
UN�N − 1�, U =

�2Eint

�N2 , �26�

where N is the number of interacting particles at a given site.
There is, however, an important difference between the ai
and U because U is an effective value diminished by intra-
atomic as well as interatomic screening mechanisms, while
ai represents rather a bare value, which is much larger. In
other words, the Hubbard U usually describes the interac-
tions between d electrons, while the number of s electrons
can change so that the total number of electrons at the atom
remains constant,

U = E�dn+1s0� + E�dn−1s2� − 2E�dns1� , �27�

while a similar expression for ai reads as

ai = E�n + 1� + E�n − 1� − 2E�n� , �28�

where E�n� is the energy of an atom with n electrons.
Let us fix the value of qi and then minimize the energy of

the system with respect to all other net charges qj. The en-
ergy of the system then becomes a quadratic function of qi,

Ei�qi� = min
qj,j�i

E��qj�� = Ei + Biqi + 1
2Ciqi

2. �29�

Then it is easy to show �see the Appendix� that the interac-
tion ai

scr=Ci, renormalized by electrostatic interactions with
the rest of the system, is given by

ai
scr = 1/Gii. �30�

In the case of nonrandom ai’s the renormalized on-site
interaction is simply given by

ascr = 1/Gii = � 1

�BZ
	

�BZ�
d3kG�k��−1

. �31�

The results for the fcc and bcc lattice are shown in Fig. 5.

FIG. 5. The interaction parameter ascr renormalized by the elec-
trostatic interactions with the rest of the system as a function of the
bare parameter a. The dotted line corresponds to the absence of
screening �ascr=a�.
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D. Screened electrostatic interactions

The strength Mij =e2 /Rij of the bare electrostatic interac-
tion between the lattice sites i and j with net charges qi and
qj can be expressed as a second mixed derivative of the
energy of the system with respect to qi and qj,

Mij = e2/Rij =
�2E��qi��

�qi�qj
, �32�

if all other charges are fixed. However, if we allow other
charges to relax so as to attain the minimum of the energy
similarly as in the Sec. II C, we obtain �see the Appendix�
the screened electrostatic interactions �for i� j�,

Mij
scr =

�2Eij��qi��
�qi�qj

= −
Gij

GiiGjj − GijGji
, �33�

where

Eij�qi,qj� = min
qk,k�i,j

E��qk�� . �34�

The screened interactions tend to the bare electrostatic
interactions for large values of the interaction parameter a,

lim
a→�

Mij
scr = Mij . �35�

For the case of nonrandom ai, the screened electrostatic
interactions Mij

scr are shown in Figs. 6 and 7 as a function of
the distance R= �Rij� for a=2.5, 3.5, 5, and 7, while in Figs. 8
and 9 they are displayed for the first five neighbors as a
function of the interaction strength a. In contrast to the bare
electrostatic interactions that depend only on the distance,
are positive, and monotonously decrease with distance, the
screened interactions �at least for small distances and a small
value of the interaction constant a� can acquire negative val-
ues, need not be monotonous, for very small values of a the
Mij

scr can even oscillate �see, e.g., Figs. 6 and 7� and are
anisotropic, i.e., they depend on the direction. For large �R�
one can derive an asymptotic formula for Mij

scr �see the Ap-

pendix�. The screened interactions Mij
scr in Fig. 6 for a=5 that

corresponds to the CuZn alloy compare well with those of
Ref. 9, Fig. 8.

If we vary the charge on one site, e.g., qi, and allow all
other charges to relax, then the change of the charge on an-
other site, say j, is given by

�qj =
Gji

Gii
�qi, �36�

which follows from Eq. �A7�.
The phase stability of alloys is governed by an effective

alloy Hamiltonian of Ising type;16 its parameters are called
effective interatomic interactions. The screened electrostatic
interactions contribute to the effective interatomic interac-
tions in the following manner:

FIG. 6. Screened electrostatic interactions for the bcc lattice as a
function of the distance �in units of the lattice constant alattice� for
the bare interaction parameters of a=2.5, 3.5, 5, and 7.

FIG. 7. Screened electrostatic interactions for the fcc lattice as a
function of the distance �in units of the lattice constant alattice� for
the bare interaction parameters of a=2.5, 3.5, 5, and 7.

FIG. 8. Screened electrostatic interactions for the bcc lattice as a
function of the bare interaction parameter a for the first five neigh-
bors �indicated explicitly�.
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Vij
Mad = Vij

AA + Vij
BB − Vij

AB − Vij
BA = Mij

scr�qi
A − qi

B��qj
A − qj

B� .

�37�

For derivation see Ref. 9.

E. Distribution of local charges in random alloys

The configuration of a binary alloy AxBy �y=1−x� is char-
acterized by a set of occupation indices ��i

Q�, where �i
Q=1 if

the site i is occupied by an atom of the type Q, and �i
Q=0

otherwise. For simplicity we will assume nonrandom inter-
actions ai=a for all i, because a similar analysis for random
interactions based on the CPA, although straightforward, is
rather cumbersome. The net charge qi at site i is, according
to Eq. �7�, given by

qi = �
j

Gijkj = Giiki + �
j

�Gijkj , �38�

and the conditionally averaged net charge of atom Q by

q̄Q =
��i

Qqi�
��i

Q�
= Giik

Q + �
j

�Gij�k� , �39�

because �kj�= �k� is independent of the site index j. Note that
q̄Q=Gii�kQ− �k��, which follows from Eq. �16�. Let us as-
sume that the site i is occupied by an atom Q, i.e., �i

Q=1.
Then the fluctutations of the charge qi are given by

�qi = qi − q̄Q = �
j

�Gij�kj − �k�� . �40�

The quantity � j =kj − �k� is random and can attain two values,
namely, �A=y�kA−kB�, with probability x, and �B=−x�kA

−kB�, with probability y. The charge fluctuations,

�qi = �
j

�Gij� j , �41�

are expressed as a linear combination �with fixed nonrandom
coefficients� of independent random variables. Consequently,

the �qi are random quantities and their probabilty distribu-
tion can be calculated using the technique of characteristic
functions17 defined as

��t� = 	
−�

�

d�ei�tp��� , �42�

where p��� is the probability density of the random variable
�. If X1 ,X2 , . . . is a sequence of independent random vari-
ables whose characteristic functions are �1�t� ,�2�t� , . . ., and
S=A1X1+A2X2+ . . ., where Ai are constants, the characteristic
function �S�t� for S is given by �S�t�=�1�A1t��2�A2t�. . .. The
probability density of the variable � j is given by

p�� j = �� = x��� − yk0� + y��� + xk0� , �43�

where k0=kA−kB and the characteristic function by

� j�t� = 	
−�

�

d�ei�tp��� = xeiyk0t + ye−ixk0t. �44�

The characteristic function of the random quantity �qi �Eq.
�41�� is therefore given by the infinite product of character-
istic functions,

��qi
�t� = �

j
�� j�Gijt� = �

j
��xeiGijk0yt + ye−iGijk0xt� . �45�

It is unlikely that this infinite product can be calculated ana-
lytically, but we can find at least several first moments or
cumulants of the resulting distribution. Taking the logarithm
on both sides of Eq. �45� we get

ln ��qi
�t� = �

j
� ln�xeiGijk0yt + ye−iGijk0xt� . �46�

By expanding ln ��qi
�t� in powers of t for �t��1,

ln ��qi
�t� = �

k=0

+�

�k�it�k, �47�

we find several first �central� cumulants

�0 = 0,

�1 = 0,

�2 = xyk0
2G�2�,

�3 = xy�y − x�k0
3G�3�,

�4 = xy�1 − 6xy�k0
4G�4�, �48�

where

G�n� = �
j

��Gij�n. �49�

The odd cumulants are nonzero for x�y. Therefore, the dis-
tribution function is nonsymmetric in such a case. The dis-
tribution function is also different from the Gaussian distri-
bution because �n�0 for n�2.

The probability density can be reconstructed only ap-
proximately from several first moments. If we employ only

FIG. 9. Screened electrostatic interactions for the fcc lattice as a
function of the bare interaction parameter a for the first five neigh-
bors �indicated explicitly�.
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the first four moments, we can use the distribution functions
that belong to the Pearson system.17 These functions fulfill
the differential equation p��x� / p�x�= �m−x� / �a+bx+cx2�,
which is a suitable generalization of the relation valid for the
normal �Gauss� distribution law. Note that for b=c=0 we
recover normal distribution. The four parameters a, b, c, and
m can be found by demanding that the first four moments of
the distribution p�x� have prescribed values.

F. Total energy of an alloy

The Madelung energy of an alloy

EMad =
1

2�
i

qiVi �50�

can be rewritten as

EMad =
N

2
�xq̄AV̄A + yq̄BV̄B� +

1

2�
i

�x�qi
A�Vi

A + y�qi
B�Vi

B� ,

�51�

where we used the fluctuations of the net charges and the
Madelung potentials

�qi
Q = qi − q̄Q, �Vi

Q = Vi − V̄Q. �52�

The first term represents the mean-field contribution, i.e., the
energy of the conditionally averaged charge q̄Q in the condi-

tionally averaged potential V̄Q, while the second term repre-
sents the contribution of local fluctuations of charges and
potentials. Using the linear relation between the local charge
and the Madelung potential �Eq. �1��, and its conditionally
averaged version, we find

Efluct
Mad = −

N

2
�xaAm2

A + yaBm2
B� , �53�

where m2
Q is the second central moment of the random vari-

able �qi
Q=qi− q̄Q, which is identical to the second cumulant

�2
Q, given in Eq. �48�.

The sum of local energies Eloc��qi�� �Eq. �2�� can be ex-
pressed in the form

Eloc =
N

2
�xaA�q̄A − bA�2 + yaB�q̄B − bB�2�

+
1

2�
i

�xaA��qi
A�2 + yaB��qi

B�2� . �54�

Its fluctuation part can be rewritten as

Efluct
loc =

N

2
�xaAm2

A + yaBm2
B� . �55�

It is important to note that both fluctuation terms, local and
Madelung, cancel each other. The total energy is then finally
given by

Etot = −
N

2
�xaA�q̄A − bA�bA + yaB�q̄B − bB�bB�

=
N

2
�xbAV̄A + ybBV̄B� . �56�

III. RESULTS

A. Case study: Cu50Zn50 bcc alloy

In the following we compare the charge distribution ob-
tained for a large supercell model of bcc-Cu50Zn50 with 1024
atoms14 with that found from the BZW model �see Fig. 10�.
The basic parameters kQ, aQ, bQ, and q̄Q found from the
supercell calculations of Ref. 14 are given in Table I.

The cumulants of the charge distribution for Cu and Zn
atoms calculated from the supercell and from the present
theory are compared in Table II. The agreement for Cu atoms
is very good, while that for Zn atoms is less spectacular. In
particular, the value of the second cumulant, which gives the
width of the distribution predicted from the model, is smaller
by 3.05 � �where � is the mean square deviation� than the
value found from the supercell.

This discrepancy between the supercell and the model re-
sults is not large and at present its origin is not clear. The
most probable causes are local environment effects and a
possible short-range effect in the supercell that are not in-
cluded in our model calculations, which assume that the al-

FIG. 10. Statistics of net charges in bcc Cu50Zn50 as calculated
from the large supercell �Ref. 14� containing 1024 atoms �histo-
gram� and from the cumulants, Eq. �48�, using a probability density
function of type I of the Pearson system �full line�.

TABLE I. Parameters kQ, aQ, bQ, and q̄Q of the 1024 atom
model of the Cu50Zn50 in Ref. 14.

Atom kQ �Ry� aQ �Ry� bQ q̄Q

Cu 0.14533 1.83915 0.07902 0.099783

Zn −0.14350 1.82082 −0.07810 −0.099783
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loy is completely random without any short-or long-range
order. This problem deserves further attention.

IV. DISCUSSION

It is useful to compare the prescription for the Madelung
potential and for the Madelung energy employed in the
screened impurity model �SIM� with those given by the
BZW model. All the screening charge in the SIM is concen-
trated to the first coordination shell and the effective Made-

lung potential is V̄i=� j
NNMijqj =−e2qi /R1, because qj

=−qi /Z1, where R1 is the nearest-neighbor distance and Z1 is
the number of nearest-neighbor atoms. This could lead to

some overestimate of the effective potential V̄i. However, the
screening charge in the BZW model extends, at least in prin-
ciple, to all coordination shells, and perhaps more impor-
tantly, the screening in the BZW model depends on the indi-
vidual properties of the atomic species forming the alloy,
while in the SIM no such dependence is present. Because the
SIM is based on the isomorphous CPA, the contribution to
the Madelung energy �up to the factor �� has the form of a
mean-field contribution, i.e., the first term in Eq. �51�.

On the other hand, the charge-correlated model �CCM� is
a polymorphous variant of the CPA. The main approximation
in the CCM is that it is limited to interactions with the near-
est neighbors only, while in reality �and also in the BZW
model� the interactions with all lattice sites play a role.

Both models, the SIM and the CCM, represent quite rea-
sonable, although somewhat rough approximations of the
real situation as follows from their respective comparison to
the BZW model.

The BZW model can describe �although approximately�
the screening phenomena in various types of solids charac-
terized by a wide range of parameters ai. On the other hand,
in metallic alloys the screening parameters fall into a narrow
interval �universal screening, cf. Refs. 9 and 10� for which
Mscr�R� can oscillate and attain negative values �see Figs. 6
and 7�.

The BZW model is rather simple, its solution is straight-
forward, and it is based on the balance between charge trans-
fer and local interactions. Its main limitation is that it is
situated in between the isomorphous and polymorphous alloy
models: it includes only those local environment effects that

are caused by electrostatic interactions, but not those caused
by electronic structure effects beyond the single-site approxi-
mation, because the parameters ai and bi assume only the
values aQ and bQ, which corresponds to an isomorphous al-
loy model.

V. CONCLUSIONS

We studied in detail the properties of the model of charge
transfer in alloys proposed by Bruno, Zingales, and Wang13

and showed that the BZW model leads to a formalism
closely resembling a single-band tight-binding model of the
electronic structure. We derived an expression for screened
on-site interactions and discussed their relations to and dif-
ferences from the Hubbard U. Furthermore, we derived an
expression for screened Madelung interactions and discussed
their contributions to the effective interatomic interactions in
the alloy Ising Hamiltonian. It was shown that the BZW
model can predict the statistics of net charges on A and B
atoms in an alloy correctly. We also discussed the relations of
the present approach to other theories aimed at a description
of Coulomb effects within the CPA such as the SIM and the
correlated-charge model �CC�.

The theory is particularly simple in the case of nonran-
dom interactions ai. We employed this nonrandom approxi-
mation aA=aB=a when illustrating the properties of the
Madelung matrix, nevertheless, we presented theoretical re-
sults valid for random ai, and only in exceptional cases, in
order to avoid cumbersome equations, we resorted to the
nonrandom approximation. It is straightforward to include
random interactions via the CPA, which we used for calcu-
lations of the Cu-Zn alloy in Sec. III A.

We expect that the present analysis in combination with
the local-field CPA will bring an improved and accurate com-
putational scheme for disordered alloys with modest require-
ments for computer resources.

Finally, it should be noted that the BZW model can easily
be generalized to include, besides monopole-monopole inter-
actions, also multipole interactions. This most likely leads to
a more efficient screening �cf. Ref. 10�.
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APPENDIX: SCREENED ELECTROSTATIC
INTERACTIONS

We fix the charges qi at several lattice sites �the corre-
sponding projection operator is denoted as P�, while we
leave the charges on the rest of the lattice �projector Q=1
− P� to relax so as to attain the minimal energy. The charges
now differ from their equilibrium values �Eq. �7�� �which we
now denote as qi

�0�� by some amount yi

TABLE II. Cumulants �n of the net-charge distribution from the
supercell calculations of Ref. 14 and from the present model for bcc
Cu50Zn50.

Cumulant

Cu Zn

Supercell Model Supercell Model

�2 6.3510−4 6.3310−4 7.9110−4 6.3910−4

�3 1.4510−6 0.0 3.2610−6 0.0

�4 −9.1610−8 −6.8810−8 −1.0210−7 −7.0110−8

�5 −3.7410−9 0.0 −4.0310−9 0.0

�6 −1.5010−10 3.2910−11 1.8610−10 3.3910−11
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qi = �
j

Gijkj + yi. �A1�

The total energy �2� can now be expressed in matrix notation
as

E = E0 +
1

2
yTHy = E0 +

1

2
�yP

THPPyP + yQ
T HQPyP + yP

THPQyQ

+ yQ
T HQQyQ� , �A2�

E0 =
1

2
�bT − kTG�k , �A3�

where the superscript T denotes transposition. From the con-
dition for a minimum of energy

�E

�yQ
T = 0, i.e., HQPyP + HQQyQ = 0, �A4�

we find

Emin = E0 +
1

2
kTG

P

GPP
Gk − kTG

P

GPP
GqP +

1

2
qP

T P

GPP
qP.

�A5�

The screened electrostatic interaction between two sites i
� P and j� P thus reads

Mij
scr =

�2Emin

�qi�qj
= � P

GPP
�

ij
. �A6�

The induced charge deviations yQ can be found from Eq.
�A4�,

yQ = GQP
P

GPP
yP, �A7�

from which directly follows Eq. �36�.
The asymptotic form of the screened electrostatic interac-

tions for large distances can be derived from the continuous
limit of the expression �A2�. In the continuous limit the ex-
cess charge yi is replaced by continuous charge density
y�r�=yi /�0, where �0 is the volume of the elementary cell.
The energy �A2� is then given by

Econt =
1

2
A	 d3ry2�r� +

e2

2
	 d3r	 d3r�

y�r�y�r��
�r − r��

,

�A8�

where A= �xaA+yaB��0.
The interaction energy Eint of two excess point charges Q1

and Q2 located at r1 and r2 can be found by minimizing Econt

�Eq. �A8�� with respect to y�r�. This leads to the Helmholtz
equation and the result is

Eint = e2exp�− K�r − r���
�r − r��

Q1Q2, �A9�

where

K =
4
e2

A
. �A10�

For example, for the Cu-Zn bcc alloy �Sec. III A� we find
K=0.4063 �bohr�−1. The screened electrostatic interaction
for large R is then

Mij
scr =

e2

Rij
exp�− KRij� . �A11�
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