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1. INTRODUCTION
This contribution is devoted to the theoretical description of the electric properties of nanos-
tructured matter, in particular to structures nanoscaled in two dimensions, namely supported
clusters of atoms such as finite chains of atoms embedded in the surface of a metallic sub-
strate or atomic-sized contacts. Because this description is based on a “real space” represen-
tation of the so-called Kubo-Greenwood equation, it was felt necessary to give first a proper
account of the theoretical background of linear response theory in terms of electric fields.
For this reason Section 2 deals quite generally with currently available transport theories.
In putting the Kubo-Greenwood equation into a computationally accessible scheme the use
of density functional theory and multiple scattering approaches is required. Therefore only
after having summarized very shortly the main quantities in a Korringa-Kohn-Rostoker-type
realization of multiple scattering (Section 3), practical expressions for evaluating electric
properties of nanostructures are introduced (Section 4). Clearly enough the numerical accu-
racy of such approaches have to be documented before any kind of application to nanosized
matter can be given. Unfortunately this kind of numerical “test” leads back to bulk materials,
for which the electric properties are well documented, both experimentally and theoreti-
cally. However, only the “tests” discussed in Section 5 provide the necessary confidence
for the theoretical results presented in Sections 6 and 7 for finite wires and atomic-sized
contacts.
Not dealt with in this contributions are systems nanosized only in one dimension such as

spin valves or other heterojunctions, as a review of such systems—also based on a Green’s
function realization of the Kubo-Greenwood equation—only appeared rather recently [1]
that discusses in quite some length, for example, properties of the giant magnetoresistance
(GMR).

2. TRANSPORT THEORIES
In this section, methods describing electric transport in solid matter are reviewed, with
emphasis, however, on the Kubo-Greenwood approach. Consider a system of N interact-
ing electrons moving in the electrostatic potential of the nuclei, the effective one-electron
(Kohn-Sham-) Hamilton operator is then given by

Ĥ0 = − �
2

2m

N∑
i=1

� 2
i +

N∑
i=1
ueff�r� �	�
 (1)

where the first term is the kinetic energy operator and the second the effective one-electron
potential that in turn depends on the “spin” of the electrons (�) as well as on the magnetic
configuration of the system (�). As it is well-known the corresponding one-electron Kohn-
Sham equation can be written, e.g., in the case of a three-dimensional periodic system as

Ĥ0�k	��r
 = Ek	��k	��r
	 k = ��	 k
 (2)

where � refers the so-called band index, k to the momentum, and Ek	� and �k	��r
 denote
the one-electron energies and states, respectively.
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2.1. Boltzmann Formalism

This kind of theoretical approach assumes the existence of a distribution function fk	��r

that measures the probability of charge carriers with spin � in state k in the neighborhood
of r. The change of fk�r
,

fk�r
 =
∑
�

fk	 ��r


in time is then described by the famous Boltzmann equation,(
�fk�r	 t

�t

)
+
(
�fk�r

�t

)
diffusion

+
(
�fk�r

�t

)
field

= −
(
�fk�r

�t

)
scattering

(3)

in which the various terms correspond to different effects, namely from the left to right: an
explicit time dependence, diffusion, the influence of external fields and scattering. Station-
arity implies now that the total time dependence of fk�r
 vanishes, see Eq. (3).
For matters of simplicity in the following the r-dependence of the distribution function will

be neglected. The local change of electrons resulting from elastic scattering of independent
particles can be correlated to the microscopic scattering probability,

Pk�	 k′� ′ =
(
Pk↑	 k′↑ Pk↑	 k′↓

Pk↓	 k′↑ Pk↓	 k′↓

)
(4)

in the following manner(
�fk
�t

)
scattering

=∑
�

∑
k′� ′
�fk′	 � ′�1− fk	�
Pk′� ′	 k� − �1− fk′	 � ′
fk	 �Pk�	 k′� ′ � (5)

The first contribution is usually called scattering-in term and describes the scattering of elec-
trons from occupied states (k′	 � ′) into an empty state (k	 �); the second term refers to
the reverse process, namely the scattering of an electron from an occupied state (k	 �)
into empty states (k′	 � ′) and is called scattering-out term. It therefore seems reasonable to
separate the distribution function into two parts,

fk	� = f 0k	 � + gk	� (6)

where

f 0k	 � =
1

e��Ek	�−EF 
 + 1
(7)

is the Fermi-Dirac distribution function with Ek	� denoting the one-electron energies, see
Eq. (2), EF the Fermi energy, and � = 1/kBT with kB being the Boltzmann constant and
T the temperature. In Eq. (6 ) gk	� denotes the deviation from the equilibrium distribution
function. Making use of the principle of microscopic reversibility,

Pk�	 k′� ′ = Pk′� ′	 k�
for the microscopic scattering probabilities and the separation of fk	� in Eq. (6), the scat-
tering term in Eq. (5) can be rewritten as(

�fk
�t

)
scattering

=∑
�

∑
k′� ′
Pk�	 k′� ′�gk′	 � ′ − gk	�
 (8)

Neglecting now in Eq. (3) terms with an explicit time dependence of the distribution func-
tion and changes caused by diffusion, that is, keeping only changes of fk arising from a
homogeneous external electric field E, the following expression is obtained,

e
∑
�

(
�f 0k	 �
�Ek	�

)
vk	 �E =

∑
�

∑
k′� ′
Pk�	 k′� ′�gk′	 � ′ − gk	�
 (9)
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where vk	 � is the velocity of the electrons with spin � , which in turn can be related semi-
classically to the one-electron energies as follows

vk	 � =
1
�

�Ek	�
�k

(10)

Assuming that gk	� depends linearly on the external electric field, the following ansatz can
be made,

gk	� = −e
(
�f 0k	 �
�Ek	�

)
�k	 �E (11)

where �k	 � is the so-called mean free path vector of electrons of spin � . The magnitude of
�k	 � measures the path of an electron with spin � between two scattering events.
By introducing a so-called relaxation time �k	� , which specifies the time that an electron

stays in state (k	 �) until the next scattering event (scattering life time) occurs as

�−1k	 � =
∑
k′� ′
Pk�	 k′� ′ (12)

Eq. (9) can be solved with the ansatz in Eq. (11) to give

�k	 � = �k	�
(
vk	 � +

∑
k′� ′
Pk�	 k′� ′�k′	 � ′

)
(13)

This now is a system of coupled integral equations. The different spin-components can be
decoupled by ignoring spin-flip scattering processes, namely assuming in Eq. (4) that

Pk↑	 k′↓ = 0	 Pk↓	 k′↑ = 0

such that a relatively simple integral equation is obtained,

�k	 � = �k	�
(
vk	 � +

∑
k′
Pk�	 k′��k′	 �

)
(14)

from which in principle �k	 � can be evaluated.
Due to the neglect of spin-flip scattering processes, the total current density can be writ-

ten as

j =∑
�

j� =
e

V

∑
k	 �

fk	 �vk	 � (15)

where V is the volume of the system. The conductivity tensor � at T = 0 is then obtained by
using Ohm’s law, j� = ��E, and Eqs. (6), (11), (15),

� =∑
�

�
�
= e2

V

∑
k	 �

��Ek	� − EF 
vk	 � ��k	 � (16)

where � denotes a dyadic product (resulting in a 3× 3 tensor). The contributions to the total
conductivity refer therefore to independent majority (↑) and minority (↓) spin channels (two
current model [2]).
Neglecting the scattering-in term in Eq. (13), the conductivity is finally given by

� =∑
�

�
�
= e2

V

∑
k	 �

��Ek	� − EF 
�k	�vk	 � � vk	 � (17)

where ∑
k	 �

��Ek	� − EF 
 = n�EF 
 (18)
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is nothing but the density of states at the Fermi energy. Obviously the conductivity tensor
is determined by three factors: the density of states, the velocities, and the relaxation times
of the electrons at the Fermi surface. While the first two factors arise from the electronic
structure of the system, the last one refers to defects or impurities present in the solid.
Moreover, different approximations can be made for the relaxation time in Eq. (17), for
example, an isotropic � , or spin-dependent �� , thus resulting in a simple expression for the
conductance.
It has to be mentioned that the Boltzmann equation can easily be implemented within

traditional bulk bandstructure methods, since in the semi-classical interpretation the velocity
is given by the energy dispersion, see Eq. (10). Apart from being a semi-classical theory,
the main disadvantages is that in the form of Eq. (17) only ordered bulk systems (three-
dimensional cyclic boundary conditions) can be described, as a welldefined Fermi surface is
needed and the relaxation times are system-dependent parameters.

2.2. Landauer Formalism

The Landauer-Büttiker approach [3, 4] is an effective tool to describe transport in mesoscopic
systems. Suppose a multiprobe structure consists of a finite region connected to NL leads,
each lead being attached to an ideal “reservoir.” The electrons are then scattered in a
finite region (scattering or interaction region) caused either by disorder or due to a particular
geometry. The transport through the scattering region is thought to be completely coherent,
no phase breaking is taken into account, and because of assumed low temperatures inelastic
scattering processes are supposed to be negligible. The leads are used to inject and drain
current or measure voltage, whereas the reservoirs are assumed to fulfil certain conditions:
the reservoir for the nth lead has to be in equilibrium at a given chemical potential !n,

!n = EF + eVn (19)

where Vn is the applied potential and EF the Fermi energy. Furthermore, a steady-state cur-
rent flowing from/into the reservoir is supposed not to change !n implying of course large
enough reservoirs. Moreover, it is assumed that no additional resistance is produced by the
interface between a reservoir and the scattering region. This in turn implies that an electron
that enters a reservoir must be scattered inelastically before returning to the coherent scat-
tering region, providing thus a phase-randomization. The current passsing through the nth
lead can be written as

In =
∑
m 	=n

gnmVm (20)

where the sum extends over all leads except the nth one, and the gnm are the so-called
conductance coefficients of the system.
Introducing incoming and outgoing scattering channels which play the same role as incom-

ing and outgoing Bloch states in scattering theory, the conductance can be expressed in
terms of a transmission probability (Tni	mj) or S-matrix (Sni	mj) as

gnm =
2e2

h

∑
ij

Tni	mj =
2e2

h

∑
ij


Sni	mj 
2 (21)

In this equation Tni	mj is the transmission probability for an electron from an incoming
channel j in lead m to an outgoing channel i in lead n, the factor 2 accounts for the two
spin directions, and the sum has to be carried out over all incoming and outgoing channels
in the corresponding leads.
The advantage of using the Landauer formalism is first and foremost seen for two-probe

structures, for which only one conductance coefficient g has to be considered such as, for
example, in the case of perpendicular transport (current perpendicular to plane-CPP) in
layered structures or for quantum point-contacts. The main parameters of a contact refer
to the characteristic lengths of the system, namely the contact diameter (d) and the mean
free path for elastic ('e) and inelastic ('i) scattering, that is, the length of an electron’s
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path between two elastic (inelastic) scattering events. If d � 'e	'i one speaks of a ballistic
point-contact, as an electron travels through the contact without any scattering. If d � 'e a
point-contact is said to belong to the diffusive regime meaning that an electron experiences
a lot of elastic scattering when traveling through the contact. In both cases the contact
diameter must be much larger than the electron’s wavelength.
In the case of two-probe structures the conductance can be written according to Eq. (21) as

g = 2e2

h

∑
ij

Tij (22)

where Tij is a hermitian matrix. Diagonalized the conductance can be formulated in the
eigenchannel basis as

g = 2e2

h

N∑
i=1
Ti (23)

where N is the number of conducting channels and the Ti are the real eigenvalues of Tij ,
0 < Ti < 1. For an ideal ballistic point-contact as well as for the theoretically interesting case
of an infinite periodic wire, Tij = �ij which implies that the conductance is quantized in units
of the so-called conductance quantum G0 = 2e2/h,

g = NchG0 (24)

Such quantized conductances have been observed by many experimental groups. Within the
Landauer approach, the conductance obviously depends on the number of open eigenchannels
Nch, which in turn depends on the sample geometry. This implies that Nch is determined for
the entire system by the narrowest cross section of a point-contact or a wire.

2.3. Kubo Formalism

In the 1950s, Kubo developed a method of evaluating the response of a quantum mechanical
system to an external potential, in particular, the current in response to an electric field [5].
To first order, known as linear response, the two quantities are related by a conductivity
(Ohm’s law), which is given in terms of the equilibrium properties of the system, that is, in
the limit of a vanishing field. Moreover, conductance coefficients can be derived from the
conductivity, which describes the total current flowing in and out of the system in response
to the voltages applied.

2.3.1. Linear Response Theory
2.3.1.1. Linear Response and the Green Function Assuming a time-dependent pertur-
bation Ĥ ′�t
, the Hamilton operator of the perturbed system is of the form,

Ĥ�t
 = Ĥ0 + Ĥ ′�t
 (25)

For a grand-canonical ensemble the density operator of the unperturbed system can be
written as

+̂0 =
1
�
e−��̂0 (26)

with

�̂0 = Ĥ0 − !N̂ (27)

where ! is the chemical potential, N̂ the (particle) number operator, and � is the grand
canonical partition function,

� = Tr�e−��̂0
 (28)

Because the expectation value of a physical observable A, associated with a hermitian oper-
ator �A corresponding to the unperturbed system is given by

A0 = �A� = 1
�
Tr� �Ae−��̂0
 = Tr�+̂0 �A
 (29)
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within the Schrödinger picture the equation of motion for the density operator can be writ-
ten as

i�
�+̂�t


�t
= ��̂�t
	 +̂�t
� (30)

where

�̂�t
 = Ĥ�t
− !N̂ = �̂0 + Ĥ ′�t
 (31)

Clearly enough, in the absence of a perturbation, +̂�t
 = +̂0. Therefore, partitioning +̂�t
 as
+̂�t
 = +̂0 + +̂′�t
 (32)

and making use of the fact that ��̂0	 +̂0� = 0, one gets in first order in Ĥ ′,

i�
�+̂′�t

�t

= ��̂0	 +̂
′�t
�+ �Ĥ ′�t
	 +̂0� (33)

or, by switching to the interaction (Dirac) picture,

+̂D�t
 = +̂0 + +̂′D�t
	 +̂′D�t
 = e�i/�
�̂0t +̂′�t
e−�i/�
�̂0t (34)

i�
�+̂′D�t

�t

= �Ĥ ′
D�t
	 +̂0� (35)

This equation has to be solved now for a given initial condition. Turning on the external
field adiabatically at t = −�, implies that the density operator of the system at t = −�
represents an ensemble of systems in thermal equilibrium, that is,

lim
t→−� +̂�t
 = +̂0	 lim

t→−� +̂
′
D�t
 = 0

Using this boundary condition for +̂′D�t
 results into the following integral equation

+̂′D�t
 = − i
�

∫ t
−�
dt′�Ĥ ′

D�t
′
	 +̂0� (36)

such that in the Schrödinger picture the density operator can be approximated in first
order as

+̂�t
 ≈ +̂0 −
i

�

∫ t
−�
dt′e−�i/�
�̂0t�Ĥ ′

D�t
′
	 +̂0�e

�i/�
�̂0t (37)

Considering now the time evolution of the physical observable A�t
,

A�t
 = Tr�+̂�t
 �A
 = A0 −
i

�

∫ t
−�
dt′ Tr

(
e−�i/�
�̂0t

[
Ĥ ′
D�t

′
	 +̂0
]
e�i/�
�̂0t �A )

= A0 −
i

�

∫ t
−�
dt′ Tr

(
�Ĥ ′

D�t
′
	 +̂0

] �AD�t

)

(38)

where A0 is defined in Eq. (29) and the Dirac representation of operator �A is given by

�AD�t
 = e�i/�
�̂0t �Ae−�i/�
�̂0t (39)

then by making use of the identity,

Tr�� �A	 B̂�Ĉ
 = Tr� �AB̂Ĉ − B̂ �AĈ
 = Tr�B̂Ĉ �A− B̂ �AĈ
 = Tr�B̂�Ĉ	 �A�

one arrives at

�A�t
 = A�t
−A0 = − i
�

∫ t
−�
dt′ Tr

(
+̂0
[ �AD�t
	 Ĥ

′
D�t

′

])

(40)
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Assuming finally that the perturbation Ĥ ′�t
 is of the form,

Ĥ ′�t
 = B̂F �t
 (41)

where B̂ is a Hermitian operator and F �t
 is a complex function (classical field), Eq. (40)
transforms to

�A�t
 = − i
�

∫ t
−�
dt′F �t′
Tr

(
+̂0
[ �AD�t
	 B̂D�t

′

])

(42)

which can be written in terms of a retarded Green function as,

Gret
AB�t	 t

′
 = −i0�t − t′
Tr(+̂0[ �AD�t
	 B̂D�t
′

])

(43)

or, by introducing a so-called generalized susceptibility,

1AB�t	 t
′
 = 1

�
Gret
AB�t	 t

′
 (44)

as

�A�t
 = 1
�

∫ �
−�
dt′F �t′
Gsret

AB�t	 t
′
 =

∫ �
−�
dt′F �t′
1AB�t	 t

′
 (45)

Suppose now that the operators �A and B̂ do not depend explicitly on time, then Gret
AB�t	 t

′

and 1AB�t	 t′
 are only functions of the argument (t − t′). Consequently, the Fourier coeffi-
cients of �A�t
 can be written as

�A�2
 = 1
�
F �2
Gret

AB�2
 = F �2
1AB�2
 (46)

where

X�2
 =
∫ �
−�
dt X�t
ei2t	 X�t
 = 1

24

∫ �
−�
d2X�2
e−i2t (47)

applies for any time-dependent quantity X�t
.
Because by definition Gret

AB�2
 is analytical only in the upper complex semi-plane (retarded
sheet), for a real argument 2 the limit 5 → 2 + i0 has to be considered. The complex
admittance 1AB�2
 can therefore be expressed in terms of the retarded Green function as

1AB�2
 =
1
�
Gret
AB�2+ i0
 = − i

�

∫ �
0
dt ei�2+i0
tTr

(
+̂0
[ �A�t
	 B̂�0
]) (48)

The occurance of the side-limit 2+ i0 in 1AB�2
 is usually termed adiabatic switching on of
the perturbation as it corresponds to a time-dependent classical field,

F ′�t
 = lim
s→+0

�F �t
est
 (49)

2.3.1.2. The Kubo Formula Returning now to Eq. (38),

�A�t
 = − i
�

∫ t
−�
dt′ Tr

([
Ĥ ′
H�t

′
	 +̂0
] �AH�t


)
(50)

where the operators are defined within the Heisenberg picture with respect to the unper-
turbed system and using Kubo’s identity,

i

�
�X̂H�t
	 +̂� = +̂

∫ �
0
d7

˙̂
XH�t − i7�
	

+̂ = e−�Ĥ

Tr
(
e−�Ĥ

) 	 X̂H�t
 = e�i/�
ĤtX̂�t
e−�i/�
Ĥt	 ˙̂
XH�t
 = − i

�

[
X̂H�t
	 Ĥ

] (51)
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in Eq. (50) finally yields the famous Kubo formula:

�A�t
 = −
∫ t
−�
dt′
∫ �
0
d7Tr

(
+̂0

˙̂
H ′

H�t
′ − i7�
 �AH�t


)
= −

∫ t
−�
dt′
∫ �
0
d7Tr

(
+̂0

˙̂
H ′�t′
 �AH�t − t′ + i7�


)
(52)

2.3.2. The Current-Current Correlation Function
In the case of electric transport, a time-dependent external electric field is applied. Obvi-
ously, this induces currents, which in turn creates internal electric fields. Suppose that the
total electric field, E�r	 t
 is related to the perturbation, Ĥ ′�t
 in terms of a scalar potential
��r	 t
 as

Ĥ ′�t
 =
∫
d3r 8̂�r
��r	 t
	 E�r	 t
 = −� ��r	 t
 (53)

where 8̂�r
 = e9�r
+9�r
 is the charge density operator, 9�r
 a field operator and e the
charge of an electron. Then the time-derivative of Ĥ ′

H�t
 can be calculated as follows,

˙̂
H ′�t
 =

∫
d3r

1
i�

[
�̂0	 8̂�r


]
︸ ︷︷ ︸

�8̂H �r	t

�t 
t=0

��r	 t
 = −
∫
d3r � Ĵ�r
��r	 t


=
∫
d3r Ĵ�r
� ��r	 t
 = −

∫
d3r Ĵ�r
E�r	 t
 (54)

where the current-density operator is given by

Ĵ�r
 =

e�

2mi
9�r
+�

−→
: −←−: 
9�r
	 in non-relativistic case	

ec9�r
+ �̂ 9�r
	 in relativistic case
(55)

and the �̂ denote Dirac matrices. Note that in Eq. (54) the continuity equation was used
and periodic boundary conditions were assumed such that when using Gauss’ integration
theorem the corresponding surface term vanishes. Making use of Eqs. (52) and (54), the
!th component of the current density can be written as

J!�r	 t
 =
∑
�

∫
d3r ′

∫ �
−�
dt′�!��r	 r

′� t	 t′
E��r
′	 t′
 (56)

where the occurring space-time correlation function is given by

�!��r	 r
′� t	 t′
 = 0�t − t′


∫ �
0
d7Tr

(
+̂0 Ĵ��r	 0
Ĵ!�r

′	 t − t′ + i7�
) (57)

by which the linear response of the current density at �r	 t
 in direction ! is correlated to
the local electric field at �r′	 t′
 applied in direction �. Note that in the above equation the
current-density operators are assumed to be Heisenberg operators.
Consider now the Fourier components of the electric field,

E�q	 2
 =
∫
d3r

∫ �
−�
dt E�r	 t
e−iq·r+i5t (58)

E�r	 t
 = 1
24V

∫
d3q

∫ �
−�
d2E�q	 2
eiq·r−i5t (59)

where 5 = 2 + i0 and V is the volume of the system. Although �!��r	 r′� t	 t′
 trivially
depends only on �t − t′
	 in general, it is a function of the independent space variables r
and r′. In cases, however, the current density is an average of the local current density in
Eq. (56) over a large enough region, �!��r	 r′� t	 t′
 can be assumed to be homogeneous in
space, that is, �!��r	 r′� t − t′
 = �!��r − r′� t − t′
. This usually is the case if 
q
 is small,
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implying that long-wavelength excitations are studied. The �q	 2
 component of the current
density per unit volume,

J!�q	 2
 =
1
V

∫
d3r

∫ �
−�
dt J!�r	 t
e

−iq·r+i5t (60)

can then be determined from Eqs. (56) and (57),

J!�q	 2
 =
∑
�

�!��q	 2
E��q	 2
 (61)

where �!��q	 2
 is the wave-vector and frequency-dependent conductivity tensor,

�!��q	 2
 =
1
V

∫ �
0
dt ei5t

∫ �
0
d7 Tr

(
+̂0Ĵ��−q	 0
Ĵ!�q	 t + i7�


)
(62)

and

J!�q	 t
 =
∫
d3r J!�r	 t
e

−iq·r (63)

In using contour integration techniques one arrives at

�!��q	 2
 =
i

�V

∫ �
0
dt ei5t

∫ �
t
dt′ Tr

(
+̂0
[
Ĵ!�q	 t

′
	 Ĵ��−q	 0

])

(64)

such that by introducing the below current-current correlation function,

=!��q	5
 =
1
�V

∫ �
0
dt ei5t Tr

(
+̂0
[
Ĵ!�q	 t
	 Ĵ��−q	 0


])
(65)

the conductivity tensor can finally be expressed as

�!��q	 2
 =
=!��q	5
− =!��q	 0


5
(66)

For a homogeneous system with carrier density n and mass of carriers m,

−=!��q	 0

5

= i ne
2

m5
�!� (67)

one obtains the phenomenological Drude term for noninteracting particles. Furthermore,
the static limit, that is, when 2→ 0 and 
q
 → 0, is defined as

�!��q = 0	 2 = 0
 = lim
s→+0

=!��q = 0	 is
− =!��q = 0	 0

is

= d =!��q = 0	5

d5

∣∣∣∣
5=0

(68)

2.3.3. Kubo Formula for Independent Particles
An important special case arises when considering independent particles. Represented in
the basis of the eigenfuctions of Ĥ0 (spectral representation),

Ĥ0 
n� = >n
n�	 �m
n� = �nm	
∑
n


n��n
 = Î (69)

the equilibrium density operator and its matrix elements are given by

+̂0 =
∑
n

f �>n

n��n
	 �n
+̂0
p� = f �>n
�pn (70)

and the thermal average of the current–current commutator can be written as

Tr
(
+̂0
[
Ĵ!�q	 t

′
	 Ĵ��−q	 0

]) =∑

nm

@f �>n
− f �>m
Ae�i/�
�>n−>m
t′

× J nm! �q
Jmn� �−q
 (71)
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with

J nm! �q
 ≡ �n
Ĵ!�q

m� and Jmn� �−q
 ≡ �m
Ĵ��−q

n� (72)

Substituting Eq. (71) into Eq. (65) then yields

=!��q	 2
 =
1
�V

∑
nm

@f �>n
− f �>m
AJ nm! �q
Jmn� �−q

∫ �
0
dt e�i/�
�>n−>m+�5
t (73)

The integral with respect to t, however, is just the Laplace transform of the identity,∫ �
0
dt e��i/�
�>n−>m+�2
−s�t =

�s>0

− e��i/�
�>n−>m+�2
−s�

�i/�
�>n − >m + �2
− s (74)

therefore, Eq. (73) can be transformed to

=!��q	 2
 =
i

V

∑
nm

f �>n
− f �>m

>n − >m + �5

Jnm! �q
Jmn� �−q
 (75)

with f �>
 being the Fermi-Dirac function. Together with Eq. (64), this now provides a
numerically tractable tool to calculate the conductivity tensor. Because

1
>n − >m + �5

− 1
>n − >m

= −�5
�>n − >m
�>n − >m + �5


�!��q	 2
 can also be written in the following compact form,

�!��q	 2
 =
�

iV

∑
nm

f �>n
− f �>m

>n − >m

J nm! �q
Jmn� �−q

>n − >m + �5

	

5 = 2+ i�
(76)

2.3.4. Contour Integrations
=!��q	5
 can be evaluated by using contour integration techniques. Considering a pair of
eigenvalues, >n and >m, for a suitable contour C in the complex energy plane (see Fig. 1)
the residue theorem implies that∮

C
dz

f �z


�z− >n
�z− >m + �2+ i�
 = −24i f �>n


>n − >m + �2+ i�

+ 2i�T
N1∑

k=−N2+1

1
�zk − >n
�zk − >m + �2+ i�
 (77)

C

εm – hω – δi

εn

εF

εm
εF

δ2

δ2

δ1

δ1

×

×

εn + hω + iδ
×

×

zk zk

Im z Im z

Re z

Re z

C′

Figure 1. Integrations along the contours C (left entry) and C ′ (right entry).
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where the zk = EF + i�2k − 1
�T are the (fermionic) Matsubara-poles with EF being the
Fermi energy, �T ≡ 4kBT and T the temperature. In Eq. (77) it was supposed that N1 and
N2 Matsubara-poles in the upper and lower semi-plane lie within the contour C, respectively.
Equation (77) can be rearranged as follows

i
f �>n


>n − >m + �2+ i� = − 1
24

∮
C
dz

f �z


�z− >n
�z− >m + �2+ i�


+ i �T
4

N1∑
k=−N2+1

1
�zk − >n
�zk − >m + �2+ i�
 (78)

Similarly, by choosing contour C ′ the following expression,

−i f �>m


>n − >m + �2+ i� =
1
24

∮
C ′
dz

f �z


�z− >m
�z− >n − �2− i�


+ i �T
4

N2∑
k=−N1+1

1
�zk − >m
�zk − >n − �2− i�
 (79)

can be derived. Deforming the contours such that the real axis is crossed at � and −�,
=!��q	5
 can be expressed as

=!��q	5
 = − 1
24V

{∮
C
dz f �z


∑
mn

J nm! �q
Jmn� �−q

�z− >n
�z− >m + �2+ i�


−
∮
C ′
dz f �z


∑
mn

J nm! �q
Jmn� �−q

�z− >m
�z− >n − �2− i�


}

+ i �T
4V

{
N1∑

k=−N2+1

∑
mn

J nm! �q
Jmn� �−q

�zk − >n
�zk − >m + �2+ i�


+
N2∑

k=−N1+1

∑
mn

J nm! �q
Jmn� �−q

�zk − >m
�zk − >n − �2− i�


}
(80)

Consider now the resolvent of the unperturbed Hamilton operator, i.e., of the Kohn-Sham
Hamiltonian,

Ĝ�z
 = �zÎ − Ĥ
−1 (81)

and its adjoint,

Ĝ�z
† = �z∗Î − Ĥ
−1 = Ĝ�z∗
 (82)

Ĝ�z
 =∑
n


n��n

z− >n

(83)

it is straightforward to rewrite Eq. (80) as

=!��q	5
 = − 1
24V

{∮
C
dz f �z
 Tr�Ĵ!�q
Ĝ�z+ �2+ i�
Ĵ��−q
Ĝ�z



−
∮
C ′
dz f �z
 Tr�Ĵ!�q
Ĝ�z
Ĵ��−q
Ĝ�z− �2− i�



}

+ i �T
4V

{
N1∑

k=−N2+1
Tr�Ĵ!�q
Ĝ�zk + �2+ i�
Ĵ��−q
 Ĝ�zk



+
N2∑

k=−N1+1
Tr�Ĵ!�q
Ĝ�zk
Ĵ��−q
Ĝ�zk − �2− i�



}
(84)
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Introducing for matters of convenience the quantity,

=̃!��q� z1	 z2
 = − 1
24V

Tr�Ĵ!�q
Ĝ�z1
Ĵ��−q
Ĝ�z2

 (85)

=̃�!�−q� z2	 z1
 = =̃!��q� z1	 z2
	

=̃!��q� z
∗
1	 z

∗
2
 = =̃�!�q� z1	 z2


∗ = =̃!��−q� z2	 z1
∗
(86)

because of the reflection symmetry for the contours C and C ′, Eq. (84) can be written as

=!��q	5
 =
∮
C
dz f �z
 =̃!��q� z+ �2+ i�	 z
−

(∮
C
dz f �z
 =̃!��−q� z− �2+ i�	 z


)∗
− 2i�T

N1∑
k=−N2+1

(
=̃!��q� zk + �2+ i�	 zk
+ =̃!��−q� zk − �2+ i�	 zk
∗

)
(87)

2.3.5. Integration Along the Real Axis: The Limit of
Zero Lifetime Broadening

Deforming the contour C to the real axis such that the contributions from the Matsubara
poles vanish and using the relations in Eq. (86), Eq. (87) trivially reduces to

=!��q	5
=
∫ �
−�
d>f �>


{
=̃!��q�>+�2+i�	>+i0
−=̃!��−q�>+�2+i�	>−i0
}

−
∫ �
−�
d>f �>


{
=̃!��q�>−i0	>−�2−i�
−=̃!��−q�>+i0	>−�2−i�
} (88)

or, by inserting the definition of =̃!��q� z1	 z2
,

=!��q	5
 = − 1
24V

∫ �
−�
d> f �>


{
Tr�Ĵ!�q
Ĝ�>+ �2+ i�
Ĵ��−q
Ĝ+�>



− Tr�Ĵ!�−q
Ĝ�>+ �2+ i�
Ĵ��q
Ĝ−�>



− Tr�Ĵ!�q
Ĝ−�>
Ĵ��−q
Ĝ�>− �2− i�


+ Tr�Ĵ!�−q
Ĝ+�>
Ĵ��q
Ĝ�>− �2− i�

} (89)

where Ĝ+�>
 and Ĝ−�>
 are the so-called up- and down-side limits of the resolvent

Ĝ±�>
 = lim
E→+0

Ĝ�>± iE
	 Ĝ±�>
† = Ĝ∓�>
 (90)

By taking the limit �→ 0, Eq. (89) reduces to

=!��q	 2
 = − 1
24V

∫ �
−�
d> f �>


{
Tr�Ĵ!�q
Ĝ

+�>+ �2
Ĵ��−q
Ĝ+�>



− Tr�Ĵ!�−q
Ĝ+�>+ �2
Ĵ��q
Ĝ
−�>



− Tr�Ĵ!�q
Ĝ−�>
Ĵ��−q
Ĝ−�>− �2



+ Tr�Ĵ!�−q
Ĝ+�>
Ĵ��q
Ĝ
−�>− �2



}
(91)

which for q = 0 yields

=!��2
 = − 1
24V

∫ �
−�
d> f �>


{
Tr�Ĵ!Ĝ

+�>+ �2
Ĵ��Ĝ
+�>
−G−�>
�
 (92)

+ Tr�Ĵ!�Ĝ+�>
−G−�>
�Ĵ�Ĝ
−�>− �2



}
(93)
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2.3.6. The Static Limit
In order to obtain the correct zero-frequency conductivity tensor, Eq. (89) has to be used
in Eq. (68). Making use of the analyticity of the Green functions in the upper and lower
complex semiplanes this then leads to the famous Kubo-Luttinger formula [5, 6],

�!� = − �

24V

∫ �
−�
d> f �>


× Tr
(
Ĵ!
�Ĝ+�>

�>

Ĵ��Ĝ
+�>
− Ĝ−�>
�− Ĵ!�Ĝ+�>
− Ĝ−�>
�Ĵ�

�Ĝ−�>

�>

)
(94)

Integrating by parts yields

�!� = −
∫ �
−�
d>
df �>


d>
S!��>
 (95)

with

S!��>
 = − �

24V

∫ >
−�
d>′

× Tr
(
Ĵ!
�Ĝ+�>′

�>′

Ĵ��Ĝ
+�>′
− Ĝ−�>′
�− Ĵ!�Ĝ+�>′
− Ĝ−�>′
�Ĵ�

�Ĝ−�>′

�>′

)
(96)

which has the meaning of a zero-temperature, energy dependent conductivity. For T = 0	
�!� is obviously given by

�!� = S!��EF 
 (97)

A numerically tractable expression can be obtained only for the diagonal elements of the
conductivity tensor, the so-called Kubo-Greenwood formula [7, 8] for the dc-conductivity at
finite temperatures,

�!! = − �

44V

∫ �
−�
d>

(
−df �>


d>

)
Tr�Ĵ!�Ĝ

+�>
− Ĝ−�>
�Ĵ!�Ĝ
+�>
− Ĝ−�>
�
 (98)

which at T = 0 temperature obviously can be written as

�!! = − �

44V
Tr�Ĵ!�Ĝ

+�EF 
− Ĝ−�EF 
�Ĵ!�Ĝ
+�EF 
− Ĝ−�EF 
�


= �

4V
Tr�Ĵ!Im Ĝ

+�EF 
Ĵ!Im Ĝ
+�EF 

 (99)

Recalling finally the spectral resolution of the resolvent,

Im Ĝ+�>
 = −4∑
n


n��n
��>− >n
 (100)

it is easy to see that Eq. (99) is identical with the original Greenwood equation [7],

�!! =
4�

V

∑
nm

J nm! Jmn! ��EF − >n
 ��EF − >m
 (101)

Equation (94), however, can also be reformulated as follows,

�!� =
�

24V

∫ �
−�
d> f �>
 Tr

(
Ĵ!
dĜ+�>

d>

Ĵ�Ĝ
−�>
+ Ĵ!Ĝ+�>
Ĵ�

dĜ−�>

d>

)

− �

24V

∫ �
−�
d> f �>
 Tr

(
Ĵ!
dĜ+�>

d>

Ĵ�Ĝ
+�>
+ Ĵ!Ĝ−�>
Ĵ�

dĜ−�>

d>

)
= �

24V

∫ �
−�
d>

(
−df �>


d>

)
Tr�Ĵ!Ĝ

+�>
Ĵ�Ĝ
−�>



− �

24V

∫ �
−�
d> f �>
 Tr

(
Ĵ!
dĜ+�>

d>

Ĵ�Ĝ
+�>
+ Ĵ!Ĝ−�>
Ĵ�

dĜ−�>

d>

)
(102)
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namely in terms of an expression which is similar to that of Baranger and Stone [9], but
clearly can be cast into a relativistic form. This expression is of practical relevance reasonable
if conductances have to be calculated.

3. GREEN’S FUNCTIONS AND SCATTERING PATH OPERATORS
In the following, only a very brief summary of multiple scattering is given. For a detailed
treatise on this topic, the reader is refered to a very recent book [10] by some of the authors
of the current article that contains also so-called full-potential approaches not considered
here.
Suppose the potential in Eq. (1) can be partitioned into non-overlapping, spherically sym-

metric potentials Vi, centered at lattice positions Ri	 i = 1 F F F N ,

V �r
 =
N∑
i=1
Vi�ri
�ri = r − Ri
 (103)

Vi�ri
 =
{
Vi�ri
 if 
ri
 < Si
constant otherwise

(104)

where N denotes the number of scatterers in the system. For non-overlapping spheres this
refers to the so-called muffin-tin approach and Si is called the muffin-tin radius of the ith
sphere. In the so-called atomic sphere approximation (ASA), the spheres are chosen to
have the same volume as the Wigner-Seitz cell, thus they overlap slightly, the effect of
overlapping, however, is neglected. In the region between the spheres the potential is a
constant, commonly set to zero.

3.1. Single-Site Scattering

In the absence of effective fields, the Kohn-Sham-Dirac equation is of the form [11, 12],

Ĥ 
9� =


�V �r
+mc2
Î2 c�̂r

(
�

�r
+ 1
r
− 1
r
�̂K̂

)
c�̂r

(
�

�r
+ 1
r
− 1
r
�̂K̂

)
�V �r
−mc2
Î2

 
9� = W 
9� (105)

where c is the speed of light, �̂r = r̂ · �̂ with r̂ = r/
r
, W is the total energy of the particle,

W 2 = p2c2 +m2c4

with p being its momentum and

K̂ = �̂ · L̂ + �Î2	 and �̂ =
Î1 0

0 −Î1

 (106)

The wavefunction 
9� can be decoupled into two bi-spinors: 
9� = 
�	1�. The total angular
momentum operator is defined as Ĵ = L̂ + Ŝ, where L̂ is the angular momentum operator
and Ŝ = �

2 �̂ is the spin momentum operator. The eigenfunctions of Ĵ 2 and Ĵz,

Ĵ 2
�� = �
2j�j + 1

��	 Ĵ 2
1� = �

2j�j + 1

1�	 j = l ± 1
2
= 1

2
	
3
2
	
5
2
	 F F F 	

Ĵz
�� = �!
��	 Ĵz
1� = �!
1�	 ! = −j	 F F F 	 j	 (107)

K̂
�� = −�J
��	 K̂
1� = �J
1�	 J = ∓
(
j + 1

2

)
are the so-called spin spherical harmonics,


J	!� = 
Q� = ∑
s=±1/2

C

(
l	 j	

1
2

∣∣∣∣!− s	 s)
l	 !− s�Ls	 
 − J	!� = 
�Q� (108)
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where the C�l	 j	 1/2
! − s	 s
 denote Clebsch-Gordan coefficients [13], 
l	 ! − s� complex
spherical harmonics,

�l	 !− s
r̂� = Y!−s
l �r̂
 and �r̂
l	 !− s� = Y!−s

l �r̂
∗

and the Ls are the following spinor basis functions [11],

L1/2 =
(
1

0

)
	 L−1/2 =

(
0

1

)
(109)

It should be noted that in the so-called weak-relativistic limit, the following approach is used,

> = W −mc2 = √p2c2 +m2c4 −mc2 ≈ p2

2m
� mc2 (110)

3.1.1. Free-Space Green’s Functions
The nonrelativistic Green’s function of a free electron in angular momentum representation
can be written as

Gnr	±
0 �>	 r	 r′
 = ∓ip∑

L

jl

(
pr<
�

)
h±l

(
pr>
�

)
YL�r̂
Y

∗
L�r̂

′
 (111)

where L = �l	m
, r< = min�r	 r ′
, r> = max�r	 r ′
, and h±l = jl ± inl is a spherical Hankel
function with jl and nl being spherical Bessel and Neumann functions, respectively [14]. In
the relativistic case the Green’s function of a free electron in angular momentum represen-
tation is of the form

Gr
0�>	 r	 r

′
 = −ip>+ 2mc2

2mc2
∑
Q

�JQ�>	 r
H
+
Q�>	 r

′
†E�r ′ − r
+H+
Q�>	 r
J

†
Q�>	 r

′
E�r − r ′
�
(112)

with

FQ�>	 r
 =


fl

(
pr

�

)
�Q
r̂�

iSJpc

>+ 2mc2
fl̄

(
pr

�

)
��Q
r̂�

 (113)

F †Q�>	 r
 =
[
fl

(
pr

�

)
�r̂
Q�	 −iSJpc

>+ 2mc2
fl̄

(
pr

�

)
�r̂
 �Q�

]
(114)

and

SJ =
J


J
 	 l̄ = l − SJ

with fl denoting spherical Bessel-, Neumann-, or Hankel functions. A general solution of
Eq. (105) can be written as

R�>	 r
 =∑
Q

RQ�>	 r
 =
∑
Q

[
gJ�>	 r
�Q
r̂�
ifJ�>	 r
�Q̄
r̂�

]
(115)

a solution outside the bounding sphere as

RQ�>	 r
 = JQ�>	 r
− ip
∑
Q′
H+
Q′�>	 r
tQ′Q�>
 (116)

where tQ′Q�>
 is usually called single-site t-matrix,

tQ′Q�>
 =
∫
r<S
d3r

∫
r ′<S

d3r ′ J †Q′�>	 r′
t�>	 r′	 r
JQ�>	 r
 (117)
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which, for example, for nonmagnetic systems and > ≥ 0 can easily be obtained from the
below matching condition

gJ�>	 r
 = cos �J�>
jl

(
pr

�

)
− sin �J�>
nl

(
pr

�

)
(118)

cfJ�>	 r
 = pSJ
[
cos �J�>
jl̄

(
pr

�

)
− sin �J�>
nl̄

(
pr

�

)]
(119)

at the muffin-tin radius S,

tan �J�>
 =
LJ�>	 S
jl�pS/�
− pSJjl̄�pS/�

LJ�>	 r
nl�pS/�
− pSJnl̄�pS/�


(120)

LJ�>	 S
 =
cfJ�>	 S


gJ�>	 S

(121)

3.1.2. Scattering Solutions
The so-called (regular) scattering solutions are defined as follows

Z�>	 r
 =∑
Q

ZQ�>	 r
 =
∑
Q′Q
RQ′�>	 r
t−1Q′Q�>
 (122)

ZQ�>	 r
 =
∑
Q′
JQ′�>	 r′
K−1

Q′Q�>
+ pNQ�>	 r
 (123)

where KQ′Q�z
 usually is termed reactance

K−1
QQ′�>
 = t−1QQ′�>
− ip�QQ′ (124)

K�>
 = K†�>
 (125)

3.2. Multiple Scattering

3.2.1. Scattering Path Operators
The angular momentum representation of the so-called scattering path operator is given
by [15]

�
ij
QQ′�>
 = tiQQ′�>
�ij +

∑
k 	=i

∑
Q1Q2

tiQQ1
�>
G0	 ik

Q1Q2
�>
�

kj
Q2Q

′�>
 (126)

where the relativistic structure constants

G
0	 ij
QQ′�>
 = >+ 2mc2

2mc2
∑
s

C

(
l	 j	

1
2

∣∣∣∣!− s	 s)G0	 ij
LL′�>
C

(
l′	 j ′	

1
2

∣∣∣∣!′ − s	 s) (127)

are obtained from the nonrelativistic ones

Gnr
0 �>	 ri + Ri	 r

′
j + Rj 
 =

∑
L	L′

jL�>	 ri
G
0	 ij
LL′�>
j

×
L′�>	 r

′
j 
 (128)

In here, the notation G0	 ij
LL′�>
 = G0

LL′�>	Rj −Ri
 is applied, Ri and Rj denoting the position
vectors of sites i and j , and tiQQ′�>
 refers to the t-matrix at site Ri, and

G0
LL′�>	 r
 = −44i�l−l′+1
p∑

L′′
CL′
LL′′ i

−l′′hL′′�>	 r
 (129)

CL′
LL′′ =

∫
dr̂YL�r̂
Y

∗
L′�r̂
YL′′�r̂
 (130)

jL�>	 r
 ≡ jl
(
pr

�

)
YL�r̂
	 j×L �>	 r
 ≡ jl

(
pr

�

)
Y ∗
L�r̂
 (131)

where the CL′
LL′′ are the so-called Gaunt coefficients.
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3.2.2. Green’s Functions
The Green’s function in the case of an ensemble of scatterers can be defined in terms of
the scattering path operator and scattering solutions as

G�>	 ri	 r
′
j 
 =

∑
Q	Q′

[
ZiQ�>	 ri
�

ij
QQ′�>
Z

j
Q′�>	 r′j 


† − �ij�QQ′�E�ri − r ′i 
ZiQ�>	 r′i
I iQ′�>	 ri

†

+ E�r ′i − ri
I iQ�>	 r′i
ZiQ′�>	 ri

†

]

(132)

where ZiQ�>	 r
 and I iQ�>	 r
 denote the regular and irregular scattering solutions of the
Dirac equation in cell i and—as should be recalled—at the muffin-tin radius of the ith cell
(Si) the following relations have to be satisfied,

ZiQ�>	 Si
 =
∑
Q′
�tiQQ′
−1JQ′�>	 Si
− ipH+

Q�>	 Si
 (133)

I iQ�>	 Si
 = JQ�>	 Si
 (134)

3.3. KKR Method for Layered Systems

Layered systems are systems with (at least) two-dimensional translational symmetry. In the
case of a surface or an interface, the translational symmetry is “broken” along the direction
“perpendicular” to the plane. Suppose such a layered system corresponds to a parent infinite
(three-dimensional periodic) system consisting of a simple lattice with only one atom per
unit cell, then any lattice site Rpi can be written as

Rpi = Cp + Ti� Ti ∈ L2 (135)

where Cp is the “spanning vector” of a particular layer p and the two-dimensional (real)
lattice is denoted by L2 = @TiA with in-plane lattice vectors Ti and where the corresponding
set of indices is I�L2
. It should be noted that Cp not necessarily has to be perpendicular
to the planes of atoms, e.g., in a body centered cubic (BCC) lattice for (001)-planes Cp =
p · a · � 12 	 1

2 	
1
2 
, where a is the three-dimensional lattice constant.

The real-space structure constants are now defined by

G
ij
0 �>
 = G0�>	Rpi − Rqj
 = G0�>	Cp + Ti − Cq − Tj 
 = Ĝ

pq

0 �>	Ti − Tj 


= 1
QBZ

∫
BZ
d2k�Ĝ

pq

0 �>	 k�
e
−ik�·�Ti−Tj 
 (136)

where QBZ denotes the volume (area) of the two-dimensional Brillouin zone, and the symbol
“hat” denotes a layer-indexed quantity; the two-dimensional lattice Fourier transform of the
“reciprocal” structure constants is simply given by

Ĝ
pq

0 �>	 k�
 =
∑
Ti

Ĝ
pq

0 �>	Ti
e
ik�·Ti (137)

Introducing the below matrix notation,

t̂�>
 = @t̂p�>
�pqA	 Ĝ
0
�>	 k�
 = @Ĝ

pq

0 �>	 k�
A	 �̂�>	 k�
 = @�̂pq�>	 k�
A (138)

the so-called KKR (Korringa-Kohn-Rostoker) equation can be written as

�̂�>	 k�
 =
(
t̂
−1
�>
− Ĝ

0
�>	 k�


)−1 (139)

3.4. The Screened KKR Method (SKKR)

For systems containing several atoms per unit cell as well as for layered structures severe
computational difficulties arise from the long range behavior of the structure constants. For
such systems, tight-binding (TB) methods seem to be better suited. However, it can be shown
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that by applying a so-called screening transformation, the KKR-method can be transformed
into a TB form [16–18]. In Ref. [17], for example, a reference system is suggested with a
constant repulsive potential V r , defined within non-overlapping muffin-tin spheres and zero
otherwise. In the following, r-indexed quantities refer to the reference system and quantities
without such an index to those of the physical system, the corresponding Green’s function
matrices being defined by the below Dyson equations

G�>
 = G
0
�>
�I − t�>
G

0
�>

−1	 Gr�>
 = G

0
�>
�I − tr �>
G

0
�>

−1 (140)

Furthermore, in defining the difference of the inverse of the t-matrices as

t
R
�>
 = t�>
− tr �>
 (141)

and the screened scattering path operator as

�
R
�>
 = ( t−1

R
�>
−Gr�>


)−1 (142)

the unscreened (physical) scattering path operator can be calculated from the screened one
by using the following invariance property [17]

G�>
 = t−1�>
��>
t−1�>
− t−1�>
 = t−1
R
�>
�

R
�>
t−1

R
�>
− t−1

R
�>
 (143)

��>
 = [ I − tr �>
t−1�>
]�
R
�>

[
I − t−1�>
tr �>
]+ [ tr �>
− tr �>
t−1�>
tr �>
] (144)

In the two-dimensional lattice Fourier transform of the screened scattering path operator,

�̂R	 pq�>	 k�
 =
{(
�t̂
R

−1�>
− Ĝr

�>	 k�

)−1}

pq
(145)

however—because of the screening—Ĝr is of block-tridiagonal form, the blocks being related
to so-called principal layers that contain n atomic layers (n ≥ 3). If these layers form the top
of a semi-infinite bulk (substrate) or are situated between two semi-infinite bulk systems, a
so-called surface Green function method [16] has to be applied to ensure proper boundary
conditions. The real-space physical �-matrix is then obtained first by performing the following
Brillouin zone integral,

�R�>	Rpi − Rqj
 =
1
QBZ

∫
BZ
d2k��̂R	 pq�>	 k�
e

−ik�·�Ti−Tj 
 (146)

and subsequent use of the transformation defined in Eq. (144). It should be noted that
in principle for a two-dimensional translational invariant medium the physical real space
�-matrix is in principle defined by

�pi	 qj�>
 = 1
QBZ

∫
BZ
d2k��̂

pq�>	 k�
e
−ik�·�Ti−Tj 
 (147)

3.5. The Embedding Technique

A finite cluster is defined as a geometrical arrangement of a set of scatterers. Let � denote
the set of the position vectors of sites in the cluster,

� ≡ @RiA	 i = 1	 F F F 	N (148)

where N is the number of atoms in the cluster, and CN a corresponding set of site-indices

CN ≡ @i
Ri ∈ �	 i = 1	 F F F 	NA (149)

Because for the host system (substrate) the potential is given by

V host�r
 =∑
i

V host
i �ri
 (150)
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and for an embedded cluster by

V clus�r
 =∑
i

V clus
i �ri
	 V clus

i �ri
 =
{
V host
i �ri
 if i  CN
V

imp
i �ri
 if i ∈ CN

(151)

the single site t-matrices of the perturbed system are of the form,

ticlus�>
 =
{
tihost�>
 if i  CN
tiimp�>
 if i ∈ CN

(152)

It is important to emphasize that by performing real space embedding, a cluster usually
contains the investigated impurity atoms, some sites from the host material (and empty
spheres (vacuum) in the case of a surface or a nanocontact). In principle according to the
above classification all V imp

i , tiimp are different.
The KKR-equation for the unperturbed and perturbed systems are then given by,

�−1
host
�>
 = t−1

host
�>
−G

0
�>
	 �−1

clus
�>
 = t−1

clus
�>
−G

0
�>
 (153)

respectively, with

��>
 = {�ij�>
}	 �ij �>
 = {�ijQQ′�>

}
	 t�>
 = {ti�>
�ij}	 ti�>
 = {tiQQ′�>


}
(154)

Defining the following quantities

Rt−1�>
 = t−1
host
�>
− t−1

clus
�>
 = @Rti�>
−1�ijA

Rti�>
−1 =
0	 if i  CN
tihost�>


−1 − tiimp�>

−1	 if i ∈ CN

(155)

from Eq. (153), one then obtains

�−1
clus
�>
 = �−1

host
�>
− Rt−1�>


= [I − Rt−1�>
�
host
�>

]
�−1
host
�>


= �−1
host
�>

[
I − �

host
�>
Rt−1�>


]
(156)

which inverted finally leads to the below embedding equation,

�
clus
�>
 = �

host
�>

[
I − Rt−1�>
�

host
�>

]−1 = [I − �

host
�>
Rt−1�>


]−1
�
host
�>
 (157)

It should be mentioned that for a single impurity at site i0 the above embedding equation
reduces to

�i0	 i0�>
 = �i0	 i0host �>

[
I − Rti0�>
−1�i0	 i0host �>


]−1 = �i0	 i0host �>
D̃
i0
�>


= [I − �i0	 i0host �>
Rt
i0�>
−1

]−1
�
i0	 i0
host �>
 = Di0�>
�

i0	 i0
host �>
 (158)

3.6. The Coherent Potential Approximation

3.6.1. Configurational Averages
Suppose a binary bulk alloy is of composition AcB1−c with cA = c being the concentration of
species A and cB = �1 − c
 the concentration of species B. Furthermore, suppose the total
number of atoms is N and the number of A atoms and B atoms NA and NB, respectively,

N = NA +NB	 NA = cN	 NB = �1− c
N (159)
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A substitutional binary alloy refers to a system with no positional disorder, all atoms are
placed (for matters of simplicity) in the positions of an underlying ideal simple lattice �
which is characterized by the set of indices, I��
. Assuming this kind of disorder, the poten-
tial can be written as

V �r
 = ∑
i∈I��


Vi�ri − Ri
 (160)

Vi�ri − Ri
 = SiVA�ri − Ri
+ �1− Si
VB�ri − Ri
 (161)

where Si is an occupational variable such that Si = 1 if site Ri is occupied by species A and
Si = 0 if this site is occupied by species B. For a completely random alloy the probability for
Si = 1 is cA and correspondingly for Si = 0 the probability is cB. In Eq. (161), VA�ri−Ri
 and
VB�ri−Ri
 are the individual (effective) potentials of species A and B at site Ri, respectively.
Then @Si 
 i ∈ I��
A is one particular arrangement of atoms A and B on the positions of �.
Such an arrangement is called a configuration. Quite clearly for one particular configuration
the Kohn-Sham equation,

Ĥ@SiA9n�r	 @SiA
 = >n@SiA9n�r	 @SiA
 (162)

where Ĥ is the Hamiltonian of the system and n labels the eigenstates, can be solved using
standard techniques. Observables, however, in general do not map a particular configuration
but an average over all configurations. Let �Ann′ � be the configurationally averaged matrix
element of a Hermitian operator �A. Then

�Ann′ � =
∑
@SiA

P�@SiA

〈
9n@SiA
 �A
9n′@SiA

〉
(163)

where P�@SiA
 is the microcanonical probability for a particular configuration @SiA. In the
above equations it was assumed that the occupational probabilities for different sites are
independent from each other, that is, that

P�@SiA
 =
∏
i

Pi�Si
	
∑
Si=0	 1

Pi�Si
 = 1

�Si� ≡ Pi�1
 = c	 �1− Si� ≡ Pi�0
 = 1− c
(164)

Obviously the calculation of averages such in specified Eq. (163) is greatly simplified by
directly calculating the configurationally averaged Green function �G+�>	 r	 r′
� from which
typical one-particle physical properties can immediately be obtained.
Restricted ensemble averages, denoted by �F F F ��i=T
, have the following meaning: in cell i the

occupation is fixed to atom T�T ∈ @A	BA
 and the averaging is restricted to all configurations
for the remaining N − 1 sites. By using restricted ensemble averages the configurational
average is partitioned into two subsets, for which the following condition has to be satisfied,

�G+�>	 ri	 ri
� =
∑

T∈@A	BA
cT�G+�>	 ri	 ri
��i=T
 (165)

3.6.2. The CPA Single-Site Approximation
In the so-called single-site approximation to the coherent potential approximation (CPA),
short-range-order effects are explicitly excluded. Multiple scattering effects, however, are
implicitly included since the single-site approximation is based on the idea of a single scat-
terer immersed in an average medium, that is, on the very concept of a “mean field the-
ory.” From the definition of the scattering path operators follows that for a binary (bulk)
system AcB1−c (simple lattice, one atom per unit cell) the restricted averages ��ii�>
��i=T
,
T ∈ @A	BA, have to meet the condition,

c��ii�>
��i=A
 + �1− c
��ii�>
��i=B
 = ��ii�>
� (166)
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Because (166) is valid for all site indices i ∈ I��
, it is sufficient to restrict this equation
to i = 0 (0 = origin of the underlying lattice) for a bulk, or—more general—to i = p0 (p0	
origin of the pth layer, ∀p) for layered systems.
For a given set of n atomic layers, containing also disordered layers, the so-called coher-

ent scattering path operator �c�>
 is given by the following two-dimensional Brillouin zone
integral,

�pi	 qjc �>
 = 1
QBZ

∫
BZ
e−ik� · �Ti−Tj 
�̂pqc �>	 k�
 d

2k� (167)

where pi and qj denote site i in layer p and site j in layer q, respectively. Moreover,
�̂pqc �>	 k�
 is the �pq
-th block of the supermatrix,

�̂
c
�>	 k�
 =

[
t̂
c
�>
−1 − ̂̃G�>	 k�
]−1 (168)

Equation (167) implies two–dimensional translational invariance of the coherent medium
for all layers under investigation, that is, that in each layer p for the coherent single-site
t-matrices the following translational invariance applies,

tpic �>
 = tp0c �>
 = t̂pc �>
� ∀ i ∈ I�L2
 (169)

Using again supermatrices for a better visualization,

t̂
c
�>
 =



t̂
1
c�>
 0 · · · · · · 0

0
F F F

FFF

FFF t̂
p

c �>

FFF

FFF
F F F 0

0 · · · · · · 0 t̂
n

c �>



(170)

and

�̂
c
�>
 =



FFF
FFF

· · · �̂
pp
c �>
 · · · �̂

pq
c �>
 · · ·

FFF
FFF

· · · �̂
qp
c �>
 · · · �̂

qq
c �>
 · · ·

FFF
FFF


p	 q = 1	 F F F 	 n (171)

quite clearly, a particular element of �̂
c
�>
,

�̂
pq
c �>
 = �pi	 qic �>
 = �p0	 q0c �>
 = 1

QBZ

∫
BZ
�̂pqc �>	 k�
 d

2k� (172)

refers then to the unit cells at the origin of L2 in layers p and q. Suppose now, in general,
the concentration for constituents A and B in layer p is denoted by cTp�p = 1	 F F F 	 n� T ∈
@A	BA
. By defining so-called impurity matrices, see also Eq. (159), that specify a single
impurity of type T in the translational invariant coherent host formed by layer p, as

D̂
p

T�>
 ≡ Dp0
T �>
 =

[
I − �p0	 p0c �>
mp0

T �>

]−1 (173)̂̃

D
p

T�>
 ≡ D̃
p0

T �>
 =
[
I −mp0

T �>
�
p0	 p0
c �>


]−1 (174)
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with

mp0
T �>
 = mpi

T �>
 = m̂p
T�>
 = t̂pc �>
−1 − t̂pT�>
−1	 T ∈ @A	BA (175)

where t̂
p

T�>
 is the single-site t-matrix for constituent T in layer p, the coherent scattering
path operator for the interface region, �̂

c
�>
 is obtained from the following inhomogeneous

CPA condition,

�̂
pp
c �>
 =

∑
T∈@A	BA

cTp �̂�pp�>
�p	T (176)

� �̂pp�>
�p	T = �̂ppT �>
 = D̂
p

T�>
̂�
pp
c �>
 = �̂ppc �>
̂̃Dp

T�>
 (177)

that is, from a condition that implies solving simultaneously a layer-diagonal CPA condition
for layers p = 1	 F F F 	 n. Once this condition is met then translational invariance in each layer
under consideration is achieved,

� �̂pp�>
�p	T ≡ � �p0	 p0�>
��p0=T
 = � �pi	 pi�>
��pi=T
	
∀ i ∈ I�L2
	 p = 1	 F F F 	 n

(178)

As before, restricted ensemble averages can be viewed as embedding an atom of type T into
the two-dimensional translationally invariant coherent medium,

��p0	p0�>
��p0=T
 = D̂
p

T�>
�
p0	 p0
c �>
 = �p0	 p0c �>


̂̃
D
p

T�>
 (179)

Similarly, by specifying the occupation on two different sites the following restricted averages
are obtained,

p 	= qU ��pi	 qj�>
��pi=T	 qj=�
 = D̂
p

T�>
�
pi	 qj
c �>


̂̃
D
q

��>
 (180)

p = q	 i 	= jU = ��pi	 pj�>
��pi=T	pj=�
 = D̂
p

T�>
�
pi	 pj
c �>


̂̃
D
p

��>
 (181)

where ��pi	 qjc �>
��pi=T	 qj=�
 has the meaning that site (subcell) pi is occupied by species T
and site (subcell) qj by species �.

4. A PRACTICAL GREEN’S FUNCTION FORMULATION
OF ELECTRIC TRANSPORT

4.1. Nonlocal Conductivity

A practical expression for the diagonal elements of the non-local conductivity tensor can be
obtained by rewriting Eq. (99) in terms of Green’s functions,

�pi	 qj!! = − �

44Vat

∫
Qpi

d3rpi

∫
Qqj

d3r ′qjTr�J!�G
+�EF � rpi	 r

′
qj
−G−�EF � rpi	 r

′
qj
�

× J!�G+�EF � r
′
qj 	 rpi
−G−�EF � r

′
qj 	 rpi
�
 (182)

where ! ∈ @x	 y	 zA, N0 is the total number of sites of a system of total volume V = N0Vat
(assuming no lattice relaxation, thus Vat is the same for all sites) with G±�EF � rpi	 r′qj
 refer-
ing to the up- and down-side limits of the Green’s function. The integration is carried out
over the ith unit cell in layer p, Qpi, and the j-th unit cell in layer q, Qqj and Tr denotes the
trace over four-component spinors (relativistic formulation). Eq. (182), can be partitioned
into four parts,

�pi	 qj!! = lim
�→0

1
4

[
�̃pi	 qj!! �>+	 >+
+ �̃pi	 qj!! �>−	 >−
− �̃pi	 qj!! �>+	 >−
− �̃pi	 qj!! �>−	 >+


]
(183)
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each term thereof is easily expressed in terms of scattering path operators, namely

�̃pi	 qj!! �>1	 >2
 = − �

4Vat
tr
[
J pi! �>2	 >1
�

pi	 qj
clus �>1
J

qj
! �>1	 >2
�

qj	 pi
clus �>2


]
(184)

where the underlined quantities refer to angular momentum representations and

>1	 2 = >± = EF ± i� (185)

In a relativistic formulation the current matrices are given by

J pi! �>1	 >2
 = J pi!	QQ′ = ec
∫
Qpi

Z
pi
Q �rpi	 >1


†T!Z
pi
Q′�rpi	 >2
d

3rpi	 Q = �J	!
 (186)

with T! denoting Dirac matrices, while in the non-relativistic case,

J pi! �>1	 >2
 = J pi!	''′ =
e

m

�

i

∫
Qpi

Z
pi
' �rpi	 >1


† �

�rpi	 !
Z
pi
'′�rpi	 >2
d

3rpi	 ' = �l	m
 (187)

In the above equations, the Zpi�rpi	 >
 are properly normalized regular scattering solutions
of the radial Schrödinger or Dirac equation. It should be noted that in all examples shown
further on exclusively relativistic current matrices have been used.

4.2. Nonlocal Conductivity in Disordered Systems

In order to describe substitutional binary alloys, configurational averages have to be per-
formed in Eq. (184) [8, 19]. Omitting vertex corrections and using the single site approx-
imation to the Coherent Potential Approximation (CPA) the site-diagonal terms are then
defined as〈

�̃pi	 pi!! �>1	 >2

〉 =∑

T

cTtr
[
D̃
pi

T �>2
J
T
!�>2	 >1
D

pi
T �>1
�

pi	 pi
c �>1
J

T
!�>1	 >2
�

pi	 pi
c �>2


]
(188)

or, by introducing the following quantity

J̃
pi	 T

! �>1	 >2
 = D̃
pi

T �>1
J
T
!�>1	 >2
D

pi
T �>2
 (189)

as 〈
�̃pi	 pi!! �>1	 >2


〉 =∑
T

cTtr
[
J̃
pi	 T

! �>2	 >1
�
pi	 pi
c �>1
J

T
!�>1	 >2
�

pi	 pi
c �>2


]
(190)

where cT denotes the (homogeneous) concentration of the T-th component, T ∈ @A	BA, of
a binary bulk alloy and the current matrix J T! refers to species T.
For the off-site diagonal case, �pi
 	= �qj
, this kind of approach yields

〈
�̃pi	 qj!! �>1	 >2


〉 =∑
T	�

cTc� tr
[
D̃
pi

T �>2
J
T
!�>2	 >1
D

pi
T �>1
�

pi	 qj
c �>1


× D̃qj

� �>1
J
�
!�>1	 >2
D

qj
� �>2
�

qj	 pi
c �>2


]
(191)

or, in using Eq. (189),

〈
�̃pi	 qj!! �>1	 >2


〉 =∑
T	�

cTc� tr
[
J̃
pi	 T

! �>2	 >1
�
pi	 qj
c �>1
J̃

qj	 �

! �>1	 >2
�
qj	 pi
c �>2


]
(192)
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4.3. The “Large Cluster” Limit

If only unperturbed host atoms form the cluster then by increasing the size of the cluster
the physical properties characteristic for the corresponding bulk or substrate have to be
expected. A rigorous test for a “real space formulation” of the Kubo equation consists there-
fore in considering the following convergence procedure for the diagonal elements of the
resistivity 8

8!! = lim
�→0

8!!�r0� �
	 8!!�r0� �
 = lim
r→r0

8!!�r� �
 (193)

8!!�r� �
 = ��0
!!�r� �
�

−1	 �0
!!�r� �
 =

∑
j

�0j
!!��
 (194)

where r denotes the radius of a sphere with the origin in site i = 0 and r0 is an arbitrarily
large radius. The summation in Eq. (194) extends over all sites circumscribed by r ; � refers
to the imaginary part of the Fermi energy. In performing the �→ 0 limit at the stage of
Eq. (193) actually means that the side limits in Eq. (183) are taken at the last possible step.
Shrinking the sphere to a circle within the plane of a specific layer p (e.g., surface layer),

then in the r →� limit the following condition must be satisfied

lim
r→�8!!�r	 �
 = 8̂

pp
!!��
	 8̂pp!!��
 =

[
�̂pp!!��


]−1 (195)

where �̂pp!! is the layer-diagonal conductivity of layer p,

�̂pp!!��
 =
1
4

[˜̂�pp!!�>+	 >+
+ ˜̂�pp!!�>−	 >−
− ˜̂�pp!!�>+	 >−
− ˜̂�pp!!�>−	 >+
] (196)

for which each term on the rhs of the last equation can also be calculated directly using a
two-dimensional lattice Fourier transformation,

˜̂�pp!!�>1	 >2
 = − �

4Vat

1
QBZ

∫
BZ
d2k� tr

[
Ĵ
p

!�>2	 >1
�̂
pp�>1	 k�
Ĵ

p

!�>1	 >2
�̂
pp�>2	 k�


]
(197)

Using a sphere of radius r the summation must provide in the r → � limit the total
conductivity of the bulk system,

� total
!! = lim

�→0
� total
!! ��
 = lim

�→0

[
lim
r→��

0
!!�r	 �


]
(198)

Inverting � total
!! , the resistivity of a bulk system is obtained, which is zero for pure metals and

finite for (disordered) alloy bulk systems (the so-called residual resistivity).
Quite clearly there are more efficient methods to evaluate resistivities for bulk or layered

systems by making use of three- or two-dimensional lattice Fourier transformations, respec-
tively. However, once it comes to determine, e.g., the electric properties of magnetic islands
on surfaces, these methods are no longer applicable, and one has to rely on real space
approaches as presented in here. It should be noted that the results in the “large cluster”
limit presented later on are only illustrations of the reliability and applicability of the real
space approach to the Kubo equation.

4.4. “Residual Resistivity” for Nanostructures

If no translational symmetry is present, then in principle one has to sum over all sites
including the leads, contacts, and so forth; that is,

�̃!!�>1	 >2
 =
1
N0

N0∑
i=1

N0∑
j=1
�̃ ij!!�>1	 >2
 (199)
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with N0 ≈ 1023. Here, i and j denote sites without labelling layers explicitly. As such a
procedure is numerically not accessible, the following quantity can be defined,

�̃!!�>1	 >2� n
 =
1
n

n∑
i=1

n∑
j=1
�̃ ij!!�>1	 >2
 (200)

with n being the number of sites in a chosen region (“cluster”). This implies, however,
that the convergence properties of �̃!!�>1	 >2� n
 with respect to n have to be investigated.
Because clearly enough a summation over all sites including the semi-infinite substrate would
yield only the resistivity of the substrate, namely zero in the case of a pure metal, a kind of
“residual resistivity” for finite clusters has to be defined,

8T!!�r
 =
[
1
n

∑
i∈chain

N�r
∑
j=1
�ij!!

]−1
(201)

where, for example, in the case of a finite chain embedded in the surface of a suitable
substrate n denotes the number of atoms in the chain of type T and N�r
 is the number of
atoms involved in the cluster (chain + substrate neighbourhood up to a chosen value r for
the circumscribing sphere).

4.5. Conductances

Linear response theory applies to an arbitrary choice for the perturbating electric field
because the response function is obtained in the limit of a vanishing perturbation. Consider
that a constant electric field, Eq

z , pointing along the z axis, that is, normal to the planes, is
applied in all cells of layer q. Denoting the z component of the current density averaged
over cell i in layer p by jpiz , the microscopic Ohm’s law reads as

jpiz = 1
Vat

∑
j

�pi	 qjzz Eq
z (202)

where Vat is the volume of the unit cell in layer p. Note, that in neglecting lattice relaxations,
Vat is uniform for the whole system. According to the Kubo-Greenwood equation at zero
temperature, see Eq. (99), the zz component of the non-local conductivity tensor �pi	 qjzz can
be written as

�pi	 qjzz = − �

44

∫
Qpi

d3rpi

∫
Qqj

d3r ′qj Tr
(
Jz�G

+�EF � rpi	 r
′
qj
−G−�EF � rpi	 r

′
qj
�

× Jz�G+�EF � r
′
qj 	 rpi
−G−�EF � r

′
qj 	 rpi
�

)
(203)

However, the total current flowing through layer p can also be written as

Itot = A�
∑
i

jpiz = gU (204)

where the summation has to be carried out for all sites in layer p and the applied voltage
U is given by

U = Eq
zd⊥ (205)

with A� and d⊥ denoting the area of the two-dimensional unit cell and the interlayer spacing,
respectively (Vat = A� d⊥). Combining Eqs. (202), (204) and (205) results in an expression
for the conductance,

g = 1
d2⊥

∑
i

∑
j

�pi	 qjzz (206)

where the summations should, in principle, be carried out over all cells in layers p and q.
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An alternative choice for the nonlocal conductivity tensor was given in Eq. (102), which
is more practical in calculating the CPP conductance of a layered system than the nonlocal
conductivity in the Kubo-Greenwood approach because, as shown by Baranger and Stone
[9] for free electron leads, the second term appearing in Eq. (102) becomes identically
zero when integrated over layers, p 	= q. This means also that the terms �̃pi	 qj!! �>+	 >+

and �̃pi	 qj!! �>−	 >−
 should vanish after integration. It should be noted that very recently
Mavropoulos et al. [20] rederived this result by assuming Bloch boundary conditions for
the leads. According to these theoretical results, at zero temperature the diagonal elements
of the nonlocal conductivity tensor between site i in layer p and site j in layer q can be
written as

�pi	 qjzz = −1
2
�̃pi	 qjzz �>+	 >−
 = �

24

∫
Qpi

d3rpi

∫
Qqj

d3r ′qjTr�JzG
+�EF � rpi	 r

′
qj
JzG

−�EF � r
′
qj 	 rpi
�

= �

24
tr
[
J piz �>

−	 >+
�pi	 qjclus �>
+
J qjz �>

+	 >−
�qj	 piclus �>
−

]

(207)

such that the expression for the conductance reduces to

g = �

24d2⊥

∑
i

∑
j

∫
Qpi

d3rpi

∫
Qqj

d3r ′qjTr
[
JzG

+�EF � rpi	 r
′
qj
JzG

−�EF � r
′
qj 	 rpi


]
(208)

or, in terms of scattering path operators to

g = �

24d2⊥
lim
�→0

∑
i

∑
j

tr
[
J piz �>

−	 >+
 �pi	 qjclus �>
+
 J qjz �>

+	 >−
 �qj	 piclus �>
−

]

(209)

It has to be emphasized that because of the use of linear response theory and current
conservation, the choice of layers p and q is arbitrary in Eqs. (208) and (209). If the layers p
and q are asymptotically far away from each other, the above expressions naturally recover
[20] the Landauer-Büttiker approach [3, 4], see section 2.2.

5. THE “LARGE CLUSTER” LIMIT
A real space version of Eq. (99) allows to study the interesting transition of electric transport
properties from nanoscaled to macroscopic (mesoscopic) systems, simply by increasing the
number of atomic sites included in the summation over sites. However, by doing so, such a
procedure can also be used to document the numerical accuracy that can be achieved with a
real space approach, since in the limit of two- or three-dimensional translational invariance
corresponding theoretical results are available, obtained using appropriate lattice Fourier
transformations. The following few sections serve exactly this purpose, namely to illustrate
the convergence to semi-infinite and infinite systems.

5.1. Surface Layer of Ag(001)

The system studied is sketched in Fig. 2. The underlying parent lattice is an fcc structure
corresponding to the experimental lattice spacing of fcc-Ag: a3D = 7F789 a.u. and a2D =
5F508 a.u.
The nonlocal conductivities in the surface layer were calculated according to Eqs. (183)

and (184) with the real space scattering path operators being obtained by using 1830 k�
points in the two-dimensional irreducible wedge of the surface Brillouin zone. In Fig. 3, the
xx and zz components of the nonlocal conductivity tensor �0j

!��xj	 yj
 are shown, where site
0 is fixed to the origin (0,0) of the surface layer, while the position of sites j is varied in
the (001)-oriented surface plane. As can be seen, for the out of plane conductivity (zz),
only scatterers are important which are not too far away from the origin, while in the in-
plane case (xx) also scatterers at farther distances do add non-negligible contributions to
the corresponding component of the conductivity. Moreover, it should be noted that the yy
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5 layers vacuum

7 layers Ag

semi–infinite Ag

semi–infinite vacuum

surface interface region

z

Figure 2. Geometrical setup of a semi-infinite Ag(001) system.

component is not shown because it is of similar form as the xx component: the diagram of
�

0j
xx�xj	 yj
 simply has to be rotated by 90�.
The shape of the non-local conductivities suggests that by performing the summation in

Eq. (194) only for sites within the chosen plane of atoms, it should converge according to
Eq. (195). In order to show that, two different square-shaped planar clusters were investi-
gated, see Fig. 4, both having C4v symmetry which implies that 8!!�r� �
 has two independent
components, namely

8xx = 8yy and 8zz (210)

The characteristic size (r) of the investigated clusters is given by the distance between the
origin (0) and the farthermost atom from the origin, that is, can be viewed with respect to
increasing sizes and fixed shape, namely in terms of rn = n ·a2D for type 1 and rn = n

√
2 ·a2D

for type 2, see Fig. 4. The number of atoms within a particular cluster is given by N�n
 =
�2n2+2n+1
 for type 1 and N�n
 = �4n2+4n+1
 for type 2. Obviously, the clusters shown
in Fig. 4 refer to n = 3. It has to be emphasized that this procedure is to show the validity
of Eq. (195): as can be seen from Fig. 5, for both types of clusters a reliable convergence of
the resistivity is achieved for r > 15 a2D.
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Figure 3. Nonlocal conductivity � 0j
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 (top) and �
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 (bottom) corresponding to the surface layer of Ag.

� = 1 mRy.
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Figure 4. Square- and diamond-like shapes of a cluster in the surface plane of an fcc(001) substrate.

5.2. Bulk Resistivities

The studied systems are summarized in Fig. 6. The nonlocal conductivities were calculated
according to Eq. (183) and the side limits in Eq. (184) for Ag and in Eqs. (190), (192) for
CuPt alloys with the real space scattering path operators being obtained by using 630 k�
points in the two-dimensional irreducible wedge of the surface Brillouin zone. In the fol-
lowing, three-dimensional clusters are assumed; the real space summation of the non-local
conductivity tensor was performed according to Eq. (194). In addition by increasing the
size of the clusters the convergence of Eq. (198) was studied and the obtained results were
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Figure 5. Convergence study in the surface layer of an Ag(001) semi-infinite system. The in-plane (xx) and perpen-
dicular to the plane (zz) resistivity components for two different cluster shapes are shown versus the characteristic
size of the cluster (r). The horizontal line refers to the layer-diagonal resistivity calculated by Eqs. (195)–(197).
Diamonds correspond to type 1 in Fig. 4, squares to type 2, � = 1 mRy.
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semi–infinite Ag or CuPt alloy

33 layers Ag or CuPt alloy

interface region:

semi–infinite Ag or CuPt alloy

z

Figure 6. Geometrical setup of the Ag and CuPt bulk systems.

compared to known bulk resistivities, see Refs. [21, 22]. Clearly for large clusters the resis-
tivity has to approach to the corresponding bulk value, namely to zero for pure metals and
to the residual resistivity for (disordered) alloys. The clusters were chosen to be contained
by a sphere of increasing radius; the origin of the spheres refers to the site denoted by 0 in
Eq. (194). Table 1 shows the number of atoms (N ) involved within a sphere with respect to
n; the corresponding sphere radius rn is defined by

rn =
n√
2
· a3D

Assuming the following behavior of the elements of the resistivity tensor with respect to the
size of the cluster (r),

8!!�r� �
 = 80��
+
81��


r
(211)

80 and 81 being constants, it is obvious that

r8!!�r� �
 = r80��
+ 81��
 (212)

which means that the residual resistivity, 80��
 can be obtained by a linear fit of r8!!�r� �

with respect to r . In the case of substitutional alloys, the slope (80��
, �→ 0) corresponds
then to the residual resistivity, while for a pure bulk it should be zero. It should be noted
that Eq. (211) is more or less an empirical finding which was used also quite a bit also in
the experimental recording of resistivities.

5.2.1. Ag Bulk
The fcc bulk Ag structure has the same lattice constants as mentioned in Section 5.1. In
principle it is sufficient to evaluate only one component of the resistivity because the system
and also the clusters have cubic symmetry, which means that by choosing the coordinate
system properly, the resistivity tensor has only one independent element, that is, the diagonal
components must be identical (8xx = 8yy = 8zz). Deviations from this behavior can be used
to estimate numerical errors inherent to the calculational scheme and the fitting procedure.
The actual fitting, see Eq. (212), was performed for each calculated value of � (� = 1	 2	 3
mRy) considering the last three points of r8zz�r� �
, see top part of Fig. 7. These points
have been chosen because they refer to the biggest clusters considered, see Table 1. In
order to obtain the real physical residual resistivity an extrapolation to � = 0 is needed, see
Eq. (193). This extrapolation for Ag bulk structure is illustrated in the top part of Fig. 8 and
demonstrates that an absolute error of roughly 0.05 !Qcm was made in the applied fitting
procedure.

Table 1. The number of sites (N ) in clusters of spherical shape.

Cluster

n 0 1 2 3 4 5 6 7 8 9 10 11
N�n
 1 13 55 177 381 767 1289 2093 3055 4321 5979 7935
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Figure 7. Convergence study in bulk systems. The characteristic size of the cluster (r) times the resistivity is shown
versus the size of the cluster for three different imaginary parts (�) of the Fermi energy in order to evaluate the
slope (residual resistivity), see Eq. (212). The zz component of the resistivity is shown for fcc bulk Ag (top), and
xx and zz components for fcc bulk CuPt alloys (bottom).

5.2.2. CucPt1−c Bulk
More interesting than pure bulk metals are disordered bulk alloys because the accuracy
of the current approach can be directly compared with experimental data and results of
previous calculations using three-dimensional periodic boundary conditions. For this reason,
fcc Cu0F50Pt0F50 and Cu0F75Pt0F25 have been chosen with lattice constants aCu0F50Pt0F503D = 7F140 a.u.
and aCu0F75Pt0F253D = 6F995 a.u. in order to test the reliability of the present approach. Again the
fitting to a linear form to the last three points of r8!!�r
 has been applied, see Eq. (212), as
a function of �, see the bottom part of Fig. 7. As can be seen, the extrapolation can easily
be performed because in the region 0 < � < 3 mRy the resistivity depends linearly on �.
In comparing the present results with previous calculations and available experimental data,
see in particular Ref. [21], good quantitative agreement for both concentrations of CuPt is
found: the results of Dulca et al. [22], for example, are 80F2 and 31.5 !Qcm for Cu0F50Pt0F50
and Cu0F75Pt0F25, respectively.
As already stated the numerical errors of the present approach can be judged best by

determined by evaluating the difference between the in-plane and the perpendicular to the
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Figure 8. Extrapolation to � = 0 for the investigated bulk systems. Open circles are obtained from the fitting
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plane elements of the residual resistivity, since the residual resistivities, 8xx and 8zz, must be
identical in cubic bulk systems. It can be seen from Fig. 9 that this difference is more or less
independent of � and is of order of a few tenth of a !Qcm.

6. MAGNETIC FINITE CHAINS IN THE SURFACE OF Ag(001)
In this section, single impurities and finite chains (length of 2–10 atoms) of Fe and Co
embedded along the (110) direction (x) in the surface layer of Ag(001) are investigated, see
also Fig. 2. In here, for matters of simplicity, a simple notation for the embedded chains is
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Figure 9. Difference between the residual resistivity for the in-plane (xx) and the perpendicular to the plane (zz)
component versus the imaginary part (�) of the Fermi energy for Cu0F50Pt0F50 and Cu0F75Pt0F25.
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Figure 10. Chain of four atoms in the surface layer of Ag(001), y = 0 plane-section.

used, namely for example Co4 for a Co chain of four atoms. For such a chain of four atoms
the y = 0 plane-section of the system is shown in Fig. 10.

6.1. Nonlocal Conductivities

The influence of the chains to the in-plane transport in the surface layer was investigated
by assuming a CIP geometry. The nonlocal conductivities were calculated according to
Eq. (183), the scattering path operators of a specific cluster have been obtained in terms of
the embedding equation, see Eq. (157). The real space host scattering path operators were

–4 –2 0 2 4 6 8 10 12 –4
–2

0
2

4

0

5.53

Fe1

Co1

–4 –2 0 2 4 6 8 10 12 –4
–2

0
2

4

0

5.53

Ag

–4 –2 0 2 4 6 8 10 12
xj[a2D]

xj[a2D]

xj[a2D]

yj[a2D]

yj[a2D]

yj[a2D]

–4
–2

0
2

4

0

5.53

σxx[(mΩcm)–1]0j

σxx[(mΩcm)–1]0j

σxx[(mΩcm)–1]0j

Figure 11. Nonlocal conductivities � 0j
xx�xj 	 yj 
 in the surface layer of Ag in presence of Co or Fe impurity at site 0
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Figure 14. “Residual resistivities” of Fe (circles) and Co (triangles) chains. Open squares refer to 8Fexx�r
− 8Coxx �r
.
The length of the chains (n) is explicitly shown. � = 0 mRy (extrapolated), M̂ = ẑ.
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calculated by using 210 k� points in the two-dimensional irreducible wedge of the surface
Brillouin zone.
Let 0 denote the origin in the surface plane (x = 0	 y = 0), to which in the impurity case

a single impurity is fixed. The xx-component of the nonlocal conductivity tensor between
this site (0) and all the other atoms in the surface plane is shown in Fig. 11. As can be seen
from this figure, the site-diagonal conductivity component of this site is larger for Co than
for Fe, causing in turn of a higher resistivity of Fe chains after performing the summation
in Eq. (213).
For chains the atom at the edge of a chain serves as origin, that is, it is located in the origin

of the surface. The xx-component of the nonlocal conductivity tensor between this fixed site
and all other atoms in the surface plane is shown in Fig. 12 for Co and in Fig. 13 for Fe. It
can be seen that in the impurity case, the shape of the conductivity is symmetric to the x = 0
plane, whereas in the case of finite chains the tensor-elements along the +x direction (where
the chain lies) are much larger than in other directions, causing thus an asymmetry. This
shape also implies that by summing up the nonlocal conductivity �0j

xx over sites j in a three-
dimensional cluster around the chain, a significant contribution arises from the magnetic
atoms. For a Co chain with length of six atoms, for example, the contribution from the
magnetic atoms amounts to about 63%. Furthermore, it can also be seen that the magnitude
of the site-diagonal conductivities decrease for atoms forming a chain as compared to the
corresponding single impurity.

6.2. “Residual Resistivities”

In Section 4.4, a “residual resistivity” for finite clusters was defined as

8T!!�r
 =
[
1
n

∑
i∈chain

N�r
∑
j=1
�ij!!

]−1
(213)

where n denotes the number of atoms in the chain of type T (Fe or Co), and N�r
 is the
number of atoms involved in the cluster (chain+ environmental atoms up to the furthermost
distance of r). It should be noted that for evaluating Eq. (213) three-dimensional clusters
have to be used. Obviously, the convergence properties of 8T!!�r
 with respect to r can be
investigated by increasing size of the cluster. This is shown in Fig. 14. As can be seen in
this figure 8Txx�r
 decreases for all chain lengths (n) monotonously and can in principle be
extrapolated to large values of N�r
, see Eq. (212), while the difference, 8Fexx�r
 − 8Coxx �r

remains finite and varies only slowly with respect to the cluster size. Furthermore, chains
with length of three or five atoms differ distinctly from the rest, namely there is almost no
difference whether Fe or Co atoms form the chain, i.e., the difference, 8Fexx�r
−8Coxx �r
 nearly
vanishes for all cluster size considered.
The “residual resistivity” of finite clusters defined in Eq. (213) is a practical tool to study

the influence of in-plane transport properties with respect to the orientation of magnetization
(M̂). The calculated results of the xx-component of the resistivity are listed in Table 2.

Table 2. “Residual resistivities” versus orientation of magnetization (M̂),
8xx�r = a3D
[!Qcm] in Co and Fe chains, � = 0 mRy (extrapolated).

Co Fe

Length x̂ ŷ ẑ x̂ ŷ ẑ

1 120F1 126F9 123F5 198F3 225F3 219F6
2 162F6 162F2 165F4 200F5 213F1 213F2
3 151F4 140F1 143F9 142F0 153F8 152F0
4 109F0 113F7 113F2 166F7 176F4 176F2
5 122F6 126F6 128F8 122F2 130F1 129F7
6 94F9 100F1 97F0 132F3 138F6 137F6
7 85F6 89F7 88F3 119F5 125F9 127F3
8 86F1 89F4 87F8 108F0 111F9 111F7
9 74F0 78F6 77F6 110F2 114F7 117F1
10 73F4 77F2 74F9 91F3 93F4 94F9
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As can be seen, M̂ = x̂, i.e., M̂ parallel to the orientation of the chains provides the smallest
resistivity for all Fe chains and for the most Co chains. There are two exceptions where this
does not apply, namely Co2 and Co3. For these chains the smallest resistivity is obtained
for M̂ = ŷ. This behavior is quite surprising in view of the resistivities for the other chains.
In most cases the direction of magnetization M̂ = ŷ seems to yield the highest resistivity,
however, the orientation of magnetization perpendicular to the chain (ŷ and ẑ) results in
minor differences in the resistivity. Moreover, in the impurity case, 8Fexx�ŷ
 is by 13.6% larger
than 8Fexx�x̂
, whereas 8

Co
xx �ŷ
 is only by 5.7% larger than 8Coxx �x̂
, which means a higher

sensitivity with respect to the orientation of the magnetization for the Fe impurity.

7. NANOCONTACTS
Nanocontacts made of gold are presumably the most studied atomic-sized conductors in
the literature. A dominant peak very close to the conductance quantum, 1 G0 = 2e2/h, has
been reported for gold in the conductance histogram [23, 24] and attributed to the highly
transmitting sp channel across a linear monoatomic chain connecting the two electrodes. In
this section, gold contacts are investigated in different geometries as well as the influence
of transition metal impurities on the conductance is studied within the real-space approach
described in Sections 4.1 and 4.5.
The host system for the embedding is shown in Fig. 15. It should be noted that all of the

considered sites (Au, vacuum and impurities) refer to the positions of an underlying ideal
fcc structure of gold with a lattice constant of a3D = 7F681 a.u.
A schematic view of a typical contact is displayed in Fig. 16 with NV=5 vacuum layers

considered in the host system, see Fig. 15. As follows from the above, atomic sites refer to
layers for which the following notation is used: C denotes the central layer, C − 1 and C + 1
the layers below and above, and so forth. The contact consists of a central layer that contains
1 Au atom (the rest is built up from empty spheres); layers C − 1 and C + 1, see Fig. 17a,
contain 4 Au atoms, layers C − 2 and C + 2 9 Au atoms, and, though not shown, all other
layers, namely C − n and C + n (n ≥ 3), are completely filled with Au atoms, that is, denote
full layers. The nonlocal conductivities were calculated according to Eq. (207), the scattering
path operators of a specific cluster were obtained by the embedding equation, Eq. (157).
The real space host SPOs were calculated by taking 210 k� points in the two-dimensional
irreducible wedge of the surface Brillouin zone.

7.1. Numerical Tests for Different Gold Contacts

As mentioned in Section 4.1, a finite Fermi level broadening, �, has to be used for the
nonlocal conductivity, thus, also for conductance calculations. As an example, for the point
contact depicted in Fig. 17a, the dependence of the conductance on � is investigated. The
summation in Eq. (209) was carried out up to convergence for the first two (symmetric) full
layers (p = C − 3, q = C + 3). As can be seen from Fig. 18, the calculated conductances
depend strongly but nearly linear on �. A straight line fitted for � ≥ 1F5 mRy intersects
the vertical axis at 2.38 G0. Assuringly enough, a calculation with � = 1 !Ry resulted in
g = 2F40G0. Although the nearly linear dependence of the conductance with respect to �

z

interface region

semi–infinite Au

NAu layers Au

NV layers vacuum

NAu layers Au

semi–infinite Au

Figure 15. Geometrical setup of Au(001) host system. A nanojunction between the two semi-infinite systems is
modeled by embedding Au atoms into the vacuum region, see, for example, Figs. 16 and 17. The host characterized
by NAu and NV sites that can be different for different contacts.
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Figure 16. Schematic side view of a point contact between two semi-infinite leads embedded into the vacuum region
(number of vacuum layers NV = 5). The layers are labeled by C, C ± 1, and so forth.

enables an easy extrapolation to � = 0, in the following all reported conductances refer to
� = 1 !Ry.
For the same type of contact (Fig. 17a), the convergence of the summation in Eq. (209)

over layers p and q was investigated, choosing different symmetric pairs of full layers. The
convergence with respect to the number of atoms in the layers is shown in Fig. 19. Con-
vergence for about 20 atoms can be obtained for the first two full layers (p = C − 3, q =
C + 3), whereas the number of sites needed to get convergent sums gradually increases if
one includes layers farther away from the contact atom. This kind of convergence property
is qualitatively understandable, as the current flows from the contact within a cone of some
opening angle that cuts out sheets of increasing area from the corresponding layers. As all
the calculations were performed with � = 1 !Ry, current conservation has to be expected.
Consequently, the calculated conductance ought to be independent with respect to the layers
chosen for the summation in Eq. (209). As can be seen from Fig. 19 this is satisfied within
a relative error of less than 10%. It should be noted, however, that for the pairs of layers,
p = C − n, q = C + n, n ≥ 6 convergence was not achieved within this accuracy: by taking

(a) (b) (c)

Figure 17. Perspective view of some of the studied contacts between two fcc(001) semi-infinite leads. Only the
partially filled layers are shown. (a) point contact (number of Au layers taken into account: NAu=5, number of
vacuum layers between the leads: NV = 5. (b) Slanted linear finite chain (NAu = 7, NV = 7). (c) 2 × 2 finite chain
(NAu = 6, NV = 9).
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Figure 18. Calculated conductance as a function of the Fermi level broadening � for the Au contact shown in
Fig. 17a. The dashed straight line is a linear fit to the values for � = 1F5	 2F0	 2F5, and 3.0 mRy.

more sites in the summations even a better coincidence of the calculated conductance values
for different pairs of layers can be expected. Figure 19 also implies that an application of
the Landauer-Büttiker approach to calculate the conductance of nanocontacts is numerically
more tedious than the present one, since, in principle, two layers situated infinitely far from
each other have to be taken in order to represent the leads.
Although only one Au atom is placed in the center of the point contact considered above,

see Fig. 17a, the calculated conductance is more than twice as large as the conductance unit.
This is easy to understand since the planes C − 1 and C + 1, each containing four Au atoms,
are relatively close to each other and, therefore, tunneling contributes quite a lot to the
conductance through the contact. In order to obtain a conductance around 1 G0, detected
in the experiments, a linear chain has to be considered. The existence of such linear chains
is obvious from the long plateau of the corresponding conductance trace with respect to
the piezo voltage in the break-junction experiments. Because at present the computer code
for the real space Kubo equation is restricted to geometrical structures confined to three-
dimensional translational invariant simple bulk parent lattices, as the simplest model of such
a contact a slanted linear chain was considered as shown in Fig. 17b. In there, the middle
layer (C) and the adjacent layers (C ± 1) contain only one Au atom, layers C ± 2 and C ± 3
four and nine Au atoms, respectively, whereas layers C ± 4 refer to the first two full layers.
The sum in Eq. (209) was carried out for two pairs of layers, namely for p = C−4, q = C+4
(full layers) and for p = C − 2, q = C + 2 (not full layers). The convergence with respect to
the number of atoms in the chosen layers can be seen from Fig. 20. The respective converged
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Figure 19. Conductance versus the number of sites included in the sum in Eq. (209) for the contact in Fig. 17a.
The different curves show conductances as calculated between different pairs of layers. For a definition of the layer
numbering see Fig. 16.
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Figure 20. Conductance versus the number of sites included in the sum in Eq. (209) for the slanted linear chain
shown in Fig. 17b. Full circles are the results of summing in layers p = C − 4 and q = C + 4 (first full layers), and
squares refer to a summation in layers p = C − 2 and q = C + 2 (layers containing four Au atoms).

values are 1.10 G0 and 1.17 G0. In the case of p = C − 2, q = C + 2 the contribution from
the vacuum sites is nearly zero: considering only four Au atoms in the summation already
gave a value for the conductance very close to the converged one. The small difference
between the two calculated values, 0.07 G0, most likely has to be attributed to the use of the
atomic sphere approximation (ASA). Nevertheless, as expected, the calculated conductance
is very close to the ideal value of 1 G0.
Another interesting structure is the 2×2 chain described in Ref. [25], namely the structure

depicted in Fig. 17c. The conductance for this structure was calculated by including to the
summation 100 atoms from each of the first two full layers. As result a conductance of
2.58 G0 was obtained. Papanikolaou et al. [25] got a conductance of 3 G0 for an infinite Cu
wire to be associated with three conducting channels within the Landauer approach. For an
infinite wire the transmission probability is unity for all states, therefore, the conductance
is just the number of bands crossing the Fermi level. For the present case of a finite chain,
the transmission probability is less than unity for all the conducting states. This qualitatively
explains the reduced conductance with respect to an infinite wire.
Finally, the dependence of the conductance on the thickness of the nanocontacts was stud-

ied. All the investigated structures have C4v symmetry and the central layer of the systems is
a plane of reflection symmetry. The set-up of the structures is summarized in Table 3. Con-
tact 0 refers to a broken contact which is embedded into a host with NAu = 7 and NV = 7
layers, see Fig. 15, while the others have different thicknesses from 1 up to 9 Au atoms in
the central layer, and are embedded into a host characterized by NAu = 5 and NV = 5, see
Fig. 15.
In Fig. 21, the calculated conductances are displayed as performed by including nearly 100

atoms from each of the first two full layers: p = C − 4, q = C + 4 for the broken contact and
p = C − 3, q = C + 3 for all the other cases, see Table 3. It can be seen that the conductance

Table 3. Set-up of various nanocontacts.

Contact
Layer
position 0 1 4 5 9

C± 4 Full Full Full Full Full
C± 3 9 Full Full Full Full
C± 2 4 9 16 21 25
C± 1 1 4 9 12 16
C 0 1 4 5 9

Shown is the number of Au atoms in the layers as labeled
by C, C± 1, etc., see Fig. 16. Contact 1 refers to Fig. 17a.
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Figure 21. Conductance versus the number of Au atoms in the central layer for the Au contacts described in Table 3.

is almost proportional to the number of Au atoms in the central layer. This finding can
qualitatively be compared with the result of model calculations for the conductance of a
three-dimensional electron gas through a connective neck as a function of its area in the
limit of [0 = 90� for the opening angle [26]. In the case of the broken contact, the nonzero
conductance can again be attributed to tunneling of electrons.

7.2. Gold Contact with an Impurity

In recent break junction experiments [27], remarkable changes of the conductance his-
tograms of nanocontacts formed from AuPd alloys have been observed when varying the
Pd concentration. Studying the effect of impurities placed into the nanocontact are, in that
context, at least relevant for dilute alloys. The interesting question is whether the presence
of impurities can be observed in the measured conductance. For that reason we investigated
transition metal impurities such as Pd, Fe, and Co placed at various positions of the point
contact as shown in Fig. 17a. For the notation of the impurity positions, see Fig. 22.
The calculated spin and orbital moments of the magnetic impurities are listed in Table 4.

They were calculated with assuming the direction of magnetization to be parallel to the z axis
(M̂ = ẑ), that is, normal to the planes. Additional calculations of the magnetic anisotropy
energy confirmed this choice. As usual for magnetic impurities with reduced coordination
number [28], both for Fe and Co remarkably high spin moments, and in all positions of a Co
impurity large orbital moments were obtained. In particular, the magnitude of the orbital
moments is very sensitive to the position of the impurity. This is most obvious in the case
of Fe, where at positions B and C the orbital moment is relatively small, but at position A
a surprisingly high value of 0.47 !B was obtained.
The summation over 116 atoms from each of the first two full layers (p = C−3, q = C+3)

in Eq. (209) has been carried out in order to evaluate the conductance. The calculated values
are summarized in Table 5.

(a) (b) (c)

Figure 22. Impurity positions (light gray spheres) in a Au point contact, see Fig. 17a.
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Table 4. Calculated spin and orbital moments of
magnetic impurities placed at different positions in
a Au point contact, see Fig. 22, M̂ = ẑ.

Sz�!B� Lz�!B�

Position Fe Co Fe Co

A 3.36 2.01 0.47 0.38
B 3.46 2.17 0.04 0.61
C 3.42 2.14 0.07 0.22

A Pd impurity (independent of position) reduces only little the conductance as compared
to a pure Au point contact. This qualitatively can be understood from the local density
of states (LDOS) of the Pd impurity as calculated for an imaginary part of the energy of
� = 1 mRy, the real space scattering path operators by using 1830 k� points in the 2D IBZ.
It should be noted that the LDOS at site i (ni) is defined as follows

ni�>
 = ∓ 1
4

∫
Qi

d3rIm�G±�>	 r	 r
� (214)

where Qi denoted the volume of the ith unit cell. In Fig. 23, the corresponding LDOS at
positions A and C is plotted. Clearly, the change of the coordination number (8 at position
A and 12 at position C), that is, different hybridization between the Pd and Au d bands,
results into different widths for the Pd d-like LDOS. In both cases, however, the Pd d states
are completely filled and no remarkable change in the LDOS at Fermi level (conducting
states) happens.
The case of magnetic impurities seems to be more interesting. As can be inferred from

Table 5, impurities at position B change only very little the conductance. Being placed at
position A, however, Fe and Co atoms increase the conductance by 11% and 24%, whereas
at position C they decrease the conductance by 19% and 27%, respectively. In Ref. [25] it
was found that single Fe, Co (and also Ni) defects in a 2 × 2 infinite Cu wire decreased
the conductance. By analyzing the DOS, it was concluded that the observed reduction of
the conductance is due to a depletion of the s-like states in the minority band. The above
situation is very similar to the case of an Fe or Co impurity in position C of the point contact
considered, even the calculated drop of the conductance (∼ −20% for Fe and ∼ −28% for
Co) agrees quantitatively well with our present result. Our result, namely, that Fe and Co
impurities at position A increase the conductance, however, cannot be related to the results
of Ref. [25]. In order to understand this feature, one carefully has to investigate the LDOS
calculated for the point contact.
In Fig. 24, the minority d-like LDOS of the Fe and Co impurities in positions A and C are

plotted as resolved according to the canonical orbitals dx2−y2 , dxy , dxz	, dxy and d3z2−r2 . It has
to be pointed out strongly that this kind of partial decomposition, usually referred to as the
�\	m	 s
 representation of the LDOS, is not unique within a relativistic formalism, since due
to the spin-orbit interaction different spin- and orbital components are mixed. However, due
to the large spin-splitting of Fe and Co the mixing of the majority and minority spin-states
can be neglected.

Table 5. Calculated conductances of a Au point
contact with impurities on different positions, see
Fig. 22.

Conductance �G0�Impurity
position Pd Fe Co

A 2.22 2.67 2.97
B 2.24 2.40 2.26
C 2.36 1.95 1.75
Pure Au 2.40
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Figure 23. Local density of states of a Pd impurity in position A (solid line) and in position C (dashed line) of a
Au point contact, see Fig. 22.

As can be seen from Fig. 24, the LDOS of an impurity in position A is much narrower than
in position C. This is an obvious consequence of the difference in the coordination numbers
(8 for position A and 12 for positions C). Thus an impurity in position A hybridizes less
with the neighboring Au atoms and, as implied by the LDOS, the corresponding d states are
fairly localized. Also to be seen is a spin-orbit induced splitting of about 8 mRy (∼0F1 eV)
in the very narrow dx2−y2 -dxy states of the impurities in position A. The difference of the
band filling for the two kind of impurities shows up in a clear downward shift of the LDOS
of Co with respect to that of Fe.
In Fig. 25, a comparison between a nonrelativistic and a relativistic calculation is displayed:

the splitting in the dx2−y2 and dxy states vanishes by turning off the spin-orbit coupling.
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Figure 24. Minority-spin orbital-resolved d-like local density of states of Fe and Co impurities in position A (upper
panels) and in position C (lower panels) of a Au point contact, see Fig. 22.
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Figure 25. Minority-spin orbital-resolved d-like local density of states of a Co impurity in position A, see Fig. 22.
On the left nonrelativistic, on the right relativistic calculation is displayed.

In order to explain the change in the conductance through the point contact caused by
impurities in positions A and C, the s-like DOS at the center site, that is, at the narrowest
section of the contact, is plotted in the top half of Fig. 26. As a comparison, the corre-
sponding very flat s-like DOS is shown for a pure Au contact. For contacts with impurities
this s-like DOS shows a very interesting shape, which can indeed be correlated with the
corresponding d3z2−r2 -like DOS at the impurity site, see bottom half of Fig. 26. As clearly
can be seen, the center positions and the widths of the d3z2−r2 -like DOS peaks and those of
the respective (anti-)resonant s-like DOS shapes coincide well with each other. This kind of
behavior in the DOS resembles the case studied by Fano for a continuum band and a discrete
energy level in the presence of configuration interaction (hybridization) [29]. Apparently, by
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Figure 26. Top left: minority-spin s-like local density of states at the center site of a Au point contact with an
impurity at position A, see Fig. 22 (solid line: Co, dashed line: Fe). Top right: the same as before, but with an
impuritiy at position C. As a comparison, in both figures the corresponding LDOS for the pure Au contact is
plotted by dotted lines. The solid vertical lines highlight the position of the Fermi energy. Bottom: minority-spin
d3z2−r2 local density of states of the impurities (solid line: Co, dashed line: Fe) at positions A (left) and C (right).
Vertical dashed lines mark the center positions of the d3z2−r2 -LDOS peaks.
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keeping this analogy, in the point contact the s-like states play the role of a continuum and
the d3z2−r2 -like state of the impurity acts as the discrete energy level. Because these this two
kinds of states share the same cylindrical symmetry, interactions between them can occur
due to backscattering effects. It should be noted that similar resonant line-shapes in the
STM I-V characteristics have been observed for Kondo impurities at surfaces [30, 31] and
explained theoretically in Ref. [32].
Inspecting Fig. 26, the enhanced s-like DOS at the Fermi level at the center of the point

contact provides a nice interpretation for the enhancement of the conductance when an Fe
and Co impurity is placed at position A. As the peak position of the d3z2−r2 -like states of Fe
is shifted upwards by more than 0.01 Ry with respect to that of Co, the corresponding reso-
nance of the s-like states is also shifted and the s-like DOS at the Fermi level is decreased.
This is also in agreement with the calculated conductances. In the case of impurities at
position C, that is, in a position by a3D = 7F681 a.u. away from the center of the contact,
the resonant line-shape of the s-like states is reversed in sign, therefore, one observes a
decreased s-like DOS at the Fermi level, explaining in this case the decreased conductance,
see Table 5. As, however, the s-like DOS for the case of a Co impurity is larger than for
an Fe impurity, this simple picture cannot account correctly for the opposite relationship
obtained for the corresponding conductances.

8. CONCLUSIONS
In the current paper, methods and approaches were introduced and discussed in order to
describe the electric properties of “real space” nanostructures, that is, of systems with a
finite number of atoms properly embedded in (metallic) substrates. It is indeed important
to note that whenever structures nanoscaled in two dimensions (finite supported clusters)
are considered, the influence of the substrate has to be taken into account. Furthermore,
because in particular finite magnetic nanostructures (very small islands) are of technological
interest, a relativistic approach has to be applied in order to describe adequately the ori-
entation of the magnetization in these structures on all levels (electronic structure, electric
transport). The last example shown, namely atom-sized contacts, refers to a topic that will be
of increasing importance in many applications, in particular, since the conducting properties
of such contacts can be modulated quite a bit by placing impurities in the very vicinity of
the actual contact atoms.
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