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Formally linear response theory of pump-probe experiments
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By linearizing the density of both the pump- and probe-excited states and neglecting the overlap between
femtosecond laser pulses, the Kubo response theory is extended to describe pump-probe experiments.
The main advantages of this response scheme is that although second order responses are included, it formally
remains a linear theory and therefore all obtained expressions can be implemented straightforwardly within
any standard band structure method, e.g., based on a Green’s function approach. In particular, even the
time-dependent zeroth order dynamic conductivity as obtained by means of the spin-polarized relativistic
screened Korringa-Kohn-Rostoker method for fc€100) predicts a relatively slow demagnetization process
over 100 fs after the impact of the probe pulse, which is in reasonably good agreement with available
experimental data.
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[. INTRODUCTION technological or academic use, e.g., as optical data stérage,
in lithography or in near-field spin microscopy technigues.
Many fundamental processes in matter like electron- Despite all the experimental work performed so far, how-
electron or electron-phonon scattering in solids, occur on @ver, except a few attemgtst? ab initio like theoretical in-
time scale ranging from a few tenths of a femtosecondvestigations in realistic systems—at least according to our
(1fs=10%%s) to a picosecondl ps=10%?s). These ul- knowledge—are still lacking completely. The present paper
trafast phenomena are experimentally accessed by monitoprovides therefore a scheme that describes pump-probe ex-
ing the interaction of ultrashort light pulses with a given periments within the response theory of Kubo, which in turn
sample. Among the experimental techniques available nowasan be implemented using, e.g., the spin-polarized relativistic
days, the so-called pump-probe methods are most frequenticreened Korringa-Kohn-Rostoker methiodvia a contour
used. In such a pump-probe experiment one needs two uinategration techniqué1®
trafast laser pulses, a pump pulse, which excites the investi- The paper is organized as follows. Section || summarizes
gated system and a probe pulse, delayed in time, which exsriefly the slowly varying envelope approximation, which
plores the relaxation of the excited system. provides the most frequently used models of laser pulses.
The effect of a pump pulse on the sample can be analyzedfter introducing the basic concepts of the Kubo theory in
either by measuring the probe pulse characteristics or bfec. Il A, the linear response of an arbitrary system to a
monitoring the effects created by the probe pulse in the predemtosecond pulse is deduced and found to yield a compact
ence and absence of the pump pulse. In both techniques, tle¥pression, which can be viewed as a generalization of the
excited states created by the pump pulse can be directly irwell-known Kubo formula for the ac conductivity. By ne-
spected, e.g., via a spectral analysis. In addition, by varyinglecting the overlap of pulses in time and linearizing the
the delay time of the probe pulse, a time-resolved spectrurdensities in both the probe- and pump-excited states, a for-
of the excited sample is obtained, which in turn tracks themally linear response theory is developed for pump-probe
specific ultrafast process that characterizes the relaxation @xperiments in Secs. Ill B and Ill C. Applied for laser pulses,
the system. Viewed oppositely, this implies that any ultrafasthe scheme straightforwardly provides in Sec. Il D the dy-
process(at least in principlg can be studied, if the pump- namic conductivity as a sum of a zeroth and first order con-
probe experimental setup is known. Besides the complexityribution, which in turn are shown to depend besides the
of the investigated systelisample preparationcharacteris- optical properties of the investigated system, also on the
tics of the pulsesi.e., intensity, carrier frequency, and polar- characteristics of both pulses. Explicit and hence directly
ization and the delay time, the measured dynamics also demplementable expressions for the involved current-current
pends on the relative orientation of the pump and the proband three-current correlation functions are given in Sec. IV.
polarization planes. In Sec. V, the proposed theory of pump-probe experiments is
Inspired by the pioneering work of Freeman andillustrated in terms of the time-dependent zeroth order dy-
co-worker$ ultrafast magnetism in dilute magnetic semicon-namic conductivity of fcc Ni100) as obtained by means of
ductors rapidly gained attention because of its huge techndhe spin-polarized relativistic screened Korringa-Kohn-
logical potentiaf Presently, it is believed that on the basis of Rostoker method. The main results thereof are finally sum-
“spin dynamics” in magnetic semiconductor quantum strucsmarized in Sec. VI.
tures, such as “spin superlattices,” “digital magnetic
structures? etc., a much faster generation of computers will Il. FEMTOSECOND LASER PULSES
soon become reality, for an overview see Ref. 4. It should be The slowly varying envelope approximatio(SVEA)
noted that femtosecond spectroscopy methods are already states that the change in the complex amplitude of an
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optical pulse is slow with respect to the average oscillation Nowadays, ultrashort light pulses can be completely char-

period. This approximation seems to be valid for pulsegcterized in time as well as in frequency by measufitg

durations that are approximately 10 times bigger than th%r its Fourier transforrrE(w) via frequency-resolved optical

average oscillation period. Therefore, the SVEA is a reason- tina2324 The decomposition q(t) ing i rpfr

able approach to be considered for most of the effects occufating: € decompositio ok 0 a carmer fre-
and a time-dependent phagé), however, is not

ring due to the interaction of femtosecond pulses withduencyw, a h _
matterl? unique. Quite commonlyy,, is chosen at the pulse peak; a

If the z axis is taken along the propagation direction Petter choice is to idge”tifY"p by the intensity weighted av-
then within the SVEA a femtosecond pulse can be viewed'age frequency, €5,

as an amplitude modulated quasimonochromatic plane o _
wave!8 f dt w(t)[E(t)[?
- ~ >~ Wn = -
E(zt) = eE(t)expifgz) = E&M)exdi(@z—- wot)], (1 P L
(Dexp(iGz) = El(texdi(Gz — wyt)] ) f e

whereé€ is the unit polarization vectot), the real amplitude -

(E0=€E0), wp the carrier frequencyj the corresponding com-  Although for the pulse duratioat and the spectral width o
plex wave vector component along the axis, and several formulations are known and used in the literat(fe,
E()=Eef(H)exp(=iwpt). In the case of a linear medium the bandwidth theorert?,
G=0oN(wp), with N(wp) being the compl_ex refractive index At Aw= 27 or At Aw 2% ?)
andgy=w,/c the propagation constant in vacuum.
Equation(1) assumes that the complex amplitude variesensures that the duration and spectral width of a pulse cannot
faster along the propagation direction than across it antbe simultaneously arbitrarily small. For example, a 10 fs
therefore the complex, dimensionless envelope of the electriaser pulse covers almost the whole visible spectrum. Viewed

field E(t) does not depend on i.e.}” oppositely, this means that for a given spectrum, only one
pulse envelope exists, which has the shortest possible
Z"(t) =Eexd-iet)], duration?® In fact, Eq.(2) can be viewed as a kind of coun-

terpart of the Heisenberg uncertainty principle in pulsed op-
where&(t) is the real, dimensionless envelope ap(d) the  tics and therefore one often refers to these equatidnas
time-dependent phase. It must be pointed out that in femtathe uncertainty principles of Fourier analysis, or simply calls
second laser optics the validity of E@.) is restricted by the them time-frequency uncertainty relatiot{s.
bandwidthAw of the pulse and by the time dependence of its

envelopeZ”(t), i.e.,Aw must be much smaller than the carrier
frequencyw,, and, see Ref. 19, A. Linear response to a laser pulse

Ill. GENERALIZED KUBO THEORY

The dynamic response of a physical quanél(;l) to an

d&(t) ~ " Y
< wplE(L)]. external forceX(t) conjugated to the displacemeftt),?®

Alternatively to Eq.(1), one can use the following form:  &XBu)=(B.(1)x = (B,(t))o= 2 X X)) (1, v=xY,2)

E(z,t) = £t exf— i 4(t) lexpliGa), €)

with the time-dependent exponential part defining the phasgefines the dynamic linear admittantgusceptibility x,,,.
factor of the pulsep(t) = w,t+¢(t), of which the first deriva- Here(B,(t))x and(B,,(t))o are the mean values &, (t) with
tive with respect to time yields the time-dependénstanta- ~ réSpect to théprobability) densitiespx(t) in the presence of
neous carrier frequency X(t) and py in the absence oX(t),

de(t) (B(t)x = Trlpx(1)B,(1)] and(B,(t))o= Tr{poB,(1)].
dt -’ (4)

o(t) = wp +

A constant phase pulse is a pulse that shows no frequenchhe Hamiltonian of the system,
variation in time. A linear variation ofp(t) with respect H (1) = Ho + Ho (1)
to t, i.e., de(t)/dt=const=0, simply shifts the carrier X 07 exth
frequency? If de(t)/dt is time dependent, the pulse is said consists of an unperturbed pai and an external perturba-
to be frequency modulated or chirped. According to a position He,(t), which in the dipole approximation is given by
tive or negative sign of’¢(t)/dt?, the instantaneous carrier

frequency increasdglecreasgsalong the pulse and the pulse Hex(t) == 2 AuOX,(O).

is called up(down) chirped?! If the phase distortion is qua- K

dratic, one has a linear chirp and higher order terms lead to o principle, within the interaction picturei(t) can be de-
nonlinear chirp?? termined by solving iteratively the below equation,
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i [t In the case of a perturbing electric field, picks up the
px(t) = po(t) = %ft dt'[He(t'), px(t')]. () meaning of a current density, corresponding to the dis-
0 placement®,,
However, in dealing with near-equilibrium states, for which .
the external perturbation starts in the infinite pédgts—°), “A = dA, _ L[H Al (13)
when the density matrix can be assumed to be of canonical S TR A
form,2° namely

(&

and the response functich,,,(t) in Eq. (12) can be written

exp(= BHo)
(m®)=pp=—r ", 6 @
PO PO Tilexp(- BH)] |
a linearization(first order iteratioh of Eq. (5) then simply @, (1) = BL(1);A,) = BJL1):d,).
leads to
Furthermore, if the electric field is pulsed as given
i by Eqg. (1), suppressing its spatial dependence, EL{)
pX(t) = pPo~ %J_x dt,[Hext(t,)’pO]' (7) leads to

In Eq. (6) B=(kgT)™! is the so-called inverse temperature 5<\]M>t22'5-#y(wp,t)goy exp—iwpt), (14)
with kg being the Boltzmann constant aiidhe temperature. v

By using this form ofpy(t) in Eq. (4), the dynamic response
in Eq. (3) can be written as where the carrier frequency- and time-dependent conductiv-
_ . ity is given by
i
KB = %2 f dt’ Tr{[A,, po]B,(t - t)}X,(t'), (8) o ~
o ou(wpt) =B j d&(3,(8);3,)E(t = Hexp+iwpd).
where the Heisenberg operay(t—t’) is defined as 0
: : (15
i [

B, (t—t')=exp + —Hy(t—t") |B,exp — —Hyt-1t") |,
W=t F( h ol )) ” p< h ol )> Because in Eq(1) the pulse is of the form of an amplitude
modulated quasimonochromatic plane wave, for the identity

B.=B,(0). envelope, i.e.£(t—-¢)=1, Eq.(15) recovers the well-known

Introducing® now the response function®,,(t) Kubo formula of the ac conductivity,

E(IJBMAv(t) as a response to &type force, w
i o(0)=p J d&(3,(8);d)exp+ iwé) = B LIJ,1);I,)]-i0,
(D,uv(t) = %([Bu(t)!AV]>O! (9) 0
(16)

&B,); in Eq. (8) is of the form ) )

with o= w, now denoting the frequency of the monochro-

t , , , matic plane wave, and where
KBx=2 | dt @, (t=t)X,(t). (10)

Recalling that the density, for the equilibrium state was LIy L= L dy fly)exp-xy), xeC, (17)
assumed to be canonical, see K@), in terms of the so-

: g 31
called canonical correlatiof, is the Laplace transform of a functiof{y) satisfying the

1 (B _ Dirichlet conditions®? Note that as long a&,,(w) only de-
(a;b) = —J d\a(=iN)b)o =(b;a), (11)  pends on the properties of the system investigatggiw,, t)
0 does depend on the pulse characteristics via the pulse enve-
with lope and the carrier frequency.
_ Since,,(wp,1) is directly related to the experimentally
(a(=ifiN)b)o = (exp(+ AHg)a exp(— NHo)b)o observed quantity¥J,),, for numerical reasons, it is more
= Tr{py exp(+ AHg)a exp(— NHo)b], convenient to take the Fourier transform of Ety),
the response functio® ,,(t) in Eq. (9) is finally given by 1 [~
. _ &I)w= o f dt XJ, ) exp+iot) = X T, (0 0)Eo,,
@, (1) = BBL(1);A,) == BBL1);A,), (12 - g
where dotted symbols denote first derivatives with respecin which according to Eq(15) the dynamic conductivity
tot. 0wy, 0),
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_ B (" _ delay time(7<0) the interaction of the probe pulse with the
0 wp,0) = er dtexp +i(ew — wp)t] system happens before the pump field acts. The only con-
‘“‘ straint applied to the delay timeis that it must be of the
* ~ same order of magnitude as the pulse duratfosee also
Xf dé (J,(8):3,)E(t - Hexp+ iwyé), Sec. |l.

0 In considering an external electric field as defined in Eq.
is now resolved with respect to the spectral components of20), it is assumed that no significant overlap in time exists
the pulse, e.g., fow e[w-Aw,w+Aw], wherew denotes between the pump and probe pulse, i.e., all coherence cou-
the mean frequency. By interchanging the order of integraPling effects can be neglectédThis is reasonable to assume

tion and making use of the well-known properties of Fourierhaving, for example, “spin dynamics” in mind, namely inco-
transforms® herent ultrafast processes that occur after the phase of the

pump-excited state is l08t.Furthermore, as shown immedi-
ately below, this separation in time of the pump and probe
pulses allows one to account also for nonlinear effects, which
in the case of ultrashort laser pulses are quite important,
where f(y) is an absolutely integrable function, the because—due to the wide spectral bandwidth of pulses—
frequency-frequency representation of the linear dynamithey occur even for arbitrary low intensiti€sAlthough non-
conductivity is finally given in the following compact linear effects can be introduced right from the beginning into
form: the quadratic response theory outlined at the end of Sec.
Il A by using there Eq/(20), in this manner the formal lin-
T @, 0) = B FIEW®)], - LI 3,0;3)]-50 earity of the proposed scheme cannot be preserved and there-
2m P fore must be abandoned. Note also, that not only nonlinear
1 -~ effects are missing, when the time-dependent part of 2.
= —FEWD], -0 uw), (19 is substituted into Eq.10), but also that the resulting
2m ° 0,.(wpr, w) cannot be related to any relaxation process
with &,,(w) being obtained from Eq(16) for all spectral ~ Wwithin a pump-probe experiment, because the pump-excited
components of the pulse probing the investigated system. State is not probed, if one uses Eg9). In contrast to this,
Because in the case of ultrashort laser pulses nonlineaf..(wpy, @) as obtained from Eq(19) represents a linear
effects occur at arbitrary low intensitié%,in addition response of the system to the pump pulse and therefore is a
to 7,,(w,, ) in Eq. (19), second order response functions physically meaningful quantity, which can be used as a ref-
also must be determined. Although these latter quantitie§rence to be extracted from the response of the system to the
are straightforwardly obtained by evaluating the dynamicdelayed probe pulse. . _ .
response&Blb)t:<BM(t)>X—<BM(t)>0 for Px(t) as gi\/en by |I"I. pump-probe experlmertlt_s .a canonical densﬁy
Eq. (5) [after the substitution of Eq7) on the right-hand ~as given by Eq(6) for the equilibrium state can be alvv_ays '
sidel, the corresponding expressions are not listed her@ssumed and also that the pump-pulse perturbation is
for reasons which will become clear in the following SWitched on in the infinite pasto——c). Furthermore, be-
section. cause in Eq(20) a possible overlap between the pump and
probe pulse is neglected, it can be considered that for
the probe pulse interacts only with the pump-excited system,
B. A formally linear response to pump and probe pulses see Fig. 1. The problem to be solved reduces therefore in

Based on the superposition principle of electromagnetidinding the dynamic linear response of the pump-excited sys-
fields, the total external electric field in a pump-probe experiiem with respect to the probe pulse at tintesr, i.e.,

mentis given by ) 8B = B~ B D= S Xy Xor (2D
(D) = Eql7) + EnlF.0) = G FoulDEXEli (G — )] "

- ~ o where
+ eprgpr,ogpr(t - T)eXF{I (Qprr - wprt)]v (20)

- ~ _ (BL(D)pr = Trlpp(1)BL(1)]  and(B,(7)p,= Tr(ppB),
where £,(t) and &,(t) are the time-dependent envelopes ) )
of the pump and the probe pulse propagating in the direcWith B,=B,(7) and pp,=pp(7). Here and in the following
tions G, and G, with the carrier frequenciesy,, and w,, ~ the subscripts “pu” and “pr” specify with which of the
and having the polarizationg,, and ,. The polarizations ~PulSes, pump or probe, the system is actually interacting.
are important if orientational effects must be investigdfed. Compared to Eq(3), one notes that quite obviously in Eq.
In all other cases a parallel configuration can be assumed21) the dynamic response refers to the chang8(f with

[

FEy) = f dy fly)exp-ixy), xeR, (18

i.e., €,,=€&,,%" and almost always linear polarizatioffs. respect to its mean value for the pump-excited state and not
In Eg. (20) the probe pulse has a peaktatr, the pump for that in the initial equilibrium state.
pulse att=0. For a positive delay timer of the probe If within the interaction picture the only source of pertur-

pulse (7>0), the probe pulse interacts with the systembation is the probe pulse then from the linearization of the
after the pump pulse, whereas in the case of a negativéensity,
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t-7
F)?ﬂV(wpr’t; T) = f dg (I)Mv(tvt - é:)Xpr(t - T g)
0

1.00
075 xXexp+iwyd), (25)
U such that
= 030 KBt = 2 Xyus @pn i 7) X0, EXH(= ).
0.25 By taking the Fourier transform of this equation,
1 (" .
0.00 6<B,u,>w = ZT dt 5<B/.L>t eXF("' th)

t  (fs)
=2 Xur0or @, T X 00)
FIG. 1. Time-dependent normalized intensity resulting from two EV X Cpr pr.0v
time-delayed(7=20 f9 identical, linearly polarized Gaussian fem- ) )
tosecond(trym=60 f9 laser pulsesiparallel configurationne-  the frequency-frequency representation of the admittance

glecting the time overlap of the pulses. }Mv(wpr,w; 7),

~ 1 ("~ ,

X,uv(wpr! w;7) = ZT dt X,u.v(wpr!t; r)exd+i(w - wpr)t]a
T

.
ppr(t) = Ppu~ I%f dt,[Hpr(tl)eru]! (22

is defined according to Eq25) by
where according to the dipole approximation,

~ o1 - o
H() = = 2 A0X (1), X 037) = 27J , drexilri(o = apt]
t-7
one directly obtain® xfo dE @, (tLt= Xt -7 &)

t .
i

5<B,u>t = E J dt,%([B,u(t)YAV(tI):DpUXpr,V(t,)l XGXK+ iwprg). (26)

. It should be noted that, e.g., in Ref. 39 the frequency-time
by assuming representation of the admittangg,(wy,,t;7) in Eq. (25) at
T ppuB,(0)] = Tr(ppB,) = 0. t=At, (probe-pulse duratignis considered to be directly

measurable in a pump-probe experiment.
HereA,(t) andB,(t) are Heisenberg operators and

<[B,u,(t)1Av(t,)]>pu: Tr{ppu[BM(t),A,,(t')]}, C. Density linearization for the pump-excited state

is the mean value of their commutator with respect to the S_|m|lar to ’.’Pf(t) N Eq. (22, the density for the pump-

pump-excited state. Introducing now in analogy with E9). excited state is written

the response functio® ,,(t,t"), i ("
Pou=Po~ f diHoO.p0] = P + P, (27)

i
q);LV(tlt,) = £<[B,u(t)!AV(t,)]>pU1 (23) ) .
with a zeroth order density
the dynamic response can be written as pgﬁ = po (28)
t . Lo (1) s L . .
_ , / , and a first order density'” given within the dipole approxi-
6<BM>I - 2,, JT dt (I)/'LV(tlt )Xpl’,v(t ) (24) ma.tion by pu
. . | T
Because mﬁaccc.)rda.nce with the SVEA, see Sec. I, the Pfalu): _EJ AL, pe]Xpu(). (29)
external forceX,(t) is given by oo ) '
S =¥ Vot . By substituting the expression in E7) for p,, into Eq.
XprD) = Xpr, ol = mEXp(= Twpd), (23), two contributions to the response functidn,(t,t")
- ~ . 0 ’ 1 ’
where X, ¢ is the real amplitude andt,(t) the complex —arise, namelxﬁDL,i(t,t ) and q)Li(t,t ), such that
dimensionless envelope of the probe pulse, (24) directly "N = Ot t ()4 41
yields the generalized, frequency- and time-dependent admit- D) = D (L) + P, (30)
tancey,, (o, t;7),%° where
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i 1
®,(U?1)1(t1t,) = I%([B/,L(t)iAv(t,)]h) (31) (b/.LVK(tit, !t”) == ﬁTr{B#(t)[AV(t,)1[Ax(t”)1pO]]}

corresponds to the zeroth order density in £8§). By mak- ~ B<B,L(t);Av(t');AK(t")>- (35)
ing use of the invariance properties of the tra@ﬁi(t,t’) ' _ _ '
turns out to be a time-time representation of the respons#here, by extending the conventional canonical correlation
function ®,,,(t) known from the linear response theory of introduced in Eq(11),
Kubo 28 see Eq(9). The other response functieﬁiﬂ(t,t’) is 1 (5 N
defined by the first order densin&) introduced in Eq(29) (a(t);b(t");c(t")) = ,I_BJ d)\’f d\"(a(t—iaB)b(t’ —iAN")
as 0 0
. i . Xc(t"=ihmN"))g
(L, 1) = A{TBL0, A o} L(E
+—f d)\’f d\"(a(t-ihp)
It is a matter of simple algebra to show that BJo 0
Xc(t" =N )b(t" —ifN"))g.

dO(t) = f dt’ @, (61 )Xot (32)
k J-o With this expression used in E¢32), in the case of a pump

pulse,
t=t'=7r=t1"),

Xoult) = Enu cEpu(DEXH— ipet)

1 Eq. (25 immediately provides a first order complex admit-

(I)/-"VK(t’t/ ’t”) == ﬁ_2<[[B,U«(t)aAv(t,)]!AK(t“)]>0 tance’

where the second order response function is given by

1 AX’,(L}]))(wprl wpuat; T) = Z §pu'o,( eXF(_ i(x)put)
=" ﬁ—2<[AK(t”),[Ay(t’),B O1Do. (33 p

t-7
Strictly speaking, Eq(33) provides a three-time representa- X f dé &t — 7= Hexp+iwyé)
tion of the second order response function known from non- 0
linear response theof{.In contrast to the quadratic response * ~
theory, however, in the present schefhg, (t,t',t") couples XJt d&'®,,,(tt=&t= &) &t = ¢&)

the xth andwth Cartesian component of the pump and probe

pulses, respectively, #t< 7 andt’ = 7, to the uth Cartesian Xexp(+iopg').

component of the dynamic responsé =tt’. Furthermore, in _ "

spite of the presence ob,,(t,t’,t") in the dynamic re- The Fourier transform Oi/Ly(wprrwpwt;T) then leads to

sponseXB,),, the formal linearity of the response promoted 1 "

by a linearization of both,,(t) and p,,=p,,(7) densities, see (1) )= f Tl —

Egs. (22) and (27), is pregerved, because EQ1) still ap- Xia Oprs Opu 17 277% Epuax ; dtexil+i(o - wpt]

plies. Quite obviously, a nonlinear response theory like that —r

in Refs. 8 and 41, which needs at least a second iteration to Xf dézpr(t — 7= §exp+ i wpé)

be considered in Eq5) cannot show these features, when 0

dealing with pump-probe experiments. -
In the case of a canonical densipty, see Eq.(11), Eq. f ’ _Et—ENE (t— &

(3) directly leads to 8 t_ng P68 E)Ep (=)

DO(t,t') = BBL;A)) = - BB,LM;AL)), (34 Xexp+iop’). (36)

which is nothing but the time-time representation of the caln analogy with Eq(25), here the integration ovej" intro-

nonical correlation in Eq(12). Therefore, substituting the duces a second order complex admittance,

kernel in Egs.(25) and (26) by this zeroth order response o

function d)i?l(t,t’ :t—g)o, immediately yields a strictly linear X @put, &7) = f d&’ @, (tt-&Et- g*)}pu(t -¢)

complex admittancé(Ll(wpr,t;r) and its Fourier transform -

”)}fz(wpr,w; 7). The only deficiency of these strictly linear or Xexp(+iwp,é'),

zeroth order admittances is that they do not account for ori-

entational effects, which are caused by the difference in théhat depends on the pump-pulse characteristers/elope

polarization of the pump and probe pufSd,e., épu;& épr in and carrier frequengyand material properties. In addition,

Eq. (20). }'(ﬁji(wpr,wpu,w;f) depends also on the probe-pulse charac-
Alternatively Eq.(33) can also be written as teristics and the amplitude of the pump pulse.

t-7
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D. Zeroth and first order dynamic conductivities

) ) 0 @Wpr, Wp, ;7)) = ——eXfd+ i (w— 725
Because according to E¢LJ) in the case of laser pulses g R 2m d o7 K Pule

the zeroth order canonical response function as introduced in "
Eq. (34) is given by Xf dtexp(+iwt)

0
DOtt) = B3, (1);3,(1)),

t
dé Ept - g
Eg. (25) reduces to Xfo £ Ep(t— exp+iwpé)

T 0i7) = L expf+ (0 - wpy)7] x j A&/ (3, (0:3,(t = ;3= £))
® 27 0
“ XEp(T= E)exp(+iwgd’). 39
x f dtexpl+i(w— wy)t] pl 7= E)eXECHHwp kD). (39)
0 Although for this form one can also take advantage on

t _ the properties of Laplace transforms, see E#j7), for
Xf d&J,(8);3,)Ep(t — Elexp(+ i wpé) '&i}i(wpr,wpu,w;r) a similar expression to that in E¢37)
0 cannot be deduced.

) In accordance with Eq30), the total and formally linear
and hence the frequency-frequency representation of the 9efynamic conductivity is finally obtained by combining the

eralized, strictly linear conductivity for the pump-probe eX- ,&.oth and first order conductivities as given by E€@)
periments can be written as and (39)

~0) o1 _ ~ - 0 @pr, 0y @5 7) :B(OZ(wpr,w;T)+5'(l,),(wpr, Wpyp @3 7).
O-My(wpl'l w;7) = 2 exfg+i(w— wpr) T]L[gpr(t)]i(wpr—w)o-;/,v(w)r a a
™ Because?r#,,(wpu,w) can be determined on the same footing
(37 as G, (wy, wpy, @;7), pump-probe experiments such as in
Refs. 19 and 20 can also be described numerically within the
where in terms ofw this quantity is now resolved with re- present response scheme. Unlike Refs. 8, 41, 42, and 43,
spect to the spectral components of the probe pulse, e.g., fofhere the time-dependent dipole interaction between
o € [wpr—Awp, wp+ Awp], 0, being the mean frequency of the electronic subsystem and external pulse fields is directly
the probe pulse. introduced in the Hamiltonian and the linear and nonlinear
As can be seen from E@37), independent of the enve- susceptibilities are calculated within the response theory
lope of the probe pulse}fi(wpr,w; 7) oscillates inrwith an  of Kubo, here, in order to evaluate,,(wy,wp,, @;7)
amplitude that depends an but not on7. The quantity of no time-dependent Schrodinger or Dirac equation has
interest, however, namely the time-resolved respons& be solved, see the following section. Another major differ-
Tri?z(wpr,t;r) of the system, due to the rather complicatedence is that here both contributiorﬁfi(wpr,w;r) and
dependence oﬁfi(wpr,w;r) on w, oscillates int with a ?rifl(wpr,wpu,w;r) to the dynamic conductivity explicitly de-
time-dependent amplitude, a fact that immediately followspend on the pulse characteristics, see E§3) and (39),
from a Fourier transform of Eq37): whereas in Refs. 8, 41, 42, and 43, these dependencies enter
via time-dependent current matrix elements.
aﬁ?z(wpnt; T) = f[aifz(wprn w; T)]t- (38)
IV. NUMERICAL FRAMEWORK
One also observes that by comparing the zeroth order con-
ductivity 'E'fi(wpr,w; 7—0) with the strictly linear conduc-
tivity 7,,,(w,rw)—as follows from Eq.(19) when the probe By using the contour deformation meth#fithe current-
pulse would interact alone with the system—that the onlycurrent correlation in Eq16) is given by
difference occurring is the type of the transformation per- —
formed for the probe pulse envelope. ‘] )= —j ! !
By observing that in the case of laser pulses, Bp) D)) hBJ L3 Deq (40
directly yields

A. Current-current correlations and the Luttinger formula

where the suffix “eq” refers to the unperturbed equilibrium

e the su
@, L) = BI,0:3,(); ), density peg™ €.,

1 1 1
the first order conductivity resolved according to the Peq= \_/f(HO):\_/eXFiﬁ(Ho—SF)Hl’ (41)
spectral components of the pump pulse, e.g., for
w € [wpy=Awpy, wpy+ Awpy] With o, being the mean fre- with f(Ho) being the Fermi-Dirac distribution functiot,
guency of the pump pulse, immediately follows from Eg.the unperturbed Hamiltonian of the system, the Fermi
(36) as level, andV the reference volume.
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In a representation, which diagonalizes the Hamiltonian flem) — f(gn)
H,, the mean value of the current-current commutator in Eq. E,W(é“) E
(40) can be written as

mn‘]sm’

mn em—ent{

Eq. (43) can be written as

1
([3,(t),3,))eq= VE [f(em) — f(en)] 5 0
m,n “V

B

i

_ _ 1| v
Xexp(h(sm enlt )‘Jm“‘J“m’ where ,,(¢) is then given by the well-known Luttinger
formula?®

LIQ,1;3,)]-,=

with J& =(m|J,[n), |m) and |n) being eigenstates off,,.
Therefore, according to E¢40), the current-current correla- A0 - s (0

. . . . ~
tion function is given by ) = —”—”—g (44
,1;3,)=- iz M%ﬁéﬁm exp(l—(sm— gn)t>_ Just like the widely used Wang-Callaway formula for the
BVimn  €m~én h optical conductivity?” for details see Ref. 48, the Luttinger
. o . . formula (44) and consequently Eq§19) and (37), have the
Trheessl?(;jr:eflnlte integral in the Laplace transform of this eX'advantage that they also simultaneously provide the absorp-
P ' tive and the dispersive parts on the same footing without
) 1 f(em) — f(ep) , using Kramers-Kronig relation$. Furthermore, it was
£[<Ju(t)v‘]v>]-iw‘_ﬁ_v2 e Inrdam showrt® that for 5>0 not only the field is turned on at
mnoommeon t=—00,49 put that the interaction of the system with its sur-
- i roundings and all scattering processed &0 are also de-
X | dtexp o (em=en*hio)t scribed. It has already been demonstréitéidat the Green’s

function and the current matrices needed to evaluate the op-
(42)  tical conductivity tensoi,,,({) can be computed by means
of the spin-polarized relativistic screened Korringa-Kohn-
Rostoker(SKKR) method for layered systedis!4 with an
arbitrary high precision.

converges if and only if the real part of the exponent is
positive®® As this is not the case in Eq42), a small real
parameters>0 must be introduced in order to make the
integral convergent

1 B. Three-current correlations
dtex (8m et At = ’ For the th t lati teri 9)
r ree-curren rr ion nterin
(8m et ho+i0) or the three-current correlations entering E89), a

carefully revised contour deformation methtihrovides af-
ter some algebra

(Ju(0);3,(t);3.(1")

which in turn directly leads to

flem) = f(en) Ibdim
,BVE Em—&n Em—é&nt{ 1 "
mn m~ €n m~ €n :_ﬁT drf d7"([J,(1),d,(7)]3,(7)
(43
with ¢ being a complex frequency, [0, 3,7 7o,
which in the case of the equilibrium densjiy=p.q as given

{=hotis. in Eq. (41) and within the representation diagonalizing the
In defining the below quantit}f unperturbed Hamiltoniakly can be written as

LI3,0;I)]-0=-

|
(3,(0;3,(t);3,(") = ,Bi\/gp _(Spinii)i: o p‘) P( —(em= sn)t)exp< —emt’ )exp( —(en—¢ t”)

15 femJmdnpdom p<i_ _ )p<L _ ) p<i_ _ )
,BVMEnp(Sp—SnQ(Sm_Sn) ex h(sn gpt |ex ﬁ(sp et |ex ﬁ(sm et

2 B o e ent o 0o o ey
M/ TmnTnpTpm — —
,8 Ep (6= o) (on— p)eX (em—ent|exp —(en—gplt’ X P (ep—emt

B Tl el
+an%p(8p_8m)(8m_8n) ex h(sn gp)t |ex h(sm e)t’ |ex h(sp et”]. (45)
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Finally, by introducing Eq(45) into Eq.(39), one obtains the o ,,(w,, ) as a function ofw e [w,~Aw, w,+Aw] symmet-
first order dynamic conductivity. Although the expression forric with respect tow,, besides off[S(t)]wp_w also o, (w)
TTS,),(wpr.wpu,w: 7) can again be related to the Laplace trans-must be symmetric around the carrier frequency within the
form of the envelopes,(t) and &,(t), for pulses that are bandwidthAw of the pulse. Because this is only approxima-
not of double exponential form, in the evaluation of fively the case forw,=2 eV as considered in Fig. 2,
Trfi(wpr,wpu,w; 7) additional approximation must be made in 7{(@p, @) is slightly asymmetric as a function of the spec-

order to calculate the corresponding integrals. tral component of the pulse. _ o
This small asymmetry of the optical conductivity in the

vicinity of 2 eV becomes even more pronounced, when—in
V. RESULTS AND DISCUSSIONS accordance with Eq(37)—o,,(w) is multiplied by the

As an application for the scheme presented in here thk@Place transformC[&, (V)i -« of the real and even en-
linear dynamic conductivity for fcc NLOO) is evaluated by ~Veloped probe pulse of carrier frequenay,=2 eV (not
using the zero order contribution only and the characteristic§hown. Therefore it is not surprising at all that
of pulses taken from Ref. 51. The optical conductivity tensoro,,,(wpr, @; 7) is independent of the delay timeof the probe
7,,(w) in Egs.(19) and(37) has been calculated for photon pulse and asymmetrically oscillates arouag=2 eV, see
energiesw within the visible regimefrom 0 to 6 eV with an  Fig. 3. Furthermore, as can be seen in this figure, although
increment of 0.27 eYby means of the spin-polarized rela- the real and imaginary part of both the diagonal and the
tivistic screened Korringa-Kohn-Rostoké3KKR) method® off-diagonal conductivity tensor elements oscillate quite dif-
for the layered system Ni/lj/Ni(100) with the well-known  ferently with respect ta, the nodes of Réf(?,)(wpr,w; 7) and
LDA equilibrium lattice constangy,.,=3.466 A=6.55a.u. Im '&Q(wpr,w;f) for v=x,y not only are similarly posi-

As can be seen from Fig. 2, the linear response to a femtioned, but their number is directly proportional to the delay
tosecond laser pulse strongly depends on the pulse charactéme 7.
istics. The Fourier transform of the pulse envelope, for ex- In practice, instead of the Fourier transform introduced in
ample, acts as a frequency filter on the optical conductivityEq. (38), one performs
tensoro,,(w) around the carrier frequenay, of the pulse. N
Although the Fourier transfornf[£(t)],, -, of the real and 7 wpt;7) = f maxa(oz( o} 7)
even envelopesL(t)=&(-t) e R of a double exponential, . omn
Gaussian, hyperbolic secant or Lorentzian pulse assumed in
Fig. 2, is symmetric with respect to its mean frequency, here
w=w, a similar feature not necessarily is valid for which introduces so-called leakage, namely, noticeable, un-
o,.(w,,w). The reason is quite simple, in order to havephysical oscillations ir'fri?z(wp,,t;T) as a function ot. This

xexd—i(w - wptldw fort=7>0,
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leakage can be eliminated muItipIyirTgi?z(wpr,w;q-) with a  system or not, a!l element_s _of the strictly linear time-
window function w(w— w,; w,) centered atwy,, for which dependent dynamic conductivity tensor vanish at the very
one assumes that ag|<0>(wpr w;7) values necessary for the moment the probe pulse hits the sample. The other feature of
) 1224 L T . Lo . .
Fourier transform are in a symmetric intenfad, - wc, oy the zeroth order dynamic conductivity shown in Fig. 4,

+we] around wp,, where wg=min(wp,— omin, Omax— @p) > 0. namely
Hence by considerin ~ ~ ~
d ¥ O—,E?Z(wprvt -7 = O-,uv(wpr)gpr(t -7, (47)
T wpnti 1) = f W(w = wpr; 00T wpr, @ 7) is valid if and only if

Omin o0 =07,(0y), Doelw,—Aw o,-Ao],
xXexg - i(w - wy)t]do, Iz i\ @pr [@pr or ]

] . o namely when the changes in the optical conductivity of the
the time-dependent zeroth orfi(%r dynamlc conductivity is 0bsystem in the vicinity of the carrier frequenay, can be
tained as the convolution Cf’fT(TM(wpr,lw, 7)]; with the Fou-  neglected, see also E(R7). Because in case of fcc (4i00)
rier transform of the window functio{w(w-wp;wo)l.  the optical conductivityr, () is almost a constant function
There are several window functions and windowing methodsf  in the close vicinity of 2 e\/l}@)(wp“t_,,) can be ap-

known in the literaturé® For illustrative purposes in Fig. 4 a proximated sufficiently well by Eq(47), if the carrier fre-

Gauss window with a damping € R has been used guency of the probe pulse,=2 eV, see Fig. 4. As a direct
o—o consequence of Eq47), one observes that independent of
W(w = wpy; @) :exp[— a<7T_P_f) } if |w—wpr| < o, the pulse envelope the ratio of the strictly linear dynamic
Wc conductivity tensor elements
By inspecting Fig. 4 one immediately observes that the -&(0)(w t-9  Tofwo)
strictly linear time-dependent dynamic conductivity, inde- ~(x3’) pr =X B Ot> g (48)
pendent of the delay time is a function of the time interval Oy (0t =7 Tyl wpy)

t—7 (measured immediately after the probe pulse hits th

sampl@ rather than a function afand, ie., ¥s not a time-dependent quantity. For fcc(NiO), e.g., and

wpr=2 eV, Ty wp) Ty wp) =(1+i)/100. If Eq. (47) ap-
Eﬁ?z(wpnt;ﬂ:ag(wpnt— 7. (46)  blies, due to the difference in magnitude between the off-

diagonal and diagonal tensor elements, the off-diagonal ele-
The fact that Eq.(46) applies in general for an arbitrary ments fall off faster below a given threshold than the
carrier frequency and duration of the probe pulse, is a direatliagonal ones. For example, by considering the lowest de-
consequence of the Fourier transform E'D(Pl(wpr,w;r) as tectable limit of the conductivity, namely 0.0q10' Hz),
given by Eq.(37). This means that independent of whetherone can conclude that fcc (100 is completely demagne-
one starts the probe pulse to interact with the pump-excitetized in approximately 100 fs after a Gaussian probe pulse
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(wpr=2 eV andAtgyy»=60 f9 hits the samplésee Fig. 4, ity of the theory to so-called incoherent ultrafast processes

because for t—7=100 fs, '(}f(O)(wpr,t— 7=(0.76930 like “spin dynamics,” its advantages are obvio(isjt allows

+0.209 20i) X 1071 and 5(63(wpr,t—r):(0.619 80 one to treat the effect of each of the pulses separatiely,
+0.994 29i) X 1073=0, both in unizés of 18 Hz. In com- linearization of the densities in both pump- and probe-
parison with the experimentally found demagnetization timee*Cited states, see Eq&2) and (27), directly leads to a
for Ni of 80 fs52 our result of 100 fs seems to be in reason-formally linear response theory, which also includes second
ably good agreement considering that the first order dynami€rder response functions of the investigated system, see Egs.
conductivity has not been included. Note that even when E¢:32) @nd (35). In addition, the current-current and three-
(48) holds, the Kerr rotation and ellipticity angles are still current correlations needed to evaluate the dynamic conduc-
time-dependent quantities, because Ep) provides only tVity must be known only for the initial equilibrium state of
the prefactor entering the expression for the complex Kerfn€ System, see Sec. IV. In spite of this feature of the pro-
angle within the two-media approa&hwhile the term mul- phosed scr?errée,(sbut llm:'ke t:;e Kdufbo resgonse t(rjleory, in here
> : ; ; the zeroth ordetstrictly lineap and first order conductivities
tiplied by this prefactor is function o}(xi)(wpr,t—r). '
Another interesting aspect is that the time-integrate s can be seen from Eq&7) and(39), do depend both on

strictly linear (zeroth order dynamic conductivity as ob- heT(r:]haracteristidci of thﬁ ﬁ%"ses- h f
tained from Eq(38) by using Eqs(18) and (37), e proposed formally linear response theory for pump-

probe experiments was illustrated by calculating the time-
© © _ _ * . dependent strictly lineafzeroth order conductivity for fcc
J dt o, (wpnt; 1) = U,uv(wpl’)f Ex(Ddt, Ni(100) in terms of the spin-polarized relativistic screened
T 0 Korringa-Kohn-RostokefSKKR) method. The obtained de-
is independent of the delay timeand a constant quantity Magnetization time of about 100 fdepending on the probe-
proportional to the optical conductivity, (w,) and to the pulse envelopefits rather well to the experimentally found
durationAt of the probe pulse. value of 80 fs.
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