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Current-induced switching in heterojunctions such as Fe/Vac/Fe and Fe/Ge/Fe,
including in the latter case homogeneous and inhomogeneous chemical disorder
caused by holes (vacuum), is described theoretically in terms of a multi-scale
approach based on ab initio calculations using the fully relativistic screened
Korringa–Kohn–Rostoker method and the Landau–Lifshitz–Gilbert equation.
It is found that (1) the presence of tunnelling can be a function of the relative
angle between the orientations of the magnetization in the magnetic slabs; and
(2) disorder is responsible for the occurrence of non-collinear magnetic ground
states. Furthermore, it is found that the first terms in the expansion of the twisting
energy in a power series in the cosine of this relative angle, namely the interlayer
exchange energy term and the anisotropy term, can be used for a qualitative
scheme not only to characterize the occurrence of non-collinear ground states,
but also for the critical current needed to induce switching.

1. Introduction

Current-induced switching in spin valve type systems appears, as originally suggested
theoretically by Slonczewski [1], to have become a prominent topic in spintronics
(see, for example, [2]), since, in ‘traditional’ magnetic devices or media, the magnetic
moments are switched via externally generated magnetic fields and not, as suggested
simply by applying a current pulse perpendicularly through the magnetic layers
itself. In this context the question has frequently been posed whether or not current-
induced switching would also be possible for heterojunctions, i.e. in systems with
a non-metallic spacer. Although this partially leads back to the problems encoun-
tered experimentally and theoretically when using so-called semi-conducting spacers
or non-conducting spacer materials such as metal oxides, the prospect of current-
induced ‘tunnelling’ is quite intriguing, in particular if the critical current necessary
to switch the magnetic moments can be substantially reduced.

An approach is presented based on previous experience in dealing with hetero-
junctions [3–8] (for reviews, see, e.g., [9, 10]) and a recently proposed scheme [11] to
correlate ab initio calculated sheet resistances and twisting energies with the current
required to induce the switching, both being based on the concept of non-collinear
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magnetic configurations. In order to illustrate the various features to be seen in the
case of heterojunctions, two types of systems were considered, namely vacuum and
Ge as spacer materials. Furthermore, since a realistic non-metallic spacer material
can show structural disorder, this was simulated by considering two types of
chemical disorder by means of the statistical distribution of ‘holes’ either homo-
geneously or inhomogeneously in a Ge spacer in terms of the Coherent Potential
Approximation [12, 13]. Clearly, using vacuum as a spacer is a kind of academic
exercise, which, however, is quite illustrative for showing the establishment of
‘tunnelling’. Disorder, on the other hand, can create non-collinear (magnetic) ground
states, the interplay between ‘tunnelling’ and non-collinear ground states therefore
being perhaps the main feature to be encountered in current-induced switching in
heterojunctions. Whether or not heterojunctions can serve as current-induced
switching devices will in the first place depend on how well interdiffusion at the
interfaces and the structural properties of the spacer can be controlled experimen-
tally. Viewed in this context the present paper can only hint at the actual difficulties
to be met.

The paper is organized as follows. First, theoretical concepts such as non-
collinear magnetic structures, twisting energies, sheet resistances, currents and
switching times are briefly summarized. In this section a qualitative condition for
the occurrence of ‘tunnelling’ is also given using complex Fermi energies. In the
subsequent section the results for the various types of spacers considered are
presented. Finally, in the last section an attempt is made to classify the occurrence
of non-collinear (magnetic) ground states and the critical current in terms of
an expansion for the twisting energy, in which the first terms correspond to the
well-known interlayer exchange energy and the anisotropy energy.

2. Theoretical concepts

If within the (non-relativistic) Density Functional Theory (DFT) G(z) denotes
the resolvent of the Kohn–Sham–Dirac Hamiltonian,

GðzÞ ¼ ðz�HÞ�1, z ¼ �þ i�,

then within the Kubo–Greenwood equation [10] the diagonal elements of the
conductivity tensor are defined as

��� ¼
�hh

pN0�at

trhJ�ImGþð�FÞJ�ImGþð�FÞi, ð1Þ

where ImGþð�Þ,

ImGþð�Þ ¼
1

2i
ðGþð�Þ � G�ð�ÞÞ,

can be formulated in terms of the so-called side-limits of G(z),

lim
j�j!0

GðzÞ ¼
Gþð�Þ, � > 0,
G�ð�Þ, � < 0:

�
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Usually, multiple scattering theory [13] is applied in order to evaluate G(z) in
the configuration space representation (Green’s function) and to perform the
trace in equation (1). If the system under consideration can be characterized
by two-dimensional translational symmetry (a layered system; one and the same
translational invariance has to apply in all atomic layers) then for a particular
magnetic configuration C the diagonal elements of the conductivity tensor can be
written [10, 12] as a double sum over atomic layers,

���ðC;NÞ ¼
1

N

XN
p, q¼1

�pq��ðC;NÞ,

where

�pq��ðC;NÞ ¼ lim
�!0

�pq��ðC;N; �Þ, ð2Þ

�pq��ðC;N; �Þ ¼
1

4

X2
i, j¼1

ð�1Þiþj�pq��ðC; �i, �j;NÞ,

�i, �j ¼ �F � i�,

and N denotes the total number of atomic layers taken into account.

2.1. Non-collinear magnetic structures

In principle, in a layered system a different orientation of the magnetization can
apply in each atomic layer. Let ni denote the orientations in the individual layers and
nL and nR the orientation of the (possibly magnetic) semi-infinite substrate and the
semi-infinite top, then a typical non-collinear magnetic configuration is defined by

C ¼ fnL, n1, . . . , nN , nRg:

Furthermore, let n0 point along the surface normal and n
0
0 be rotated continuously

around an axis perpendicular to the surface normal by an angle � 2 ½0, p�.
Now consider a magnetic configuration in which nL and ni, i � N=2, are parallel
to n0, and nL and ni, i > N=2, are parallel to n

0
0, then obviously in order to char-

acterize such a configuration it is sufficient to supply only the angle �, i.e. C is
completely specified by �. The parallel magnetic configuration then corresponds
to �¼ 0, and the antiparallel one to � ¼ p. As in the following systems of the
type Fe/spacer/Fe with a non-magnetic spacer are considered, all investigations
are restricted to this type of non-collinear magnetic configuration.

2.2. Twisting energies

Define the so-called twisting energy [11] �Eð�;mÞ as follows:

�Eð�;mÞ ¼ Eð�;mÞ �min½Eð�;mÞ�, ð3Þ

where, for simplicity, m denotes the number of spacer layers; this quantity is positive
definite for all �. It should be noted that the difference Eðp;mÞ � Eð0;mÞ is nothing
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but the well-known interlayer exchange coupling energy, which specifies whether the
coupling of two magnetic slabs separated by a non-magnetic spacer is parallel
(ferromagnetic) or antiparallel (antiferromagnetic). The energy �Eð�;mÞ has to be
regarded as a kind of excitation energy, which, for example by means of an external
magnetic field, has to be supplied in order to move the system from the ground state,
min½Eð�;mÞ�, to a state referring to a different, in general non-collinear, magnetic
configuration.

Furthermore, since, in principle, in the case of heterojunctions the spacer can be
inhomogeneously disordered, in the following the notation �Eð�; x,mÞ is generally
used, where x is an m-dimensional vector whose elements specify the concentrations
of two chosen constituents in each spacer layer. In the case of a homogeneous
alloy forming the spacer x ¼ xI, I ¼ ð1, 1, . . . , 1Þ, for an ordered system x ¼ I. If
interdiffusion occurs at the interfaces between the magnetic slabs and the spacer
then x has to also include a few layers of the magnetic slabs.

2.3. Sheet resistances

Making use of complex Fermi energies, EF ¼ �F � i�, then according to equation (2)
the sheet resistance for a given magnetic configuration characterized by a particular
value of � is defined by

rð�; x,mÞ ¼ lim
�!0

rð�, �; x,mÞ, ð4Þ

where

rð�, �; x,mÞ ¼
XN
i, j¼1

�ijð�, �; x,mÞ,

XN
k¼1

�ikð�, �; x,mÞ�kjð�, �; x,mÞ ¼ �ij ,

and N consists of m spacer layers and a sufficient number of layers of the lead
material. In the present investigations, 12 Fe layers were included on each side of
the spacer, i.e. N ¼ mþ 24. The sheet resistance rð�; x,mÞ is related to the resistance
Rð�; x,mÞ via the relation rð�; x,mÞ ¼ A0Rð�; x,mÞ, in which A0 denotes the unit
area, and to �CPPð�; x,mÞ, the resistivity in the current perpendicular to the planes of
atoms geometry (CPP), via rð�; x,mÞ ¼ L�CPPð�; x,mÞ, where L is the overall length
of the structure for which the conductivity is calculated.

2.4. Physical significance of the imaginary part of the Fermi energy

Suppose that, in the Kubo–Greenwood equation (see equation (1)), the current
operator can be approximated by a constant,

� � trhImGþð�FÞImGþð�FÞi � n2ð�FÞ, ð5Þ

which, in turn, implies that the sheet resistance can approximately be written as

r ¼ L� ¼ L��1 ¼ Ln�2ð�FÞ:
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Furthermore, suppose the density of states nð�FÞ in equation (5) is calculated using
complex Fermi energies, EF ¼ �F þ i�, �>0,

rð�Þ ¼ L= �ð�Þ ¼ Ln�2ð�F þ i�Þ:

Then from the properties of the density of states,

d½nð�F þ i�Þ�

d�
¼

>0, ‘non-metallic’,
<0, ‘metallic’,

�

it follows immediately that

d½rð�Þ�

d�
¼

>0, ‘metallic’,
<0, ‘non-metallic’:

�

The functional form of the actually calculated sheet resistance with respect to the
imaginary part of the Fermi energy can therefore be used to qualitatively interpret
the underlying type of conductance

d½rð�; x,m; �Þ�

d�
¼

>0, ‘metallic’,
<0, ‘non-metallic’:

�
ð6Þ

The last equation indicates inter alia that, in the case of a negative slope of the sheet
resistance with respect to �, ‘tunnelling’ might occur. The parameter � obviously acts
as a (small) constant self-energy: in the regime of metallic conductance, an increase
in the self-energy implies increased resistivity (sheet resistance); in the non-metallic
regime, an increase in � reduces the resistance, and the system becomes more
metallic. Equation (6) will be used to indicate in which system and at what value
of � ‘tunnelling’ seems to occur. It turns out that the condition in equation (6) is
quite useful, in particular in the case of disordered spacers. However, since this
equation only states a qualitative condition, above and in the following the term
tunnelling appears within quotation marks.

2.5. Currents

The corresponding current Ið�; x,mÞ can be defined [11] in terms of the twisting
energy �Eð�; x,mÞ (see equation (3)) and the sheet resistance rð�; x,mÞ,

Ið�; x,mÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0�Eð�; x,mÞ

�ð�; x,mÞrð�; x,mÞ

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA0i

h�ð�; x,mÞi

s
I0ð�; x,mÞ, ð7Þ

where �ð�; x,mÞ is the time needed to accomplish such a rotation by �. In
equation (7), hA0i and h�ð�; x,mÞi denote the magnitudes of the corresponding
quantities within the international system of units; I0ð�; x,mÞ will be referred to
below as the reduced current, which depends only on the twisting energy and the
sheet resistance. At zero temperature (the temperature at which ab initio calculations
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are performed) the twisting energy corresponds to the free energy such that, to
determine the times �ð�; x,mÞ, the Landau–Lifshitz–Gilbert equation can be applied
using the following kth-order power series in cosð�Þ:

�EðkÞð�; x,mÞ ¼
Xk
s¼0

asðx,mÞðcosð�ÞÞ
s: ð8Þ

The only quantity in equation (7) that cannot be determined theoretically is the unit
area A0, since it is an experimental parameter, which, of course, depends very much
on the design of the prepared samples.

Finally, let �0 denote the ground state,

Eð�0; x,mÞ ¼ min½Eð�; x,mÞ�, ð9Þ

then quite obviously

Ið�0; x,mÞ ¼ 0: ð10Þ

The critical current, namely the current that has to be applied to excite the system
from a collinear ground state �0 to a collinear final state, can then be defined as

Ið�1; x,mÞ ¼ maxfIð�; x,mÞg

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA0i

h�ð�1; x,mÞi

s
I0ð�1; x,mÞ, ð11Þ

i.e. it refers to the maximal value of Ið�; x,mÞ with respect to � 2 ½0, p�. Below it will
be seen that if the (magnetic) ground state refers to a non-collinear configuration �1,
then the definition in equation (11) has to be modified.

2.6. Switching times

For layered systems (two-dimensional translational invariant systems) the
Landau–Lifshitz–Gilbert equation can be written in the following form [11]:

d~nn

dt
¼ �� ~nn�H

eff
ðx,mÞ þ �~nn� ð~nn�H

eff
ðx,mÞÞ,

~nn ¼ nxex þ nyey þ nzez, ð12Þ

where � is the (Gilbert) gyromagnetic ratio, � the dimensionless Gilbert damping
parameter, ex, ey and ez are unit vectors and ~nn refers to the direction of the magnetic
moment M averaged over all layers with magnetic moments Mi forming the
magnetic slab that is rotated,

~nn ¼
M

M0

, M ¼
1

N

XN
i¼1

Mi: ð13Þ

It should be noted that, in equations (12) and (13), it is assumed that all moments
are uniformly oriented in the rotated part of the system, i.e. they are not only
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ferromagnetically ordered within the atomic planes (translational invariance), but
also with respect to different planes.

At zero temperature the internal effective field H
eff
ðx,mÞ in equation (12) can be

associated with the change in the total energy Eðx,mÞ with respect to M,

H
E
ðx,mÞ ¼ �

@Eðx,mÞ

@M
¼ �rMEðx,mÞ: ð14Þ

Restricting the expansion in equation (8) to a third-order series in cos� and
rewriting, for simplicity, the coefficients there as

a ¼ �a1ðx,mÞ, b ¼ a2ðx,mÞ, c ¼ a3ðx,mÞ, ð15Þ

�EðM; x,mÞ ’ �Eð3Þð�; x,mÞ, ð16Þ

then, provided that the rotational axis is the x axis (nx ¼ 0Þ,

M�H
E
ðx,mÞ ¼ exMyH

E
z ðx,mÞ

¼ �nyð�aþ 2b nz þ 3cn2zÞex, ð17Þ

and

M� ðM�H
E
ðx,mÞÞ ¼ �nyð�aþ 2b nz þ 3cn2zÞ

� ðMz ey �My ezÞ: ð18Þ

Furthermore, since n2y þ n2z ¼ 1, equation (12) reduces to

M0

dnz
dt
¼ �ð1� n2zÞð�aþ 2b nz þ 3cn2zÞ, ð19Þ

which can be integrated directly assuming that nz 6¼ �1 or ð�b� ðb2 þ 3acÞ1=2Þ=3c
and b2 þ 3ac > 0, c 6¼ 0. The time � needed to change nz from the initial orientation
niz to the final orientation nfz is then given [11] by

� ¼
M0

�
ð�1 þ �2 þ �3Þ, ð20Þ

with

�1 ¼
1

2½ð3c� aÞ � 2b�
ln

nfz þ 1

niz þ 1

�����
������ ln

nfz � 1

niz � 1

�����
�����

" #
,

�2 ¼ �
b

ð3c� aÞ2 � 4b2
ln

3c nfz

� �2
þ2b nfz � a

3c niz
� �2
þ2b niz � a

�������
�������,
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�3 ¼
1

ð3c� aÞ2 � 4b2
að3c� aÞ þ 2b2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 3ac

p
" #

� ln
ðbþ 3cnfzÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 3ac

p
ðbþ 3cnizÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 3ac

p �
ðbþ 3cnizÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 3ac

p
ðbþ 3cnfzÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 3ac

p
�����

�����:
Since, at present, there is no quantum mechanical expression for the damping factor
�, in the following the choice �¼ 1 is used. The corresponding switching times will be
referred to as the minimal switching time [11]. For bulk Fe the experimental damping
factor is about 0.5 [14, 15] and for Fe single films it is 1.5 [16, 17]. Therefore,
choosing a damping factor of 1 for Fe heterojunctions would appear to be quite
realistic.

3. Computational details

For all systems investigated, the parallel configuration was calculated self-
consistently with n0 pointing along the surface normal by using the fully relativistic
Screened Korringa–Kohn–Rostoker method [13] and the density functional para-
meterization of Vosko et al. [18]. Chemical disorder (the alloy problem) was treated
in terms of the (inhomogeneous) Coherent Potential Approximation [13]. The twist-
ing energies were then obtained via the magnetic force theorem [19] by calculating
the grand potentials Eð�; x,mÞ [10, 13] in equation (3) using a sufficient number of
k points in the Surface Brillouin zone in order to guarantee stable convergence.
The sheet resistances rð�; x,mÞ were evaluated in terms of the fully relativistic
Kubo–Greenwood equation [10, 12], again using a sufficiently large k set. In both
types of calculations the angle � was varied between 0 and 180� in steps of 15�.
Layer relaxations were not included in either type of calculation, i.e. in all investi-
gated systems the interlayer spacing is uniformly that of bcc Fe, namely 1.3942 Å.
The derivative of �Eð�; x,mÞ with respect to cosð�Þ (see equation (8)) was deter-
mined numerically by a linear least-squares fitting procedure [20], since then
�ð�; x,mÞ can easily be calculated with sufficient accuracy for any value of �
between 0 and p.

4. Results

4.1. The system Fe/vacuum/Fe

Although the system (bcc)-Fe/Vacn/Fe [3] is only academic, it has the advantage that
no questions arise concerning the actual structure and composition of the spacer.
By considering one to five vacuum layers, the width d of the vacuum barrier changes
from about 1.39 to 6.97 Å. From figure 1, showing the sheet resistances rð�; �; x,mÞ
for � ¼ 0, 2 and 3mryd displayed versus the rotation angle �, it is immediately
evident that ‘tunnelling’ (see equation (6)) not only depends on d, but also on �:
for m¼ 1 and m¼ 3, ‘tunnelling’ seems to occur only for � greater than about 150
and 120�, respectively, whereas for m¼ 2 and m� 4, the sheet resistance rð�; �; x,mÞ
is always larger for �¼ 0 than for finite values of �. This is an interesting observation,
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since, in realistic systems, in which the spacer is formed by a material that,
as bulk material, is either semi- or non-conducting, a situation similar to the case
of m¼ 1 or 3 can occur, caused, for example by finite spacer thicknesses, structural
rearrangements, etc.

Figure 2 shows the reduced current I0ð�; x,mÞ versus the rotation angle. As
can be seen, I0ð�1; x,mÞ, the reduced critical current (see equation (11)), does not
necessarily correspond to a collinear magnetic configuration. Clearly, since rð�; x,mÞ
increases dramatically with increasing m, I0ð�1; x,mÞ vanishes rapidly. This is shown
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Figure 1. Properties of the sheet resistance rð�, �; x,mÞ as a function of the rotation angle �
and the imaginary part � of the Fermi energy for the system Fe/Vacn/Fe. Full symbols refer
to �¼ 0, open squares to �¼ 2 and open circles to �¼ 3mryd. The number of vacuum layers
is shown.
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in figure 3 together with �1ðx,mÞ. It should be noted that, for graphical reasons,
the sheet resistance in this figure is displayed in units of 10�12 �m2.

4.2. The system Fe/Gem/Fe

For the heterojunction bcc-Fe/Gem/Fe [4], four cases were considered, namely
m¼ 12, 15, 18 and 21, thus comprising a range of spacer thicknesses d between
16.73 and 29.28 Å. Figure 4 shows the dependence of the sheet resistance with respect
to the imaginary part of the Fermi energy for these four cases versus the rotation
angle �. As can be seen for all four spacer thicknesses, ‘tunnelling’ seems to occur
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Figure 2. Reduced current I0ð�; x,mÞ as a function of the rotation angle � for the system
Fe/Vacn/Fe. The number of vacuum layers is shown.
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only for values of � much greater than 90�. Inspecting the cross-over point
more closely, one can see that, with increasing spacer thickness, this point moves
to smaller values of �, perhaps indicating that, for a sufficiently thick spacer,
‘tunnelling’ applies for all values of �.

Figure 5 shows the reduced currents for these four cases with respect to �, and
the corresponding reduced critical currents Ið�1; x,mÞ and the respective �1ðx,mÞ
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Figure 3. Sheet resistance rð�1; x,mÞ, reduced critical current I0ð�1; x,mÞ and �1ðx,m)
versus the number of vacuum layers. Note that the angle �1ðx,mÞ characterizes the maximum
of I0ð�1; x,mÞ (see equation (11)).
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values are displayed in figure 6 versus the number of Ge layers. Clearly, Ið�1; x,mÞ
decreases rapidly with increasing spacer thickness. Surprisingly, however, for m ¼ 18
and 21 the value of �1ðx,mÞ no longer corresponds to a collinear arrangement.
This implies, for example in the case of m¼ 21, that at least Ið�1; x,mÞ has to be
applied in order to switch the system from the parallel configuration (ground state)
to the antiparallel configuration.

4.3. The system Fe/(GexVac1�x)m/Fe

Since the actual structure of a spacer in a heterojunction does not necessarily have
to follow the stacking sequence of the leads, two different types of disorder were
investigated, namely: (a) the case of a homogeneously disordered spacer consisting
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of Ge and ‘holes’, statistically placed on lattice positions, i.e. for the spacer
a disordered ‘alloy’ of type GexVac1�x was considered [4]; and (b) the case of an
inhomogeneously disordered spacer with alternating concentrations [4] (see the
following section). Such an approach is particularly appropriate, since very often
because of the usual experimental preparation techniques such as sputtering, etc.,
the actual structure of the spacer is little known.

As an example of the first case, figures 7–9 consider a heterojunction with
a spacer consisting of 12 homogeneously disordered atomic layers (d ¼ 16:73 Å).
From the figure displaying the reduced current (figure 7) it is clear that 10% statis-
tically distributed ‘holes’ is sufficient to cause the system to assume a non-collinear
ground state, implying that switching can occur between this state and both collinear
magnetic configurations. Therefore, if in equation (9) �0 6¼ 0, p then two different
times can be distinguished,

�ðx,mÞ ¼
tð0,�0; x,mÞ,
jtð�0, p; x,mÞj,

�
ð21Þ

m = 21
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Figure 5. Reduced current I0ð�; x,mÞ for Fe/Gem/Fe, m¼ 12, 15, 18 and 21.
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where tð�i,�j; x,mÞ is the minimal time needed to force the system from the state
corresponding to �i into the state corresponding to �j, such that the following
convention can be adopted:

Ið�; x,mÞ ¼
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA0=�ð�; x,mÞi

p
I0ð�; x,mÞ, � � �0,

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA0=j�ð�; x,mÞji

p
I0ð�; x,mÞ, � � �0,

8<
:

and consequently two different critical currents can be defined,

I þð�1; x,mÞ ¼ max Ið�; x,mÞj� � �0

� 	
,

I �ð�1; x,mÞ ¼ min Ið�; x,mÞj� � �0

� 	
: ð22Þ
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Figure 6. Reduced critical current I0ð�1; x,mÞ and �1ðx,mÞ for the system Fe/Gem/Fe.
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Clearly, if �0 ¼ 0 or p, then switching takes place between the two collinear
magnetic configurations, one of which is the ground state, and �1ðx,mÞ characterizes
the maximum of Ið�; x,mÞ with respect to � 2 ½0, p�. If, however, �0 6¼ 0, p then
two kinds of reduced critical currents I0ð�1; x,mÞ can be distinguished according
to the possible intervals �1 2 ½0,�0� and �1 2 ½�0, p�.

This can readily be seen from figure 7, since, for x ¼ 0:9, the value of the reduced
current at � ¼ p is much smaller than at �¼ 0. For x ¼ 0:8 (and all concentrations
less than 0.8, not shown), �0 is at p=2 with I0ð�1 � p=2; x,mÞ and I0ð�1 > p=2; x,mÞ
being approximately of the same size.

Figure 8 shows the corresponding sheet resistances for different values of �.
It is clear from this figure that a few percent of ‘holes’ statistically distributed in the
spacer is sufficient to destroy the ‘tunnelling’ properties present in the corresponding
ordered spacer for � > 135�. With disorder present, metallic-like conductance
seems to characterize the electric transport properties of the system. Finally, figure 9
summarizes the situation for a Ge spacer homogeneously disordered by ‘holes’: the
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Figure 7. Reduced current I0ð�; x,mÞ versus � for the heterojunction Fe/Ge/Fe with
12 homogeneously disordered spacer layers for x ¼ 0:8 (diamonds), 0.9 (circles) and 1.0
(squares).
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magnetoresistance (top), defined, in general, as

MRð�; x,mÞ ¼
rð�; x,mÞ � rð0; x,mÞ

rð�;x,mÞ
,

at � ¼ p immediately decreases from about 50% to only a few percent for x ¼ 0:9
and vanishes completely for x � 0:8. The reduced current at �¼ 0 increases sharply
for x � 0:8, while that at � ¼ p drops to zero. It should be recalled from figure 5
that for 12 Ge spacer layers the antiparallel configuration is the ground state.
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4.4. The system Fe/(Ge1�xVacx)(GexVac1�xÞ . . .(Ge1�xVacx)/Fe

As the second type of disorder a Ge spacer was chosen with alternating concentra-
tions in 15 layers, namely Fe/(Ge1�xVacx)(GexVac1�xÞ . . .(Ge1�xVacx)/Fe [4], i.e. an
inhomogeneously disordered system (d ¼ 20:91 Å). In this particular case the vector
x is defined as x ¼ ð1� x, x, 1� x, x, . . . , 1� xÞ. Clearly, if x¼ 1 the spacer consists
of alternating empty planes and ordered planes of Ge atoms: Fe/Vac/Ge/Vac/	 	 	/
Vac/Fe. For x ¼ 0:5, one obtains an equi-concentrational homogeneously disor-
dered system as discussed in the previous section. For x¼ 0, one obtains the
other kind of termination, namely the stacking sequence Fe/Ge/Vac/Ge/	 	 	/Ge/Fe.
Only the more interesting cases of x � 0:5 are investigated here.
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for the system with 12 homogeneously disordered Ge layers.
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Figure 10 shows the reduced currents I0ð�; x,mÞ for x¼ 0.8, 0.9 and 1.0. As can
readily be seen, for x<1 a non-collinear ground state is preferred, while for x¼ 1
the parallel configuration is lowest in energy. Furthermore, for x¼ 1 the reduced
current has a maximum that is not located at either � ¼ 0, p or p=2. The sheet
resistances in figure 11 demonstrate that, for x¼ 1, ‘tunnelling’ seems to apply for
all values of �, which, however, is immediately destroyed on introducing inhomo-
geneous disorder. For concentrations x � 0:9, metallic behaviour characterizes the
conductance. Finally, figure 12 summarizes the situation for this type of disorder.
As can be seen the magnetoresistance at � ¼ p immediately decreases almost to zero
at x ¼ 0:9 and vanishes completely for lower concentrations. The reduced currents
at �¼ 0, p=2 and p show interesting behaviour, since only for x > 0:8 do changes
occur: the values at �¼ 0 and p show a maximum at about x ¼ 0:95 and then
drop either to zero (�¼ 0), or (� ¼ p) are almost identical to that at � ¼ p=2
(see also figure 10).
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Figure 10. Reduced current I0ð�; x,mÞ versus � for the heterojunction Fe/Ge/Fe with
15 inhomogeneously disordered Ge layers, x ¼ 0:8 (diamonds), 0.9 (circles) and 1.0 (squares).
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4.5. Switching times

Figure 13 shows the minimal switching times tð�i,�j; x,mÞ for the system
Fe/Vacn/Fe versus the number of vacuum layers. In order to understand these results
properly, it is useful to inspect in figure 14 the variation of the expansion coefficients
of �Eð�; x,mÞ as defined in equation (15), in which, as should be recalled, a corre-
sponds to the (negative) coefficient for cos�, which governs the interlayer exchange
term, and b corresponds to that for cos2 �, i.e. to the anisotropy term. As can be seen
from figure 2 for m¼ 1, 2 the ground state corresponds to the antiparallel config-
uration (a<0), while for m¼ 3 it is the parallel configuration (a>0). For m� 4
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Fe/Ge/Fe with 15 inhomogeneously disordered Ge layers for x ¼ 0:9 and 1.0. Full symbols
refer to �¼ 0, open squares to �¼ 2 and open circles to �¼ 3mryd.
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the twisting energy is mostly determined by the anisotropy term (jbj � jaj). The
peak in the minimal switching time at m¼ 3 has to be related therefore to the fact
that, in this particular case, both a and b are positive and of reasonably large size.
This can also be seen from the corresponding entry for m¼ 3 in figure 2, where the
reduced current for this case is displayed.

Figures 15 and 16 are particularly interesting, since they show the transition from
metallic conductance to tunnelling and the transition from a non-collinear ground
state to a collinear one in terms of minimal switching times. From figure 7 it is clear
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that, in the caseofa12MLthickhomogeneouslydisorderedGespacer, thegroundstate
for x ¼ 0:9 corresponds to �0 ¼ 135�, namely to a concentration at which metallic
behaviour still characterizes the conductance, while for x¼ 1 and � > 135 ‘tunnelling’
seems to occur (see figure 8). Increasing the Ge concentration further implies
that �0 gradually approaches 180

�, which is the ground state x¼ 1 (see also figure 5).
The opposite is the case for the heterojunction consisting of 15 inhomogeneously

disordered Ge layers: only very close to x¼ 1 does the angle specifying the ground
state jump from 90� to zero (parallel configuration). Only then does ‘tunnelling’
appear to occur, whereas, even for x ¼ 0:98, metallic behaviour applies in both
cases for the whole range of �.

Figures 15 and 16 show two minimal switching times tð�i,�j; x,mÞ in the case of
non-collinear ground states, namely tð�i,�0; x,mÞ and tð�0,�j; x,mÞ with �i ¼ 0
(parallel configuration), �j ¼ 180� (antiparallel configuration) and �0 referring
to the ground state. Since, in principle, switching occurs between the ground state
and a collinear final state, all tð�i,�0; x,mÞ are negative (see also, in particular,
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Figure 13. Minimal switching times jtð0, p; x,mÞj for the system Fe/Vacm/Fe.
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equations (21) and (22)). This is also the reason why the value for x ¼ 0:95 is
negative in figure 15. It should be recalled that, in the case of the homogeneously
disordered spacer for x > 0:9, the angle �0 gradually approaches 180�. Therefore,
the representation of this particular point in figure 15 was deliberately chosen so that
the transition from a non-collinear ground state to a collinear ground state could
best be illustrated. For the inhomogeneously disordered Ge spacer a non-collinear
ground state pertains until very close to x¼ 1.

Again, the expansion coefficients for the twisting energy in figure 14 serve as
an excellent tool for interpreting the obtained results for the minimal switching times
for disordered Ge spacers. In both cases, for x < 0:9 a reasonably large (negative)
anisotropy term ties the ground state to �0 ¼ 90� (jbj � jaj). It should be noted that
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the conditions b<0 and jbj � jaj are the actual reason for the occurrence of a non-
collinear ground state: the anisotropy term has to be negative and larger than the
interlayer exchange term. In both cases the coefficient b has a minimum for
0:9 < x � 1 and is again reasonably small for ordered systems, the position of this
minimum being very close to x¼ 1 for the inhomogeneously disordered system.
Because the sign of a is different in the two types of disorder, in one case the ground
state corresponds to an antiparallel configuration, and in the other to a parallel
configuration, which in turn explains the jump in the minimal switching time for
the inhomogeneously disordered Ge spacer very close to x¼ 1.

5. Discussion

It would appear that, essentially, two basic concepts can be used to characterize
current-induced switching in heterojunctions (at least in those investigated here),
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namely (1) the analytic properties of the sheet resistance with respect to the imagin-
ary part � of the Fermi energy, and (2) the size and sign of the expansion coefficients
for the twisting energy in a power series in cos�, � being the relative angle between
the orientations of the magnetization in the magnetic slabs. The � dependence of the
sheet resistance is perhaps less interesting, because, with the exception of a very few
cases, it can be fitted sufficiently accurately using a first-order polynomial in cos�,
for example of the form

rð�; x,mÞ ’ Að1� cos�Þ: ð23Þ

In terms of a real space Kubo–Greenwood implementation [21], i.e. in a formu-
lation in which different k-convergence properties at different values of � cannot
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Figure 16. Minimal switching times tð�i,�j ; x,mÞ for the heterojunction consisting of
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indicated, and �0 corresponds to the ground state. Full circles, �i ¼ 0�,�j ¼ �0 ¼ 90�; full
squares, �i ¼ �0 ¼ 90�,�j ¼ 180�; open diamonds, �i ¼ 0�,�j ¼ �0 ¼ 180�.
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obscure the analytical properties, it was shown that the variation of the sheet
resistance is strictly linear with respect to the imaginary part of the Fermi energy.
The criterion for distinguishing metallic conductance from tunnelling therefore
appears to be very reasonable. It is indeed surprising to discover that, in some
systems, the occurrence of ‘tunnelling’ (see, e.g., figure 4) depends on �, which
implies that in one collinear configuration metallic conductance can apply, while
in another ‘tunnelling’ is characteristic.

The expansion coefficients a and b for the twisting energy (see equations (8) and
(15)) can be used for a rough characterization of the twisting energy and the reduced
critical current I0ð�1; x,mÞ (see table 1) in which �0 again specifies the ground state
and �1 the reduced critical current. Taking also the third coefficient into account,
the shifting of �0 or �1 to values other than 90� can be described.

Clearly, in order to be a useful effect, current-induced switching needs to
lead to a final state in which the sheet resistance is sufficiently higher than in
the initial ground state, or vice versa. This is definitely the case if the initial state
shows metallic conductance and the final state ‘tunnelling’, as, for example, in
the system Fe/Gem/Fe (see figure 9). The actual size of the magnetoresistance
depends very much on the degree of disorder in the spacer. For x ¼ 0:9 in
Fe/(GexVac1�x)12/Fe switching from the ground state at �0 ¼ 135 to the antipar-
allel final state yields a magnetoresistance of only 1.3%, and to the parallel final
state 5.7%. This again shows that, as in all other investigations of enhanced
magnetoresistance effects, the crucial problem is the quality of the interfaces
(e.g., the presence of interdiffusion, etc.), and, in particular in the case of hetero-
junctions, also the actual structure of the spacer [6].

Here the effect of structural disorder in the spacer was simulated by consid-
ering two kinds of statistically distributed ‘holes’. This led to the discovery of
non-collinear ground states of the same type as recently described for Py/Cu/Py
spin valves with Cu leads [22]. Clearly, current-induced switching seems, in
principle, to be feasible in heterojunctions in the same manner as for spin
valve systems. The only new feature is the interplay between metallic conductance
and ‘tunnelling’. The theoretical approach applied not only provides a clear
distinction between these two phenomena, but also a rather simple method to
characterize twisting energies (and, consequently, also the reduced currents)
and switching times in terms of the expansion coefficients of the twisting energy
in a power series in the cosine of the relative angle between the orientations
of the magnetization in the magnetic slabs. This, however, requires a fully
relativistic approach, since only then can the orientation of the magnetiza-
tion be defined rigorously and, therefore, the anisotropy effects be included
properly.

Table 1. Collinear versus non-collinear ground states.

a vs. b b Ground state �0 �1

jaj � jbj Collinear 0� or 180� 0� or 180�

jaj � jbj b<0 Collinear 0� or 180� 90�

b>0 Non-collinear 90� 0� and 180�
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