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lntroduction

The theory of groups can be developed as an entiry
independent of its applications as it avoids confusion
concerning what is proper to group theory itself and
what is special to its applications. The mixture of the-
ory and applications tends, in many cases, to obscure
the boundary between them. From this viewpoint,
perhaps the most important aspect of group-theoret-
ical applications ro physics or chemistry is to consisr-
ently disentangle the various conceprs. The three major
issues are the algebraic structure of the group in ques-
tion, its corresponding representation theory usually
referring to the field of complex numbers C (as com,
monly accepted in the quantum theory) and finally,
what is essential to the actual physical application.

Properties of Groups

Although some basic knowledge of the group theory
is assumed, basic properties are repeated here, there-
by also establishing notation and conventions. Let
G:  { r ,g , { , ! ' ,  . . . }  be a group which is  assumed ro
be finite (e.g., point groups), countable infinite (e.g.,
crystallographic space groups), or compact continu-
ous (e.g., the three-dimensional proper rotation
group SO(3, R) whose corresponding universal
covering group SU(2) plays a fundamenral role for
the spin degree of freedom). Recall that a group G is
defined by a set of elements endowed with a certain
algebraic structure. Its composition law

sd : stl
o o d l1l

must satisfy the associative law for ordered triplet
g,d,{' e G of group elements. Likewise, the exist-
ence of the unit element and uniquely defined
inverses for each ge G must be guaranteed. Group-
subgroup relations of the type HcG imply that the
group H forms a subset of G, which itself satisfies the
group properties and hence is called a subgroup of
the group G. A subgroup NcG is called a normal
subgroup if the conjugarion

8Ng-1 : N f l l
l.l

maps the subgroup N onto itself for all ge G. Normal
subgroups play a fundamental role not only when
dealing with images of groups but also when studying
features, such as faithfulness, of group representations.

The order of a group, which, Ioosely speaking, is equal
to the number of its elements, is usually denoted by
the symbol lGl. This symbol implies, for finite groups,
the number of its elements, in the case of countable
abelian groups, the group volume of their dual groups,
and in the case of compact continuous groups, their
group volume where the latter are endowed with
appropriate Haar measures.

Specific relationships between different groups can
be established by means of mappings of the type E :
G-H, where G and H are rwo groups and q(G) :
H defines the mapping in detail. Once the mappings
satisfy the composition law of the image group H,

Ek)E@'):  e(s") I f l

t " l

then such mappings are called homomorphisms, and
the associated kernel, denoted by kerr16y, defines a
nontrivial normal subgroup of the pre-image group G.
In mathematical terms,

kerr lc;  :  {ge G I  Ek) :  eeH}AG l4l

\ l
t " l

Glkerrpl-H

where the entry G/kerq(c) denotes the factor group
and the special symbol { emphasizes that the
subgroup kerrlc; must form a normal subgroup of
the group G. A homomorphism is said to be an iso-
morphism if and only if the kerr16; is trivial, that is, it
consists of the identity element of G only. The map-
ping E : G --+ H is called automorphism if and only if
the group G is mapped onto itself. For more details on
algebraic properties of groups and more advanced
concepts, such as extensions of groups, the reader is
referred to the "Further readinq" section.

Properties of Representations

Every homomorphism E : G--, T(G) of a given group
G into a group of nonsingular transformations
f(G) : {f(g) lC€G} that map an underlying l inear
a-dimensional vector space Vft over the field K onto
itself is called a represenration of the group G if and
only if the corresponding homomorphism property

r(s)r(c') : T(ss') : T(d') 16l
is satisified for all group elements g,g/eG. Such a
general representation is called a linear representation
of the group G if and only if the linearity condition is
satisfied. To be strict, one assumes that

T(g)(au + bw) : aT(g)u + bT (g)w 17l
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for all vectors u,ueVft and all a,beK. In many

applications, especially in quantum mechanics, one

assumes K: C, sometimes one restricts K : R,

whereas for some applications in crystallography,

one even restricts K: Z, where the symbol Z denotes

the ring of integers. For instance, one is inevitably led

to the ring of integers when discussing the auto-

morphisms of Bravais lattices. The restriction to

the elements of the full rotation group O(3, R) :

SO(3, R) x 62, where the symbol 62 : {n,1} denotes

that the inversion group does not influence the state-

ment. It merely restricts the elements of GL(3,2) to

the elements of point groups 9(Ts,^uui"), which are

finite subgroups of O(3, R).

Matrix Representations

Every homomorphism .9 : G --D(G) of a given group

G into a group of nonsingular matrices represented

by D(G) :  {n(S) lg.G},  which are assumed to be

finite-dimensional, is called a matrix representation

of the group G rf and only if the corresponding
homomorphism property

D(g)D(s') : D(ss') : o(9") [8]

is satisfied for all group elements g,8/€G. Every

matrix representation 9(G) : D(G) of the group G

is called faithful if kerric; of the homomorphism is

trivial. Every matrix representation of any group G is

called unitary if and only if

D(s)-' : D(s)t lel
for all group elements g€G. In the case of finite'

countable, or compact continuous groups' it is as-

sumed that every nonsingular matrix representation

can be transformed by means of suitable intertwining

matrices into unitary ones, if K: O is assumed.

However, this statement does not make sense if, for

instance, K: Z, the ring of integers, is chosen. In

this context, it should be noted that matrix groups

are entities in their own right, which need not have

any carrier space in order to be able to define them.

Unitary Operator Representations

A homomorphism e '. G --, U(G) of a given group G

into a group of unitary operators' represented by

U(G) : tU(S) lg€G),  that  maps an under ly ing

Hilbert space 3( over the field C onto itself is called

a unitary operator representation of the group G

if and only if the corresponding homomorphism
property

u(s)U(s') : U(ss') : U(s") l10l

\6,t)y': (U(s)d, u(d,|,)r [11]

is satisfied for all group elements g, / e G, together

with U(g t) : U(s)t for all ge G. Here the symbol
(., .) zr denotes the scalar product of the .4. The

most prominent application of this concept concerns

the quantum mechanical problems, where the sym-

metry operations of any Hamiltonian H have to be

realized as unitary operators in order to conform to

the fundamental rules of quantum mechanics, such as

the invariance of the expectation values of operators

with respect to unitary conjugation operations.

Unitary lrreducible Matrix Representations

The so-called unitary irreducible matrix representa-

tions play the most important role in the vast ma-
jority of group-theoretical applications. Hereafter,

these representations are called unirreps' Their basic

properties are

D((s)D((s') : Dt(ss')

p((s-t) : o((g)T

l12l

l13l

rcT t 
ol"rts)oi,@r :h6s6o,6u, l14l

n ( ( )

t oL,k)oL"(g')- : lGld", l15l
te.d(G) m,n:1 '

where the following notations have been introduced
and further conventions have been adopted. Let
D{(G) : {D((S) lg. c} denote an n(O-dimensional
G unirrep. Moreover, [12] represents the composi-
tion law, [13] represents the unitarity condition, [L4]
illustrates the orthogonality relations, and [15] the
completeness relations of G unirreps' Finally, the
symbol d(G): {4,A,. . . }  denotes the set of  G irrep
labels, whilst the subscripts a, b, and likewise r' s' or
eventually m, n Iabel the rows and columns of the
corresponding G unirreps.

Schur's lemma Let G be a group and D'(G) with
Df (G) two giuen G unirreps. Moreouer, let S be a
matrix swch tbat

D.(s)S: sDo(s) 116l

holds trwe for all growp elements geG. Now, by aP-
plying the orthogonality relations 11'41 of the G un-
irreps and asswming that equiualent G unirreps are
chosen to be, by definition, always identical, one
arriues at the following well-known resub:

I o,,u
\  dt . , '

for u* B
for u: 13

s : 117l
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where, in particular, the notation u* p signifies
inequiualent G unirreps and ahernatiuely a: B
equiualent G wnirreps, respectiuely.

Here the entry Oo,B denotes the rectangular n(u) x
n(fi null matrix, and the entity Lad the square n(a) x
n(a) unit matrix. Here, only the factor 6e C can be
chosen arbitrarily. Schur's lemma, as a special case of
the so-called Wigner-Eckart theorem, is one of the
most frequently used group-theoretical tools in quan-
tum mechanical applications.

Reducible Representations

Let D(G) : {O(S) lSe c} be an n-dimensional ma-
trix representation of the group G. This implies that
the composition law [8] is satisfied. Every unitary
similarity transformation of the G matrix represen-
tation, D(G), defined by some z-dimensional unitary
matrix WeU(n) leads to an equivalent matrix
representation of the group G:

P(s) : wD(g)wI

e(g)r(s') : r(sd)

matrices into a direct sum of small dimensional G
matrix representations. Conversely, a G matrix rep-
resentation D(G) is called irreducible if this matrix
representation cannot be decomposed into a direct
sum of smaller-dimensional G matrix representa-
tions. Note, in passing, that due to the restriction to
consider merely finite, countable, and compact con-
tinuous Lie groups, one need not distinguish between
reducible and completely reducible G matrix repre-
sentations, since reducibility implies complete red-
ucibility provided that the field K : C coincides with
the field of complex numbers.

Irreducibility criterion Let D(G) be an m-dimen-
sional G matrix representation. Its corresponding set
of characters {r(S) lg.G}, where tr D(g) : X(g) is
assumed, has to satisfy

118l

llel

1 \ -
lcl 4'  ' g e G

_ l- t

\fhat is common to these equivalent matrix repre-
sentations D(G)-F(G)-... 

"t" 
the so-called char-

acters of the corresponding equivalent matrix
representations, which by construction are identical:

x@): tr D(g) : tr F(s) : " ' l20l
Accordingly, every set of characters {f(S) lge G} is
an invariant and loosely speaking, the unique finger-
print of the G matrix representations. Sets of char-
acters, say {r(S) lsec} and {X(g) lsec} of any
given group G are either identical (and, hence, the
corresponding matrix representations are equiva-
lent), or different (and the corresponding matrix
representations are inequivalent). Thus, this provides
an important and simple tool to distinguish matrix
representations of any given group G uniquely. Apart
from this. one mav write

where the integer M> 1 is uniquely defined by the G
matrix representation in question. This criterion is
simply applicable and widely used in many practical
applications of group-theoretical methods.

Decomposition of reducible matrix representa-
tions The decomposition of a reducible m-dimen-
sional G matrix representation D"d (G) into a direct
sum of its irreducible constituents is a significant
problem. The consistent sequence of the correspond-
ing decomposition formulas may be summarized as
follows:

D"d(g) :

e
t

e.4(G)

@m(redl()D<(g) [24)

tx\c)l

I .  D(G) is i r reducible 
f??t

M>1,  D(C)  i s  reduc ib le  L - " r

m(redlq :  h! r ' .0{s)x({s)- lzsl
lu l  s_.c

* r l x ( s )12 :  t  m fed lon (o
l\ ' i 8-eG tfrps

:MeZ*  126 l

t
esr'(G)

@m(redl()D<(g) l27l

tr D{(g) : xt(c)

1

* I  xc@)x)@)'  :6ct
l \ r l  - -
'  ' g e G

l21l

o ) 1

which represent the orthogonality relations of the
so-called simple characters that are uniquely assigned
to the corresponding G unirreps. These follow imme-
diately from the orthogonality relations fl.al by simply
carrying out the trace operation for the G unirreps.

A G matrix representation D(G) is called reducible
if and only if this matrix representation can be de-
composed by means of suitable unitary similarity

wro*d1g1w:

{w},,r*o : .Wi;6ua: {WY}i

n(t)

[28]

.?91
L- '  l

o*d(dw?:D of"@wf
b:7
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Several remarks should be made on this set of for-

mulas. First, it should be noted that the unitary m-

dimensional similarity matrix W'is nonsymmetrically
indexed. The row index of W is given by i :

1,2, ...,m, whereas its column index is f ixed by the

ordered triplets ((,*,o), where the G irrep label
( e -il (G) together with the so-called multiplicity in-

dex w : 1,2, ...,m(redl(), and finally the row index

a :  1 ,2,  . . . ,n(9,  of  the G uni r rep D((G) have to be

taken into account. This nonsymmetrical indexing is

common to all types of similarity matrices, for in-

stance, subduction matrices, or Clebsch-Gordan
matrices as a special case of subduction matrices.

Second, it should be realized that the columns

{Wy} of any similarity matrix may be regarded as
symmetry adapted vectors, since the transformation
formulas [29] represent the prototype of symmetri-
zed states. The basic features of symmetrized states
are that they are mutually orthonormal and they
transform according to G unirreps. The computation
of similarity matrices can be done by applying the so-
called projection method, which is briefly discussed
later, since the transformation formulas l29l suggest
this method. Finally, it should be noted that due to
Schur's lemma the similarity matrices W'cannot be
unique and, hence, have to be fixed by adopting
appropriate conventions. The structure of unitary
similarity matrices describing this ambiguity can be
simply deduced by the following statement.

Schur's lemma applied to reducible representa-
tions Let G be a group and @eGL(*,C) an
z-dimensional nonsingular but otherwise arbitrary
matrix. Moreover, 1.t pred@ (G), which symbolizes
the RHS of l27l,be an m-dimensional reducible uni-
tary G matrix representation that is already decom-
posed into a direct sum of its irreducible constituents.
Assume that

lo,D"d@(s)l :  o 130l

for all group elements g€G. By applying Schur's
Lemma to this general situation, one immediately
arrives at the following result:

@ (1o,o Ao((m (redl()))  l31l
)

where the submatrices @e (m(redl()) e GL(m (redl(),
C) are otherwise arbitrary. Of course, if AeU(m),
then Qt(m(redl())e U(m(redl(),0) must be satisfied.
The latter condition reflects the ambiguity of simi-
larity matrices, since 

'W 
and its counterpart"WQ are

equally well suited to describe identically the decom-
position f27f, where the phase matrices of the type
[31] can be chosen arbitrartly.

t
e.d(G

o :
c

The second type of ambiguities emerges from the

nonuniqueness of each G unirrep whose dimension is
greater than 1. Since every similarity transformation

of the type

r((g) : lyctp<@y1yc 132l

by means of an arbitray unitary matrix W< eU(n(()),
yields equivalent G unirreps, they are equally well

suited to be used in any application. One then arrives

at the following formulas:

t
e.d(G

wtD*d(s)W: t @m(red | ()F((c) l33l

V :

t ed (G)

W : \vv l34l

O (1o,o @o((z(redl())) l3sl
)

where, for the sake of brevity, m(redl () : m(a) has

been employed; for m(u) : Q the corresponding
terms vanish. The combination of both types of

ambiguities, namely the occurrence of phase matrices

due to Schur's lemma and the transfer to equivalent

G unirreps, have led to many unnecessary controver-
sies in the literature. Accordingly, it is generally

advised that when comparing results emerging from

different sources, one should check whether the in-

tertwining matrices 
'W 

can be identified by means of
phase matrices of the type [31]. If this fails, then the

results of at least one source are wrong.

Subduced Representations

Let H cG be a given group-subgroup relation,

where, for the sake of simplicity, the index seZ+ of

the subgroup G in the supergroup G is assumed to be
finite. Note that in the case of group-subgroup re-

lations between space groups and sectional layer or
penetration rod groups, which are briefly discussed
later, this simplifying constraint would be violated.
To unify the discussion, let formally

s

c : \  u u 136l

be the left coset decomposition of the group G with
respect to the subgroup .F1, where, for the sake of
distinction, coset representatives qeG are underlined.

Cosets qH are unique, whereas coset representatives
qeG are never unique unless the subgroup is trivial.

By definition, the restriction of any given G matrix

representation) say D(G) : {O(S) lg€ G}, to the el-

ements of the subgroup H is called subduced matrix

representation. Symbolically,

D ( c ) l H :  { D ( h ) l h e H }  l 3 7 l
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which means that only the elements of the subgroup
heH have to be taken into account. Of course, if
D(G) : D((G) forms a G unirrep, then the subduced
matrix representation D<(G)JH will in general be
reducible. Hence, if a complete set of H unirreps, say

{L^(nl)e.{(H)}, are known, the corresponding
decomposition of the H matrix representations
D((G) lH can be carried our along the lines dis-
cussed previously:

o6(g)Jn- I  @mc1,)Lre) [38]
)e .d (H)

t
h e H

t
e.d(H

xt(Dxt(D. l3el

@m((1,)Lr(b) l40l
)

The generalization of these decomposition formulas
to the more general situation of reducible G matrix
representations subduced to H matrix representa-
tions, say D(G)JH, can be readily deduced from
formulas [38], [39], and [40].

Glebsch-Gordan Goefficients

The problem of computing for any group G with
a fixed complete set of G unirreps, say {D((G) |
( e,il (G)j, corresponding Clebsch-Gordan matrices
may be viewed as a special case of constructing, for
subduced matrix representations, suitable similarity
matrices that transform the subduced representation
into a direct sum of its subgroup constituents.

General outer direct-product groups General outer
direct-product groups are groups of the type Gr I Gz
where the given groups G1 and G2 are assumed not to
be isomorphic. Its group elements are, by definition,
the ordered pairs (g1 ,g2), where gteGt and g2eG2
are chosen independently. In mathematical terms,

G t t5^Gz :  { (g r ,gz )  l g r .G r ;  gzeGz}  l 41 l

(g,gz)  *  (g\ ,g ' ) :  (g$\ ,gzg 'z)  [42]

where its composition law, given by 142], is an im-
mediate consequence of the definition of the outer
direct-product set. Moreover, the order lG1 OGzl of
the outer direct-product group Gt@Gz is given by
the product of the orders lGll and lG2l of the
respective groups G1 and G2.

Special outer direct-product groups Let G be a
group and the specific construcrion

cOG :  { (s,s ' )  ls ,s ' .  G)}  :  G'  l43l

its corresponding outer direct-product group, whose
group elements are again the ordered pairs (g,3/),
where, analogously to the general situation, the
group elements g, g/ e G are to be chosen indepen-
dently. Its composition law is again given by the
rule

(s,d)* (g,g') : kE,!E') l44l

and shows, amongst others, that for the order of the
outer direct-product group, IGOGI :Pf must be
valid. Obviously, the subset

GaG :  { (s ,s )  l seG}  :6 tz )  -6  I45 l

must form a subgroup of the outer direct-product
group G @ G which is isomorphic to the original
group G. It is common to denote the special group
G X G as a twofold Kronecker product group. The
generalization to n-foId outer direct-product groups
G" and n-fold Kronecker product groups Gt"l is
immediate.

Unirreps of special outer direct-product groups The
G' unirreps of the special outer direct-product group
G 8 G : G2 are simply obtained by the construction
of ordered pairs of direct matrix products of G un-
irreps, say O6(C) and Dn(G), where (,r1e.d(G).
Accordingly, one can summarize that

Dc@r@,!): o((s)aDo(c') 146l

G@deu(G2) 147)

dim D(@{(g,S')  :  
"(()"@) I48l

for all (S,d).G2, where especially the elemenrs
G,rt) : G@rt) of the index set "&(G2) of the outer
direct-product group G2 arc denoted by the symbols
(t@ri to emphasize the outer direct-produc group
structure. Now, if one restricts G2 to its Kronecker
product subgroup Gt2l,

De@q(G\ JCPI -  D(, , t (G)

: {oE''(d :o((doD4(s) ls.c} l4el

then one arrives at n(()n(a)-dimensional G marrix
representations, which in general are reducible.

Clebsch-Gordan matrices By definition, the corre-
sponding similarity matrices are nothing but the
unitary Clebsch-Gordan matrices whose matrix
elements are the Clebsch-Gordan coefficients. In

1,
m\< l ^ ) :  

lH l

l yup t l 6Swt :
)"
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mathematical terms

oc,n@) 
r

m ( ( , q | 0 :

Induced Representations

By definition, induced matrix representations are

obtained by assuming a given group-subgroup rela-

tion, say HcG with [36] as its left coset decompo-

sition, and extending by means of the so-called

induction procedure a given H matrix representation

D(H\ to an induced G matrix representation

D1G(G). To be more strict, induced G matrix rep-

resentations are defined by the following expressions:gl,wp€,n@19<,n

t  @m(t, ' t l }D(@)
(e .d (G)

t
e.il(G)

@m(t, ' t lqDL@) l50 l

6,e x(G)x't (c)x(@). lsll

o)f fd : 6 ou,st D (s.-1 sb-)

"  (  t .  q - ' sb . .H )
oaH.sb-H: 

I o, other*ise /{cE'' } i p,t*o : cli',6*o :

where, as already pointed out, the corresponding

Clebsch-Gordan coeffi ci ents Cl u1.r* o are nonsymmet-

rically indexed. The row indei bf Clebsch-Gordan
matrices C€"t are given by the ordered pairs (1, A)'

w h e r e  i  : 1 , 2 , . . . , n ( ( )  a n d  k : 1 , 2 ,  . . . , n ( 4 ) , w h e t e -
as their column indices are fixed by the ordered

triplets ((,w,a), where the G irrep label (e-i l(G)

together with the so-called multiplicity index

w :  1,2,  . . . ,m(€,q l ( ) ,  and f ina l ly  the row index a :

1,2,  . . . ,n( ( )  of  the re levant  G uni r reps D((G) have

to be taken into account. The round bracket symbol

occurring on the RHS of [53] is frequently used to

symbolize Clebsch-Gordan coefficients but many

other types of symbols may appear in applications.
Needless to repeat that Clebsch-Gordan matrices

are not unique, which is not only due to Schur's

lemma but also to their representation dependence.

Apart from this, it is worth stressing the possible

appearance of the so-called multiplicity index w in

the case of twofold Kronecker product decomposi-

tions. In fact, the appearance of the multiplicity

index w depends on the structure of the group G in

question. A group G is called simple reducible if and

only if the multiplicities m((,41() occurring in the so-

called Clebsch-Gordan series [52] are at most 1. Ac-

cordingly, a group G is called simple reducible if and

only if

04m( ( ,41 ( )  <  1 Is4]

is satisfied for all G irrep labels (,4,(e.i l(G).

Groups of this type are) for instance' SU(2) or its

homomorphic image SO(3, R), and certainly abelian

groups, whereas in particular three-dimensional cry-

stallographic space group s I are nonsimple reduci-

ble. This has as an important consequence that

an additional ambiguity arises in the computation of

Clebsch-Gordan coefficients and their potential

applications.

ls2l l ' ! \ l
L . - "  I

156l
( 1l':) 's3l

dim DlG(c) : lG : Hl dim D(H) ls7l

where, in part, a matrix representation has been em-

ployed and the notation lG :Hl : s has been intro-

duced to stress the fact that the dimensions of the

induced G matrix representations increase by the in-

dex of H in G. Moreover, if D(H) defines a reducible

H matrix representation, then the corresponding

induced G matrix representation DIG(G) must be

reducible in any case. Conversely, if D(H) : il(H)

defines an,Fl unirrep, then the corresponding induced

G matrix representation DltG(G) still need not nec-

essarily be a G unirrep. On the contrary, induced G

matrix representations of the type Dl1G(G) are in

general reducible and may be decomposed into direct

sums of G unirreps in the same manner as before.

The corresponding decomposition formulas read

o11G(s)- t m()"t Gl()D((g) ls8l
(e i l (G)

n(11 GIO : + t  x^1" (gx( @)- lsel
l \ r l  -.  ' g C U

m()" jGl ( ) :m(( lHl l )  [60]

Sr1c.,Dr1c(g)Sr1c

t  m(^IGl()D((s)
(e. i l (G)

r c , l l G t  -  c , l l G
lJ la_k:(wa 

- oqk;(wa

where the matrix elements S:)2*, of the subduction
matrices SltG are nonsymmetrically indexed. The
row indices of S't1G are given by the ordered pairs
(q, k) where qeG : H and k":  I ,2,  . . . ,n()") ,  where-
as their column indices are fixed by the ordered
triplets ((,*,a), where the G irrep label (ee@)
together with the so-called multiplicity index

[61]

162l



Group Theory 287

w:1,2,  . . . ,m() ' l  Gl ( ) ,  and f ina l ly  the row index
a :1,2,  . . . ,n( ( )  of  the re levant  G uni r reps D((G)
have to be taken into account. Finally, the relations

[60] describe the Frobenius reciprocity law, which,
for instance, is extensively discussed in several text-
books.

Group-Theoretical Methods in Physics

Up to now, exclusively group-theoretical aspects,
such as their algebraic structure and associated prop-
erties, and representation-theoretic aspects with
special emphasis on the decomposition of reducible
representations into direct sums of their irreducible
constituents have been dealt with. This section dis-
cusses how group-theoretical methods can be applied
in physical applications. The physical applications
cover a wide range of, not only quantum mechanics
but also classical applications (e.g., classical mechan-
ics or hydrodynamics are possible candidates for
these methods). Here the discussions are confined to
standard applications in quantum mechanics.

Symmetry Groups of Hamiltonians

The first task is to construct a unitary ope-rator rep-
resentation of a given group, say G, with respect to
the Hilbert space ff, which is the carrier space for
the considered Hamiltonian H in question. Accord-
ingly, it is assumed that there exits a homomorphism
e : G - U(G) of the given group G into a group of
unitary operators which are represented by U(G) -

{U(S) lg€ G} that map the underlying Hilbert space
ff over the field O onto itself.

The group G being represented by the correspond-
ing unitary operator group U(G) : {U(S) l8'e G} is
called a symmetry group of the Hamiltonian H if and
only if the Hamiltonian commutes with all unitary
operatofs:

lH, U(s)l : o VgeG 163)

Moreover, assume that the eigenvalue problem for
the Hamiltonian H has been solved, which implies
that not only the corresponding eigenvalues, denoted
by AeR, but also suitably orthonormalized eigen-
states {@/ l i  :1 ,2,  . . . ,deg ) . }  for  each e igenvalue
are known. The existence of a symmetry group G of
the Hamiltonian H implies

Hol :hai
+ H (u (g)o!; :,t( u(g)oi )

and the "more noncommutative" the symmetry group
G, the more useful the symmetry group G. Once the
so-called symmetry adapted states, which are dis-
cussed below, are known, the application of Schur's
lemma leads at least to a partial solution of the
eigenvalue problem. Obviously if every G-invariant
subspace K^ turns out to be irreducible, then the
eigenvalue problem for H is completely solved, and
the degeneracy of the eigenvalues is sometimes said
to be generic with respect to the group G. Conversely
if some of the subspaces lfn are reducible, then
the degeneracy of the corresponding eigenvalues is
sometimes said to be nongeneric with respect to the
group G.

Symmetrization of States

One of the most popular group-theoretical appli-
cations in quantum mechanics consists of symme-
tr5 adapting given sets of states, say {(D}: {(Dr,
Q2, ...,O,). In mathematical terms, it implies that,
out of the given set of states {(D}, some new
sets of states be constructed systematically whose
elements transform according to given G unirreps
and are mutually orthonormal. Such bases are usu-
ally called G-symmetrized states or simply symme-
try-adapted states. The standard method to achieve
the symmetry adaptation of states is the so-called
projection method. The set of operators

{ E f e }  :  { E f k l 1 e  i l ( G ) ;  i , k : 1 , 2 ,  . . . , n ( 0 }  l 6 s l

r (  n ( ( \  -Ei': 
d L' Dle@\'u(s) 166l

8 € r -

are the so-called units of the corresponding group
algebra -eil(G) whose general elements are arbitrary
linear combinations of the group elements. Clearly, if
and only if G is f inite, then l{Ei}l : lcl, which,
loosely speaking, remains valid if the group G is
countable or even compact continuous but has to be
refined correspondingly, since the group volumes of
their dual groups have to be taken into account. In
fact, this represents a topological subtlety. Apart
from this, one has

{E(,}1 :  Ei\  l R r  K l

- l  - -  - 2
L;kL'i,, : o4ropryIli,

"(()u@)Efk:\ nf,i@n\*
/ - 1

164l

167l

168l

16el

170l

that the corresponding eigenspaces ffL cff, which
are uniquely associated with the eigenvalues ,1 e R the
Hamiltonian H, have to be G-invariant subspaces of
the original Hilbert space K. Clearly, the "bigger"

t
e.4(G

n(.t)

D E'rr:  t*
) k-1



288 Group Theory

where the extra symbol 1y7 denotes the unit opera-
tor of the underlying Hilbert space K. It follows
from t67l and t68l that the operators {Eanrl
(e, i l (G);  k  :  1 ,2,  . . . , " (4) \  are pro ject ion opera-
tors, whereas the remaining operators are shift
operators that interfwine mutually orthogonal sub-
spaces that belong to any given (e,il(G) but differ-
e n t  A :  1 , , 2 , . . . , n ( O .

Step 1 First, one proves that the z-dimensional
subspace which is the linear hull of the set of func-
tions {O1, @2,...,@,} denoted by tr" is in fact a
G-invariant subspace. For simplicity, assume that the
set of functions {(D} forms an orthonormal basis.
Accordingly, (Qi,Qp];"r : \ip for all pairs (p7, Op of
basis functions. By virtue of the transformation law
given by the expressions

u@)ai:f nl{s)au t71)
k:r

o'(s) - t mloo 1c11q1ot 19) l72l
(e . { (G)

dim o@(G) : n

m@aG)l{-)n(C) l73l
)

one defines an z-dimensional G matrix representa-
tion, which in general forms a reducible representa-
tion. Relation [73] presents the obvious dimension
check to be carried out from the outset.

Step 2 Let m(D@(G)l() >0, then one knows that
the corresponding subspaces constructed by means of
the projection operators

trr'' : Et rtr, l74l

dim .trf,'k : m@a G) | g 17 sl

have the same dimension for each k : !,2, ...,n(C),
as otherwise the projection method would contain
inconsistencies.

Step 3 Next, one constructs for the fixed G irrep
Iabel (e,i l(G) (where m(Da(G)l()>O is assumed)
and for a fixed row index, say k: ko:1, an ortho-
normalized basis of the m(Da(G)l()-dimensional
subspace trf"'u' by applying the Gram-Schmidt or-
thonormalization procedure. Symbolically, as a result
of the projection method,

Ef.A.{o}--{v!u( | w : 1,2, ...,m(D@ G)li-)} 176l

Step 4 In order to obtain for the fixed G irrep
label (e.il(G) (where m(D@(G)10>0 is assumed)
the remaining partner functions, one has to employ
the corresponding shift operators:

Yf'* :  Efr,Yi(,  i  :  1,2,. . . ,n(() l78l

<Yf,*,vjq)x:6*,6ir 179)

n(o
uk)Yf,* :, o?,,tslvl,. I8ol

Step 5 Finallg in order to obtain a complete basis
of the n-dimensional G-invariant subspace ff, that
consists of G-symmetrized states which are mutually
orthonormal and which satisfy the transformation
law [80], one has to repeat the steps described
previously for all G irrep labels (e.d(G), where the
corresponding multiplicities rz(Do(G )l() are differ-
ent from zero.

Goupling of Product States

Another important application of group-theoretical
methods in quantum mechanics concerns the coup-
ling of states, where the constituents are assumed to
transform according to G unirreps, and where the
coupled product states likewise should possess spe-

cific transformation properties. Let Yf e#1 and,

equivalently, Af,etr2 be two sets of G-symmetrized
states, where states of the type

L(@4 :Vf  eO[  et r t@tr2 t81]

should be transformed into such linear combinations,
so that the new states transform according to G un-
irreps of the twofold Kronecker product group GI2l
which is isomorphic to G. Starting from the trans-
formation law

u19,g') l \ f f ; '
n\4  )

| {ortn1 d}i a, iatf "?,' 
lszl

k'-1

which refers to the special outer direct-product group
G I G, one readily infers that the product states [81]
transform according to G" unirreps. The aim is
to find such linear combinations of the states [81]
such that they transform according to G unirreps.
The desired transformation coefficients are just the

t
e.4(G

"(E)- \ -- / t

<Ycu:,v:u!>x:6*, l77l
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all such cases, one need not compute the correspond-
ing reduced matrix elements. Not surprisingly, this is

an important statement when investigating selection
rules, such as the Stark effect for the spectral prop-

erti€s of the hydrogen atom, or when dealing with

electron-phonon interactions in solids. However, if

the respective Clebsch-Gordan coefficients are non-
zero, then one has to compute the corresponding
reduced matrix elements, but which might be much

more complicated than to simply compute directly

the original matrix elements.

See also: Group Theory in Materials Science, Applica-
tions; Magnetic Point Groups and Space Groups.
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