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By linearizing the density of both the pump- and probe-excited states and neglecting the overlap between
femtosecond laser pulses, the Kubo response theory is extended to describe pump-probe experiments.
The main advantages of this response scheme is that although second order responses are included, it formally
remains a linear theory and therefore all obtained expressions can be implemented straightforwardly within
any standard band structure method, e.g., based on a Green’s function approach. In particular, even the
time-dependent zeroth order dynamic conductivity as obtained by means of the spin-polarized relativistic
screened Korringa-Kohn-Rostoker method for fcc Nis100d predicts a relatively slow demagnetization process
over 100 fs after the impact of the probe pulse, which is in reasonably good agreement with available
experimental data.
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I. INTRODUCTION

Many fundamental processes in matter like electron-
electron or electron-phonon scattering in solids, occur on a
time scale ranging from a few tenths of a femtosecond
s1 fs=10−15 sd to a picoseconds1 ps=10−12 sd. These ul-
trafast phenomena are experimentally accessed by monitor-
ing the interaction of ultrashort light pulses with a given
sample. Among the experimental techniques available nowa-
days, the so-called pump-probe methods are most frequently
used. In such a pump-probe experiment one needs two ul-
trafast laser pulses, a pump pulse, which excites the investi-
gated system and a probe pulse, delayed in time, which ex-
plores the relaxation of the excited system.

The effect of a pump pulse on the sample can be analyzed
either by measuring the probe pulse characteristics or by
monitoring the effects created by the probe pulse in the pres-
ence and absence of the pump pulse. In both techniques, the
excited states created by the pump pulse can be directly in-
spected, e.g., via a spectral analysis. In addition, by varying
the delay time of the probe pulse, a time-resolved spectrum
of the excited sample is obtained, which in turn tracks the
specific ultrafast process that characterizes the relaxation of
the system. Viewed oppositely, this implies that any ultrafast
processsat least in principled can be studied, if the pump-
probe experimental setup is known. Besides the complexity
of the investigated systemssample preparationd, characteris-
tics of the pulsessi.e., intensity, carrier frequency, and polar-
izationd and the delay time, the measured dynamics also de-
pends on the relative orientation of the pump and the probe
polarization planes.

Inspired by the pioneering work of Freeman and
co-workers1 ultrafast magnetism in dilute magnetic semicon-
ductors rapidly gained attention because of its huge techno-
logical potential.2 Presently, it is believed that on the basis of
“spin dynamics” in magnetic semiconductor quantum struc-
tures, such as “spin superlattices,” “digital magnetic
structures,”3 etc., a much faster generation of computers will
soon become reality, for an overview see Ref. 4. It should be
noted that femtosecond spectroscopy methods are already in

technological or academic use, e.g., as optical data storage,5

in lithography6 or in near-field spin microscopy techniques.7

Despite all the experimental work performed so far, how-
ever, except a few attempts,8–10 ab initio like theoretical in-
vestigations in realistic systems—at least according to our
knowledge—are still lacking completely. The present paper
provides therefore a scheme that describes pump-probe ex-
periments within the response theory of Kubo, which in turn
can be implemented using, e.g., the spin-polarized relativistic
screened Korringa-Kohn-Rostoker method11–14via a contour
integration technique.15,16

The paper is organized as follows. Section II summarizes
briefly the slowly varying envelope approximation, which
provides the most frequently used models of laser pulses.
After introducing the basic concepts of the Kubo theory in
Sec. III A, the linear response of an arbitrary system to a
femtosecond pulse is deduced and found to yield a compact
expression, which can be viewed as a generalization of the
well-known Kubo formula for the ac conductivity. By ne-
glecting the overlap of pulses in time and linearizing the
densities in both the probe- and pump-excited states, a for-
mally linear response theory is developed for pump-probe
experiments in Secs. III B and III C. Applied for laser pulses,
the scheme straightforwardly provides in Sec. III D the dy-
namic conductivity as a sum of a zeroth and first order con-
tribution, which in turn are shown to depend besides the
optical properties of the investigated system, also on the
characteristics of both pulses. Explicit and hence directly
implementable expressions for the involved current-current
and three-current correlation functions are given in Sec. IV.
In Sec. V, the proposed theory of pump-probe experiments is
illustrated in terms of the time-dependent zeroth order dy-
namic conductivity of fcc Nis100d as obtained by means of
the spin-polarized relativistic screened Korringa-Kohn-
Rostoker method. The main results thereof are finally sum-
marized in Sec. VI.

II. FEMTOSECOND LASER PULSES

The slowly varying envelope approximationsSVEAd
states that the change in the complex amplitude of an
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optical pulse is slow with respect to the average oscillation
period. This approximation seems to be valid for pulse
durations that are approximately 10 times bigger than the
average oscillation period. Therefore, the SVEA is a reason-
able approach to be considered for most of the effects occur-
ring due to the interaction of femtosecond pulses with
matter.17

If the z axis is taken along the propagation direction
then within the SVEA a femtosecond pulse can be viewed
as an amplitude modulated quasimonochromatic plane
wave,18

EW sz,td = eWẼstdexpsiq̃zd = EW0Ẽstdexpfisq̃z− vptdg, s1d

whereeW is the unit polarization vector,E0 the real amplitude

sEW0=eWE0d, vp the carrier frequency,q̃ the corresponding com-
plex wave vector component along thez axis, and

Ẽstd=E0Ẽstdexps−ivptd. In the case of a linear medium
q̃=q0ñsvpd, with ñsvpd being the complex refractive index
andq0=vp/c the propagation constant in vacuum.

Equations1d assumes that the complex amplitude varies
faster along the propagation direction than across it and
therefore the complex, dimensionless envelope of the electric

field Ẽstd does not depend onz, i.e.,17

Ẽstd = Estdexpf− iwstdg,

whereEstd is the real, dimensionless envelope andwstd the
time-dependent phase. It must be pointed out that in femto-
second laser optics the validity of Eq.s1d is restricted by the
bandwidthDv of the pulse and by the time dependence of its

envelopeẼstd, i.e.,Dv must be much smaller than the carrier
frequencyvp, and, see Ref. 19,

UdẼstd
dt
U ! vpuẼstdu.

Alternatively to Eq.s1d, one can use the following form:

EW sz,td = EW0Estdexpf− ifstdgexpsiq̃zd,

with the time-dependent exponential part defining the phase
factor of the pulsefstd=vpt+wstd, of which the first deriva-
tive with respect to time yields the time-dependentsinstanta-
neousd carrier frequency

vstd = vp +
dwstd

dt
.

A constant phase pulse is a pulse that shows no frequency
variation in time. A linear variation ofwstd with respect
to t, i.e., dwstd /dt=constÞ0, simply shifts the carrier
frequency.20 If dwstd /dt is time dependent, the pulse is said
to be frequency modulated or chirped. According to a posi-
tive or negative sign ofd2wstd /dt2, the instantaneous carrier
frequency increasessdecreasesd along the pulse and the pulse
is called upsdownd chirped.21 If the phase distortion is qua-
dratic, one has a linear chirp and higher order terms lead to a
nonlinear chirp.22

Nowadays, ultrashort light pulses can be completely char-

acterized in time as well as in frequency by measuringẼstd
or its Fourier transformẼsvd via frequency-resolved optical
gating.23,24 The decomposition offstd into a carrier fre-
quencyvp and a time-dependent phasewstd, however, is not
unique. Quite commonlyvp is chosen at the pulse peak; a
better choice is to identifyvp by the intensity weighted av-
erage frequency, i.e.,19

vp =

E
−`

`

dt vstduẼstdu2

E
−`

`

dtuẼstdu2
.

Although for the pulse durationDt and the spectral widthDv
several formulations are known and used in the literature,17,25

the bandwidth theorem,26

Dt Dv ù 2p or Dt Dv ù
1
2 s2d

ensures that the duration and spectral width of a pulse cannot
be simultaneously arbitrarily small. For example, a 10 fs
laser pulse covers almost the whole visible spectrum. Viewed
oppositely, this means that for a given spectrum, only one
pulse envelope exists, which has the shortest possible
duration.25 In fact, Eq.s2d can be viewed as a kind of coun-
terpart of the Heisenberg uncertainty principle in pulsed op-
tics and therefore one often refers to these equationss2d as
the uncertainty principles of Fourier analysis, or simply calls
them time-frequency uncertainty relations.27

III. GENERALIZED KUBO THEORY

A. Linear response to a laser pulse

The dynamic response of a physical quantityBW std to an

external forceXW std conjugated to the displacementAW std,28

dkBmlt = kBmstdlX − kBmstdl0 = o
n

x̃mn Xnstd sm,n = x,y,zd

s3d

defines the dynamic linear admittancessusceptibilityd x̃mn.
HerekBmstdlX andkBmstdl0 are the mean values ofBmstd with
respect to thesprobabilityd densitiesrXstd in the presence of

XW std andr0 in the absence ofXW std,

kBmstdlX = TrfrXstdBmstdg andkBmstdl0 = Trfr0Bmstdg.

s4d

The Hamiltonian of the system,

HXstd = H0 + Hextstd,

consists of an unperturbed partH0 and an external perturba-
tion Hextstd, which in the dipole approximation is given by

Hextstd = − o
m

AmstdXmstd.

In principle, within the interaction picture,rXstd can be de-
termined by solving iteratively the below equation,
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rXstd . r0std −
i

"
E

t0

t

dt8fHextst8d,rXst8dg. s5d

However, in dealing with near-equilibrium states, for which
the external perturbation starts in the infinite pastst0→−`d,
when the density matrix can be assumed to be of canonical
form,29 namely

r0s− `d = r0 =
exps− bH0d

Trfexps− bH0dg
, s6d

a linearizationsfirst order iterationd of Eq. s5d then simply
leads to

rXstd . r0 −
i

"
E

−`

t

dt8fHextst8d,r0g. s7d

In Eq. s6d b=skBTd−1 is the so-called inverse temperature
with kB being the Boltzmann constant andT the temperature.
By using this form ofrXstd in Eq. s4d, the dynamic response
in Eq. s3d can be written as

dkBmlt =
i

"
o

n
E

−`

t

dt8 TrhfAn,r0gBmst − t8djXnst8d, s8d

where the Heisenberg operatorBmst− t8d is defined as

Bmst − t8d = expS+
i

"
H0st − t8dDBm expS−

i

"
H0st − t8dD ,

Bm = Bms0d.

Introducing30 now the response functionFmnstd
;FBmAn

std as a response to ad-type force,

Fmnstd =
i

"
kfBmstd,Angl0, s9d

dkBmlt in Eq. s8d is of the form

dkBmlt = o
n
E

−`

t

dt8 Fmnst − t8dXnst8d. s10d

Recalling that the densityr0 for the equilibrium state was
assumed to be canonical, see Eq.s6d, in terms of the so-
called canonical correlation,28,31

ka;bl =
1

b
E

0

b

dlkas− i"ldbl0 = kb;al, s11d

with

kas− i"ldbl0 = kexps+ lH0da exps− lH0dbl0

= Trfr0 exps+ lH0da exps− lH0dbg,

the response functionFmnstd in Eq. s9d is finally given by

Fmnstd = bkBmstd;Ȧnl = − bkḂmstd;Anl, s12d

where dotted symbols denote first derivatives with respect
to t.

In the case of a perturbing electric field,Bm picks up the
meaning of a current densityJm corresponding to the dis-
placementAm,

Jm = Ȧm =
dAm

dt
=

i

"
fH0,Amg, s13d

and the response functionFmnstd in Eq. s12d can be written
as

Fmnstd = bkJmstd;Ȧnl = bkJmstd;Jnl.

Furthermore, if the electric field is pulsed as given
by Eq. s1d, suppressing its spatial dependence, Eq.s10d
leads to

dkJmlt = o
n

s̃mnsvp,tdE0n exps− ivptd, s14d

where the carrier frequency- and time-dependent conductiv-
ity is given by

s̃mnsvp,td = bE
0

`

djkJmsjd;JnlẼst − jdexps+ ivpjd.

s15d

Because in Eq.s1d the pulse is of the form of an amplitude
modulated quasimonochromatic plane wave, for the identity

envelope, i.e.,Ẽst−jd=1, Eq. s15d recovers the well-known
Kubo formula of the ac conductivity,

s̃mnsvd = bE
0

`

djkJmsjd;Jnlexps+ ivjd = b LfkJmstd;Jnlg−iv,

s16d

with v;vp now denoting the frequency of the monochro-
matic plane wave, and where

Lffsydgx =E
0

`

dy fsydexps− xyd, x P C, s17d

is the Laplace transform of a functionfsyd satisfying the
Dirichlet conditions.32 Note that as long ass̃mnsvd only de-
pends on the properties of the system investigated,s̃mnsvp,td
does depend on the pulse characteristics via the pulse enve-
lope and the carrier frequency.

Since s̃mnsvp,td is directly related to the experimentally
observed quantitydkJmlt, for numerical reasons, it is more
convenient to take the Fourier transform of Eq.s14d,

dkJmlv =
1

2p
E

−`

`

dt dkJmlt exps+ ivtd = o
n

s̃mnsvp,vdE0n,

in which according to Eq.s15d the dynamic conductivity
s̃mnsvp,vd,
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s̃mnsvp,vd =
b

2p
E

−`

`

dt expf+ isv − vpdtg

3E
0

`

dj kJmsjd;JnlẼst − jdexps+ ivpjd,

is now resolved with respect to the spectral components of
the pulse, e.g., forvP fv̄−Dv ,v̄+Dvg, where v̄ denotes
the mean frequency. By interchanging the order of integra-
tion and making use of the well-known properties of Fourier
transforms,26

Fffsydgx =E
−`

`

dy fsydexps− ixyd, x P R, s18d

where fsyd is an absolutely integrable function, the
frequency-frequency representation of the linear dynamic
conductivity is finally given in the following compact
form:

s̃mnsvp,vd =
b

2p
FfẼstdgvp−vLfkJmstd;Jnlg−iv

=
1

2p
FfẼstdgvp−vs̃mnsvd, s19d

with s̃mnsvd being obtained from Eq.s16d for all spectral
components of the pulse probing the investigated system.

Because in the case of ultrashort laser pulses nonlinear
effects occur at arbitrary low intensities,25 in addition
to s̃mnsvp,vd in Eq. s19d, second order response functions
also must be determined. Although these latter quantities
are straightforwardly obtained by evaluating the dynamic
responsedkBmlt=kBmstdlX−kBmstdl0 for rXstd as given by
Eq. s5d fafter the substitution of Eq.s7d on the right-hand
sideg, the corresponding expressions are not listed here
for reasons which will become clear in the following
section.

B. A formally linear response to pump and probe pulses

Based on the superposition principle of electromagnetic
fields, the total external electric field in a pump-probe experi-
ment is given by33–36

EW srW,td = EW pusrW,td + EW prsrW,td = eWpuEpu,0ẼpustdexpfisqWpurW − vputdg

+ eWprEpr,0Ẽprst − tdexpfisqWprrW − vprtdg, s20d

where Ẽpustd and Ẽprstd are the time-dependent envelopes
of the pump and the probe pulse propagating in the direc-
tions qWpu and qWpr with the carrier frequenciesvpu and vpr
and having the polarizationseWpu and eWpr. The polarizations
are important if orientational effects must be investigated.33

In all other cases a parallel configuration can be assumed,
i.e., eWpu=eWpr,

37 and almost always linear polarizations.20

In Eq. s20d the probe pulse has a peak att=t, the pump
pulse at t=0. For a positive delay timet of the probe
pulse st.0d, the probe pulse interacts with the system
after the pump pulse, whereas in the case of a negative

delay timest,0d the interaction of the probe pulse with the
system happens before the pump field acts. The only con-
straint applied to the delay timet is that it must be of the
same order of magnitude as the pulse duration,20 see also
Sec. II.

In considering an external electric field as defined in Eq.
s20d, it is assumed that no significant overlap in time exists
between the pump and probe pulse, i.e., all coherence cou-
pling effects can be neglected.37 This is reasonable to assume
having, for example, “spin dynamics” in mind, namely inco-
herent ultrafast processes that occur after the phase of the
pump-excited state is lost.38 Furthermore, as shown immedi-
ately below, this separation in time of the pump and probe
pulses allows one to account also for nonlinear effects, which
in the case of ultrashort laser pulses are quite important,
because—due to the wide spectral bandwidth of pulses—
they occur even for arbitrary low intensities.25 Although non-
linear effects can be introduced right from the beginning into
the quadratic response theory outlined at the end of Sec.
III A by using there Eq.s20d, in this manner the formal lin-
earity of the proposed scheme cannot be preserved and there-
fore must be abandoned. Note also, that not only nonlinear
effects are missing, when the time-dependent part of Eq.s20d
is substituted into Eq.s10d, but also that the resulting
s̃mnsvpr,vd cannot be related to any relaxation process
within a pump-probe experiment, because the pump-excited
state is not probed, if one uses Eq.s19d. In contrast to this,
s̃mnsvpu,vd as obtained from Eq.s19d represents a linear
response of the system to the pump pulse and therefore is a
physically meaningful quantity, which can be used as a ref-
erence to be extracted from the response of the system to the
delayed probe pulse.

In pump-probe experiments a canonical densityr0
as given by Eq.s6d for the equilibrium state can be always
assumed and also that the pump-pulse perturbation is
switched on in the infinite pastst0→−`d. Furthermore, be-
cause in Eq.s20d a possible overlap between the pump and
probe pulse is neglected, it can be considered that fort.t
the probe pulse interacts only with the pump-excited system,
see Fig. 1. The problem to be solved reduces therefore in
finding the dynamic linear response of the pump-excited sys-
tem with respect to the probe pulse at timest.t, i.e.,

dkBmlt = kBmstdlpr − kBmstdlpu = o
n

x̃mn Xn, s21d

where

kBmstdlpr = TrfrprstdBmstdg andkBmstdlpu = TrsrpuBmd,

with Bm=Bmstd and rpu=rpustd. Here and in the following
the subscripts “pu” and “pr” specify with which of the
pulses, pump or probe, the system is actually interacting.
Compared to Eq.s3d, one notes that quite obviously in Eq.

s21d the dynamic response refers to the change ofBW std with
respect to its mean value for the pump-excited state and not
for that in the initial equilibrium state.

If within the interaction picture the only source of pertur-
bation is the probe pulse then from the linearization of the
density,
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rprstd . rpu −
i

"
E

t

t

dt8fHprst8d,rpug, s22d

where according to the dipole approximation,

Hprstd = − o
n

AnstdXpr,nstd,

one directly obtains39

dkBmlt . o
n
E

t

t

dt8
i

"
kfBmstd,Anst8dglpuXpr,nst8d,

by assuming

TrfrpuBmstdg − TrsrpuBmd . 0.

HereAnstd andBmstd are Heisenberg operators and

kfBmstd,Anst8dglpu = TrhrpufBmstd,Anst8dgj,

is the mean value of their commutator with respect to the
pump-excited state. Introducing now in analogy with Eq.s9d
the response functionFmnst ,t8d,

Fmnst,t8d =
i

"
kfBmstd,Anst8dglpu, s23d

the dynamic response can be written as

dkBmlt = o
n
E

t

t

dt8 Fmnst,t8dXpr,nst8d. s24d

Because in accordance with the SVEA, see Sec. II, the

external forceXW prstd is given by

XW prstd = XW pr,0X̃prst − tdexps− ivprtd,

where XW pr,0 is the real amplitude andX̃prstd the complex
dimensionless envelope of the probe pulse, Eq.s24d directly
yields the generalized, frequency- and time-dependent admit-
tancex̃mnsvpr,t ;td,39

x̃mnsvpr,t;td =E
0

t−t

dj Fmnst,t − jdX̃prst − t − jd

3exps+ ivprjd, s25d

such that

dkBmlt = o
n

x̃mnsvpr,t;tdXpr,0n exps− ivprtd.

By taking the Fourier transform of this equation,

dkBmlv =
1

2p
E

t

`

dt dkBmlt exps+ ivtd

= o
n

x̃mnsvpr,v;tdXpr,0n,

the frequency-frequency representation of the admittance
x̃mnsvpr,v ;td,

x̃mnsvpr,v;td =
1

2p
E

t

`

dt x̃mnsvpr,t;tdexpf+ isv − vprdtg,

is defined according to Eq.s25d by

x̃mnsvpr,v;td =
1

2p
E

t

`

dt expf+ isv − vprdtg

3E
0

t−t

dj Fmnst,t − jdX̃prst − t − jd

3exps+ ivprjd. s26d

It should be noted that, e.g., in Ref. 39 the frequency-time
representation of the admittancex̃mnsvpr,t ;td in Eq. s25d at
t=Dtpr sprobe-pulse durationd is considered to be directly
measurable in a pump-probe experiment.

C. Density linearization for the pump-excited state

Similar to rprstd in Eq. s22d, the density for the pump-
excited state is written

rpu . r0 −
i

"
E

−`

t

dtfHpustd,r0g ; rpu
s0d + rpu

s1d, s27d

with a zeroth order density

rpu
s0d = r0 s28d

and a first order densityrpu
s1d given within the dipole approxi-

mation by

rpu
s1d =

i

"
o
k
E

−`

t

dtfAkstd,r0gXpu,kstd. s29d

By substituting the expression in Eq.s27d for rpu into Eq.
s23d, two contributions to the response functionFmnst ,t8d
arise, namelyFmn

s0dst ,t8d andFmn
s1dst ,t8d, such that

Fmnst,t8d = Fmn
s0dst,t8d + Fmn

s1dst,t8d, s30d

where

FIG. 1. Time-dependent normalized intensity resulting from two
time-delayedst=20 fsd identical, linearly polarized Gaussian fem-
tosecondstFWHM=60 fsd laser pulsessparallel configurationd ne-
glecting the time overlap of the pulses.
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Fmn
s0dst,t8d =

i

"
kfBmstd,Anst8dgl0 s31d

corresponds to the zeroth order density in Eq.s28d. By mak-
ing use of the invariance properties of the trace,Fmn

s0dst ,t8d
turns out to be a time-time representation of the response
function Fmnstd known from the linear response theory of
Kubo,28 see Eq.s9d. The other response functionfmn

s1dst ,t8d is
defined by the first order densityrpu

s1d introduced in Eq.s29d
as

Fmn
s1dst,t8d =

i

"
hTrfBmstd,Anst8dgrpu

s1dj.

It is a matter of simple algebra to show that

Fmn
s1dst,t8d = o

k
E

−`

t

dt9 Fmnkst,t8,t9dXpu,kst9d s32d

st ù t8 ù t ù t9d,

where the second order response function is given by

Fmnkst,t8,t9d = −
1

"2kffBmstd,Anst8dg,Akst9dgl0

= −
1

"2kfAkst9d,fAnst8d,Bmstdggl0. s33d

Strictly speaking, Eq.s33d provides a three-time representa-
tion of the second order response function known from non-
linear response theory.40 In contrast to the quadratic response
theory, however, in the present schemeFmnkst ,t8 ,t9d couples
the kth andnth Cartesian component of the pump and probe
pulses, respectively, att9øt and t8ùt, to themth Cartesian
component of the dynamic response attù t8. Furthermore, in
spite of the presence ofFmnkst ,t8 ,t9d in the dynamic re-
sponsedkBmlt, the formal linearity of the response promoted
by a linearization of bothrprstd andrpu=rpustd densities, see
Eqs. s22d and s27d, is preserved, because Eq.s21d still ap-
plies. Quite obviously, a nonlinear response theory like that
in Refs. 8 and 41, which needs at least a second iteration to
be considered in Eq.s5d cannot show these features, when
dealing with pump-probe experiments.

In the case of a canonical densityr0, see Eq.s11d, Eq.
s31d directly leads to

Fmn
s0dst,t8d = bkBmstd;Ȧnst8dl = − bkḂmstd;Anst8dl, s34d

which is nothing but the time-time representation of the ca-
nonical correlation in Eq.s12d. Therefore, substituting the
kernel in Eqs.s25d and s26d by this zeroth order response
function Fmn

s0dst ,t8= t−jd, immediately yields a strictly linear
complex admittancex̃mn

s0dsvpr,t ;td and its Fourier transform
x̃mn

s0dsvpr,v ;td. The only deficiency of these strictly linear or
zeroth order admittances is that they do not account for ori-
entational effects, which are caused by the difference in the
polarization of the pump and probe pulse,33 i.e., eWpuÞeWpr in
Eq. s20d.

Alternatively Eq.s33d can also be written as

Fmnkst,t8,t9d = −
1

"2TrhBmstdfAnst8d,fAkst9d,r0ggj

. bkBmstd;Ȧnst8d;Ȧkst9dl, s35d

where, by extending the conventional canonical correlation
introduced in Eq.s11d,

kastd;bst8d;cst9dl =
1

b
E

0

b

dl8E
0

l8
dl9kast − i"bdbst8 − i"l8d

3cst9 − i"l9dl0

+
1

b
E

0

b

dl8E
0

l8
dl9kast − i"bd

3cst9 − i"l8dbst8 − i"l9dl0.

With this expression used in Eq.s32d, in the case of a pump
pulse,

XW pustd = jWpu,0j̃pustdexps− ivputd,

Eq. s25d immediately provides a first order complex admit-
tance,

x̃mn
s1dsvpr,vpu,t;td = o

k

jpu,0k exps− ivputd

3E
0

t−t

dj j̃prst − t − jdexps+ ivprjd

3E
t−t

`

dj8Fmnkst,t − j,t − j8dj̃pust − j8d

3exps+ ivpuj8d.

The Fourier transform ofx̃mn
s1dsvpr,vpu,t ;td then leads to

x̃mn
s1dsvpr,vpu,v;td =

1

2p
o
k

jpu,0kE
t

`

dt expf+ isv − vpudtg

3E
0

t−t

dj j̃prst − t − jdexps+ ivprjd

3E
t−t

`

dj8 Fmnkst,t − j,t − j8dj̃pust − j8d

3exps+ ivpuj8d. s36d

In analogy with Eq.s25d, here the integration overj8 intro-
duces a second order complex admittance,

x̃mnksvpu,t,j;td =E
t−t

`

dj8 Fmnkst,t − j,t − j8dj̃pust − j8d

3exps+ ivpuj8d,

that depends on the pump-pulse characteristicssenvelope
and carrier frequencyd and material properties. In addition,
x̃mn

s1dsvpr,vpu,v ;td depends also on the probe-pulse charac-
teristics and the amplitude of the pump pulse.
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D. Zeroth and first order dynamic conductivities

Because according to Eq.s13d in the case of laser pulses
the zeroth order canonical response function as introduced in
Eq. s34d is given by

Fmn
s0dst,t8d = bkJmstd;Jnst8dl,

Eq. s25d reduces to

s̃mn
s0dsvpr,v;td =

b

2p
expf+ isv − vprdtg

3E
0

`

dt expf+ isv − vprdtg

3E
0

t

djkJmsjd;JnlẼprst − jdexps+ ivprjd

and hence the frequency-frequency representation of the gen-
eralized, strictly linear conductivity for the pump-probe ex-
periments can be written as

s̃mn
s0dsvpr,v;td =

1

2p
expf+ isv − vprdtgLfẼprstdgisvpr−vds̃mnsvd,

s37d

where in terms ofv this quantity is now resolved with re-
spect to the spectral components of the probe pulse, e.g., for
vP fv̄pr−Dvpr,v̄pr+Dvprg, v̄pr being the mean frequency of
the probe pulse.

As can be seen from Eq.s37d, independent of the enve-
lope of the probe pulse,s̃mn

s0dsvpr,v ;td oscillates int with an
amplitude that depends onv but not ont. The quantity of
interest, however, namely the time-resolved response
s̃mn

s0dsvpr,t ;td of the system, due to the rather complicated
dependence ofs̃mn

s0dsvpr,v ;td on v, oscillates in t with a
time-dependent amplitude, a fact that immediately follows
from a Fourier transform of Eq.s37d:

s̃mn
s0dsvpr,t;td = Ffs̃mn

s0dsvpr,v;tdgt. s38d

One also observes that by comparing the zeroth order con-
ductivity s̃mn

s0dsvpr,v ;t→0d with the strictly linear conduc-
tivity s̃mnsvpr,vd—as follows from Eq.s19d when the probe
pulse would interact alone with the system—that the only
difference occurring is the type of the transformation per-
formed for the probe pulse envelope.

By observing that in the case of laser pulses, Eq.s35d
directly yields

Fmnkst,t8,t9d = bkJmstd;Jnst8d;Jkst9dl,

the first order conductivity resolved according to the
spectral components of the pump pulse, e.g., for
vP fv̄pu−Dvpu,v̄pu+Dvpug with v̄pu being the mean fre-
quency of the pump pulse, immediately follows from Eq.
s36d as

s̃mn
s1dsvpr,vpu,v;td =

b

2p
expf+ isv − vpudtgo

k

Epu,0k

3E
0

`

dt exps+ ivtd

3E
0

t

dj Ẽprst − jdexps+ ivprjd

3E
0

`

dj8kJmstd;Jnst − jd;Jks− j8dl

3E˜ pust − j8dexps+ ivpuj8d. s39d

Although for this form one can also take advantage on
the properties of Laplace transforms, see Eq.s17d, for
s̃mn

s1dsvpr,vpu,v ;td a similar expression to that in Eq.s37d
cannot be deduced.

In accordance with Eq.s30d, the total and formally linear
dynamic conductivity is finally obtained by combining the
zeroth and first order conductivities as given by Eqs.s37d
and s39d,

s̃mnsvpr,vpu,v;td = s̃mn
s0dsvpr,v;td + s̃mn

s1dsvpr,vpu,v;td.

Becauses̃mnsvpu,vd can be determined on the same footing
as s̃mnsvpr,vpu,v ;td, pump-probe experiments such as in
Refs. 19 and 20 can also be described numerically within the
present response scheme. Unlike Refs. 8, 41, 42, and 43,
where the time-dependent dipole interaction between
the electronic subsystem and external pulse fields is directly
introduced in the Hamiltonian and the linear and nonlinear
susceptibilities are calculated within the response theory
of Kubo, here, in order to evaluates̃mnsvpr,vpu,v ;td
no time-dependent Schrödinger or Dirac equation has
to be solved, see the following section. Another major differ-
ence is that here both contributionss̃mn

s0dsvpr,v ;td and
s̃mn

s1dsvpr,vpu,v ;td to the dynamic conductivity explicitly de-
pend on the pulse characteristics, see Eqs.s37d and s39d,
whereas in Refs. 8, 41, 42, and 43, these dependencies enter
via time-dependent current matrix elements.

IV. NUMERICAL FRAMEWORK

A. Current-current correlations and the Luttinger formula

By using the contour deformation method,44 the current-
current correlation in Eq.s16d is given by

kJmstd;Jnl =
i

"b
E

t

`

dt8kfJmst8d,Jngleq, s40d

where the suffix “eq” refers to the unperturbed equilibrium
densityreq,

29 i.e.,

req=
1

V
fsH0d =

1

V

1

expfbsH0 − «Fdg + 1
, s41d

with fsH0d being the Fermi-Dirac distribution function,H0

the unperturbed Hamiltonian of the system,«F the Fermi
level, andV the reference volume.
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In a representation, which diagonalizes the Hamiltonian
H0, the mean value of the current-current commutator in Eq.
s40d can be written as

kfJmst8d,Jngleq=
1

V
o
m,n

ffs«md − fs«ndg

3expS i

"
s«m − «ndt8DJmn

m Jnm
n ,

with Jmn
m =kmuJmunl, uml and unl being eigenstates ofH0.

Therefore, according to Eq.s40d, the current-current correla-
tion function is given by

kJmstd;Jnl = −
1

bV
o
m,n

fs«md − fs«nd
«m − «n

Jmn
m Jnm

n expS i

"
s«m − «ndtD .

The indefinite integral in the Laplace transform of this ex-
pression,

LfkJmstd;Jnlg−iv = −
1

bV
o
m,n

fs«md − fs«nd
«m − «n

Jmn
m Jnm

n

3E
0

`

dt expS i

"
s«m − «n + "vdtD ,

s42d

converges if and only if the real part of the exponent is
positive.45 As this is not the case in Eq.s42d, a small real
parameterd.0 must be introduced in order to make the
integral convergent,

E
0

`

dt expS i

"
s«m − «n + "vdtD = −

1

i

"
s«m − «n + "v + idd

,

which in turn directly leads to

LfkJmstd;Jnlg−iv = −
i"

bV
o
m,n

fs«md − fs«nd
«m − «n

Jmn
m Jnm

n

«m − «n + z
,

s43d

with z being a complex frequency,

z = "v + id.

In defining the below quantity,16

S̃mnszd =
i"

V
o
m,n

fs«md − fs«nd
«m − «n + z

Jmn
m Jnm

n ,

Eq. s43d can be written as

LfkJmstd;Jnlg−iv =
s̃mnszd

b
,

where s̃mnszd is then given by the well-known Luttinger
formula,46

s̃mnszd =
S̃mnszd − S̃mns0d

z
. s44d

Just like the widely used Wang-Callaway formula for the
optical conductivity,47 for details see Ref. 48, the Luttinger
formula s44d and consequently Eqs.s19d and s37d, have the
advantage that they also simultaneously provide the absorp-
tive and the dispersive parts on the same footing without
using Kramers-Kronig relations.16 Furthermore, it was
shown16 that for d.0 not only the field is turned on at
t=−`,49 but that the interaction of the system with its sur-
roundings and all scattering processes atTÞ0 are also de-
scribed. It has already been demonstrated50 that the Green’s
function and the current matrices needed to evaluate the op-
tical conductivity tensors̃mnszd can be computed by means
of the spin-polarized relativistic screened Korringa-Kohn-
RostokersSKKRd method for layered systems11–14 with an
arbitrary high precision.

B. Three-current correlations

For the three-current correlations entering Eq.s39d, a
carefully revised contour deformation method,44 provides af-
ter some algebra

kJmstd;Jnst8d;Jkst9dl

= −
1

"2b
E

t8

`

dt8E
t9

`

dt9kfJmstd,Jkst9dgJnst8d

− fJmstd,Jnst8dgJkst9dl0,

which in the case of the equilibrium densityr0=req as given
in Eq. s41d and within the representation diagonalizing the
unperturbed HamiltonianH0 can be written as

kJmstd;Jnst8d;Jkst9dl =
1

bV
o

m,n,p

fs«mdJmn
m Jnp

k Jpm
n

s«p − «mds«n − «pd
expS i

"
s«m − «ndtDexpS i

"
s«p − «mdt8DexpS i

"
s«n − «pdt9D

−
1

bV
o

m,n,p

fs«mdJmn
k Jnp

m Jpm
n

s«p − «mds«m − «nd
expS i

"
s«n − «pdtDexpS i

"
s«p − «mdt8DexpS i

"
s«m − «ndt9D

−
1

bV
o

m,n,p

fs«mdJmn
m Jnp

n Jpm
k

s«p − «mds«n − «pd
expS i

"
s«m − «ndtDexpS i

"
s«n − «pdt8DexpS i

"
s«p − «mdt9D

+
1

bV
o

m,n,p

fs«mdJmn
n Jnp

m Jpm
k

s«p − «mds«m − «nd
expS i

"
s«n − «pdtDexpS i

"
s«m − «ndt8DexpS i

"
s«p − «mdt9D . s45d
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Finally, by introducing Eq.s45d into Eq.s39d, one obtains the
first order dynamic conductivity. Although the expression for
s̃mn

s1dsvpr,vpu,v ;td can again be related to the Laplace trans-

form of the envelopesẼpustd and Ẽprstd, for pulses that are
not of double exponential form, in the evaluation of
s̃mn

s1dsvpr,vpu,v ;td additional approximation must be made in
order to calculate the corresponding integrals.

V. RESULTS AND DISCUSSIONS

As an application for the scheme presented in here the
linear dynamic conductivity for fcc Nis100d is evaluated by
using the zero order contribution only and the characteristics
of pulses taken from Ref. 51. The optical conductivity tensor
s̃mnsvd in Eqs.s19d ands37d has been calculated for photon
energiesv within the visible regimesfrom 0 to 6 eV with an
increment of 0.27 eVd by means of the spin-polarized rela-
tivistic screened Korringa-Kohn-RostokersSKKRd method16

for the layered system Ni/Ni12/Nis100d with the well-known
LDA equilibrium lattice constantatheo=3.466 Å=6.55 a.u.

As can be seen from Fig. 2, the linear response to a fem-
tosecond laser pulse strongly depends on the pulse character-
istics. The Fourier transform of the pulse envelope, for ex-
ample, acts as a frequency filter on the optical conductivity
tensors̃mnsvd around the carrier frequencyvp of the pulse.
Although the Fourier transformFfEstdgvp−v of the real and
even envelopesEstd=Es−tdPR of a double exponential,
Gaussian, hyperbolic secant or Lorentzian pulse assumed in
Fig. 2, is symmetric with respect to its mean frequency, here
v̄=vp, a similar feature not necessarily is valid for
s̃mnsvp,vd. The reason is quite simple, in order to have

s̃mnsvp,vd as a function ofvP fvp−Dv ,vp+Dvg symmet-
ric with respect tovp, besides ofFfEstdgvp−v also s̃mnsvd
must be symmetric around the carrier frequency within the
bandwidthDv of the pulse. Because this is only approxima-
tively the case forvp=2 eV as considered in Fig. 2,
s̃mnsvp,vd is slightly asymmetric as a function of the spec-
tral componentv of the pulse.

This small asymmetry of the optical conductivity in the
vicinity of 2 eV becomes even more pronounced, when—in
accordance with Eq.s37d—s̃mnsvd is multiplied by the
Laplace transformLfEprstdgisvpr−vd of the real and even en-
veloped probe pulse of carrier frequencyvpr=2 eV snot
shownd. Therefore it is not surprising at all that
s̃mn

s0dsvpr,v ;td is independent of the delay timet of the probe
pulse and asymmetrically oscillates aroundvpr=2 eV, see
Fig. 3. Furthermore, as can be seen in this figure, although
the real and imaginary part of both the diagonal and the
off-diagonal conductivity tensor elements oscillate quite dif-
ferently with respect tov, the nodes of Res̃xn

s0dsvpr,v ;td and
Im s̃xn

s0dsvpr,v ;td for n=x,y not only are similarly posi-
tioned, but their number is directly proportional to the delay
time t.

In practice, instead of the Fourier transform introduced in
Eq. s38d, one performs

s̃mn
s0dsvpr,t;td =E

vmin

vmax

s̃mn
s0dsvpr,v;td

3expf− isv − vprdtgdv for t ù t . 0,

which introduces so-called leakage, namely, noticeable, un-
physical oscillations ins̃mn

s0dsvpr,t ;td as a function oft. This

FIG. 2. Linear response to a femtosecond la-
ser probe pulse as given by the dimensionless dy-
namic conductivitys̃mnsvp,vd for m ,n=x,y in
the case of fcc Nis100d, when the pulse has a
carrier frequencyvp=2 eV smarked by a thin
vertical lined, a durationDt=60 fs staken as full
width at half-maximum, i.e., FWHMd and an en-
velope of a double exponentialsfull lined, a
Gaussian sdotted lined, a hyperbolic secant
sdashed lined, and a Lorentzian shapesdotted-
dashed lined, respectively.
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leakage can be eliminated multiplyings̃mn
s0dsvpr,v ;td with a

window function wsv−vpr;vcd centered atvpr, for which
one assumes that alls̃mn

s0dsvpr,v ;td values necessary for the
Fourier transform are in a symmetric intervalfvpr−vc,vpr

+vcg aroundvpr, where vc=minsvpr−vmin,vmax−vprd.0.
Hence by considering

s̃mn
s0dsvpr,t;td =E

vmin

vmax

wsv − vpr;vcds̃mn
s0dsvpr,v;td

3expf− isv − vprdtgdv,

the time-dependent zeroth order dynamic conductivity is ob-
tained as the convolution ofFfs̃mn

s0dsvpr,v ;tdgt with the Fou-
rier transform of the window functionFfwsv−vpr;vcdgt.
There are several window functions and windowing methods
known in the literature.26 For illustrative purposes in Fig. 4 a
Gauss window with a dampingaPR has been used

wsv − vpr;vcd = expF− aSp
v − vpr

vc
D2G if uv − vpru , vc.

By inspecting Fig. 4 one immediately observes that the
strictly linear time-dependent dynamic conductivity, inde-
pendent of the delay timet, is a function of the time interval
t−t smeasured immediately after the probe pulse hits the
sampled rather than a function oft andt, i.e.,

s̃mn
s0dsvpr,t;td = s̃mn

s0dsvpr,t − td. s46d

The fact that Eq.s46d applies in general for an arbitrary
carrier frequency and duration of the probe pulse, is a direct
consequence of the Fourier transform ofs̃mn

s0dsvpr,v ;td as
given by Eq.s37d. This means that independent of whether
one starts the probe pulse to interact with the pump-excited

system or not, all elements of the strictly linear time-
dependent dynamic conductivity tensor vanish at the very
moment the probe pulse hits the sample. The other feature of
the zeroth order dynamic conductivity shown in Fig. 4,
namely

s̃mn
s0dsvpr,t − td . s̃mnsvprdẼprst − td, s47d

is valid if and only if

s̃mnsvd . s̃mnsvprd, ∀ v P fvpr − Dv,vpr − Dvg,

namely when the changes in the optical conductivity of the
system in the vicinity of the carrier frequencyvpr can be
neglected, see also Eq.s37d. Because in case of fcc Nis100d
the optical conductivitys̃mnsvd is almost a constant function
of v in the close vicinity of 2 eV,s̃mn

s0dsvpr,t−td can be ap-
proximated sufficiently well by Eq.s47d, if the carrier fre-
quency of the probe pulsevpr=2 eV, see Fig. 4. As a direct
consequence of Eq.s47d, one observes that independent of
the pulse envelope the ratio of the strictly linear dynamic
conductivity tensor elements

s̃xy
s0dsvpr,t − td

s̃xx
s0dsvpr,t − td

.
s̃xysvprd
s̃xxsvprd

, ∀ t . t, s48d

is not a time-dependent quantity. For fcc Nis100d, e.g., and
vpr=2 eV, s̃xysvprd / s̃xxsvprd.s1+id /100. If Eq. s47d ap-
plies, due to the difference in magnitude between the off-
diagonal and diagonal tensor elements, the off-diagonal ele-
ments fall off faster below a given threshold than the
diagonal ones. For example, by considering the lowest de-
tectable limit of the conductivity, namely 0.001s1015 Hzd,
one can conclude that fcc Nis100d is completely demagne-
tized in approximately 100 fs after a Gaussian probe pulse

FIG. 3. Strictly linear, frequency- and delay
time-dependentsin grey fort=50 fs and in black
for t=100 fsd dimensionless zeroth order dy-
namic conductivitys̃mn

s0dsvpr,v ;td in the case of
fcc Nis100d, when the probe pulse has a carrier
frequencyvpr=2 eV smarked by a thin vertical
lined, a durationDt=60 fs sassumed as FWHMd
and an envelope of a double exponentialsfull
lined, a Gaussiansdotted lined, a hyperbolic se-
cant sdashed lined, and a Lorentzian shape
sdotted-dashed lined, respectively.
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svpr=2 eV andDtFWHM=60 fsd hits the samplessee Fig. 4d,
because for t−t=100 fs, s̃xx

s0dsvpr,t−td=s0.769 30
+0.209 20id310−1 and s̃xy

s0dsvpr,t−td=s0.619 80
+0.994 29id310−3.0, both in units of 1015 Hz. In com-
parison with the experimentally found demagnetization time
for Ni of 80 fs,52 our result of 100 fs seems to be in reason-
ably good agreement considering that the first order dynamic
conductivity has not been included. Note that even when Eq.
s48d holds, the Kerr rotation and ellipticity angles are still
time-dependent quantities, because Eq.s48d provides only
the prefactor entering the expression for the complex Kerr
angle within the two-media approach,53 while the term mul-
tiplied by this prefactor is function ofs̃xx

s0dsvpr,t−td.
Another interesting aspect is that the time-integrated

strictly linear szeroth orderd dynamic conductivity as ob-
tained from Eq.s38d by using Eqs.s18d and s37d,

E
t

`

dt s̃mn
s0dsvpr,t;td = s̃mnsvprdE

0

`

Ẽprstddt,

is independent of the delay timet and a constant quantity
proportional to the optical conductivitys̃mnsvprd and to the
durationDt of the probe pulse.

VI. SUMMARY

A response theory of pump-probe experiments has been
developed in Sec. III B by using the slowly varying envelope
approximation for the pulses and neglecting their overlap in
time. Although the latter assumption restricts the applicabil-

ity of the theory to so-called incoherent ultrafast processes
like “spin dynamics,” its advantages are obvious,sid it allows
one to treat the effect of each of the pulses separately,sii d
linearization of the densities in both pump- and probe-
excited states, see Eqs.s22d and s27d, directly leads to a
formally linear response theory, which also includes second
order response functions of the investigated system, see Eqs.
s32d and s35d. In addition, the current-current and three-
current correlations needed to evaluate the dynamic conduc-
tivity must be known only for the initial equilibrium state of
the system, see Sec. IV. In spite of this feature of the pro-
posed scheme, but unlike the Kubo response theory, in here
the zeroth ordersstrictly lineard and first order conductivities,
as can be seen from Eqs.s37d and s39d, do depend both on
the characteristics of the pulses.

The proposed formally linear response theory for pump-
probe experiments was illustrated by calculating the time-
dependent strictly linearszeroth orderd conductivity for fcc
Nis100d in terms of the spin-polarized relativistic screened
Korringa-Kohn-RostokersSKKRd method. The obtained de-
magnetization time of about 100 fssdepending on the probe-
pulse enveloped fits rather well to the experimentally found
value of 80 fs.
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FIG. 4. Gauss-windowedsdamping factor
a=3d strictly linear, time- and delay time-
dependent optical conductivitys̃mn

s0dsvpr,t ;td as

compared withẼprst−tds̃mnsvprd shown in grey,

where Ẽprst−td is the envelope of the probe
pulse sdouble exponential, full line; Gaussian,
dotted line; hyperbolic secant, dashed line;
and Lorentzian, dotted-dashed lined with a
duration of DtFWHM=60 fs sthin vertical lines
mark t−t=DtFWHM/2d and a carrier frequency
of vpr=2 eV. Here s̃xxsvprd=4.2036
+1.2551is1015 Hzd and s̃xysvprd=0.031 305
+0.050 733is1015 Hzd, respectively.
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