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11 The harmonic oscillator
Suppose the Hamilton operator is given by

bH(x) = − ~2
2m

d2

dx2
+ V (x) , (1)

where the potential energy is proportional to the square of the distance from
the origin, i.e., corresponds to the force of a spring

V (x) =
1

2
kx2 , (2)

with k being the so-called force constant. In terms of the frequency ω , ω =p
k/m, the potential energy therefore can also be written as

V (x) =
mω2

2
x2 . (3)

Using now the following coordinate transformation

q =
√
αx , α =

ωm

~
→ d2

dx2
= α

d2

dq2
, (4)

the Hamilton operator reduces to

bH(q) = ~ω
2

½
− d2

dq2
+ q2

¾
. (5)

In the corresponding Schrödinger equation,½
− d2

dq2
+ q2

¾
ψ(q) = bh(q)ψ(q) = 2E

~ω
ψ(q) = �ψ(q) , (6)

the parameter � is a dimensionless quantity.

11.1 Creation- and annihilation operators

Rather than using ”traditional ways” to solve this differential equation in terms
of an asymptotic solution and a polynomial, the properties of the momentum
operator bp , bp = −i ∂

∂q
, (7)

shall be exploited, since according to the uncertainty relation

[bp, q]− = 1

~
[bpx, x]− = −i → i [bp, q]− = 1 , (8)

and therefore
(q + ibp)(q − ibp) = q2 + bp2 + i [bp, q]− , (9)
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(q − ibp)(q + ibp) = q2 + bp2 − i [bp, q]− . (10)

Using the following abbreviations

ba = 1√
2
(q + ibp) = 1√

2
(q +

∂

∂q
) , (11)

ba† = 1√
2
(q − ibp) = 1√

2
(q − ∂

∂q
) , (12)

the operator bh(q) in (6) is given by
bh(q) = bp2 + q2 = baba† + ba†ba (13)

and the Schrödinger equation therefore by©baba† + ba†baªψ(q) = �ψ(q) . (14)

It is easy to show that the commutator of ba and ba† is unity,£ba,ba†¤− = baba† − ba†ba = 1 , (15)

since only (10) has to be subtracted from (9) and the result compared with (8).
Multiplying now the commutator from the right with ψ(q),©baba† − ba†baªψ(q) = ψ(q) . (16)

one can see that the obtain equation is of similar form as the Schrödinger equa-
tion (14). Adding and subtracting these two equations (14 - 16) yields the
following two equations,

baba†ψ(q) = ( �
2
+
1

2
)ψ(q) , (17)

ba†baψ(q) = ( �
2
− 1
2
)ψ(q) , (18)

from which one immediately can read off that ba†ba and ba†ba have the same eigen-
functions as bh(q) , however according to the eigenvalues ( �2 − 1

2) and (
�
2 +

1
2),

respectively.
Multiplying (17) from the left with ba†,

ba†ba|{z}
=(aa†−1)

ba†ψ(q) = baba†ba†ψ(q)− ba†ψ(q) = ( �
2
+
1

2
)ba†ψ(q) , (19)

one easily can see that also ba†ψ(q) is an eigenfunction of bh(q), but corresponding
to the eigenvalue ( �2 +

3
2):

baba† ¡ba†ψ(q)¢ = ( �
2
+
3

2
)
¡ba†ψ(q)¢ . (20)
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Similarly, by multiplying (18) from the left with ba,
baba†|{z}

=(a†a+1)

baψ(q) = ( �
2
− 1
2
)baψ(q) , (21)

one obtains ba†ba (baψ(q)) = ( �
2
− 3
2
) (baψ(q)) , (22)

namely that baψ(q) is again an eigenfunction of bh(q) . Repeating these multipli-
cations with ba†and ba from the left n times, one obtains the following remarkable
equations: baba† ¡(ba†)nψ(q)¢ = ( �

2
+
1

2
+ n)

¡
(ba†)nψ(q)¢ , (23)

ba†ba ((ba)nψ(q)) = ( �
2
− 1
2
− n) ((ba)nψ(q)) . (24)

Because of the last two equations ba†and ba are called step-up and step-down
operators, respectively, or more generally creation and annihilation oper-
ators.
Since the expectation value of bh(q), < bh(q) > has to be positive definite, i.e.,

cannot be negative,

< bh(q) > =

∞Z
−∞

ψ∗(q)bh(q)ψ(q)dq = ∞Z
−∞

ψ∗(q)(bp2 + q2)ψ(q)dq =

= −
∞Z
−∞

ψ∗(q)
d2

dq2
ψ(q)dq

| {z }
partial integration

+

∞Z
−∞

ψ∗(q)q2ψ(q)dq =

= −ψ∗(q)dψ(q)
dq

| ∞−∞| {z }
=0

+

∞Z
−∞

µ
dψ∗(q)

dq

¶µ
dψ(q)

dq

¶
dq +

∞Z
−∞

ψ∗(q)ψ(q)q2dq ,

< bh(q) > =

∞Z
−∞

⎧⎪⎪⎪⎨⎪⎪⎪⎩
¯̄̄̄
dψ(q)

dq

¯̄̄̄2
+ |ψ(q)|2 q2| {z }
≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ dq ≥ 0 , (25)

the annihilation operator ba can only be applied k times, because otherwise the
eigenvalue

�

2
− 2k + 1

2
=

�

2
− 1
2
− k (26)

becomes negative and therefore would correspond to a negative expectation
value of bh(q). If one denotes the wavefunction that belongs to the smallest
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possible eigenvalue by ψ0(q) , then obviously the following relation has to be
valid baψ0(q) = 0 . (27)

Multiplying now from the left with the creation operator ba†, one easily can see
that ba†(baψ0(q)) = (ba†ba)ψ0(q) = ba†(0) = 0ψ0(q) = 0 . (28)

According to (18), however

(ba†ba)ψ0(q) = (�02 − 12)ψ0(q) ,

which implies that (28) can only be the case if

�0 = 1 , (29)

because ψ0(q) = 0, ∀q, is not an acceptable solution, since the norm is identically
zero! The lowest energy eigenvalue of bH(q), E0, (see (6)) is therefore given by

E0 =
~ω
2
�0 =

~ω
2

. (30)

11.2 Eigenfunctions

The eigenfunction ψ0(q) can be obtained by considering the explicit form of ba
(11), which leads to the following differential equation

baψ0(q) = 1√
2

µ
dψ0(q)

dq
+ qψ0(q)

¶
= 0 , (31)

whose solution can be guessed immediately:

ψ0(q) = c0 exp(−q2/2) , (32)

since
dψ0(q)

dq
= −c0q exp(−q2/2) . (33)

The normalization constant c0 follows from the normalization integral

∞Z
−∞

ψ0(q)
∗ψ0(q)dq = c20

∞Z
−∞

exp(−q2)dq , → c0 = π−1/4 . (34)

All other eigenfunctions, namely those belonging to higher eigenvalues of bH(q)
can then be obtained by successive application of the creation operator ba†. For
ψ1(q), for example one gets

ψ1(q) =
c1
c0
ba†ψ0(q) = c1ba† exp(−q2/2) =
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= c1

∙
1√
2
(q − d

dq
)

¸
exp(−q2/2) =

=
c1√
2

£
q exp(−q2/2) + q exp(−q2/2)

¤
=

=
√
2c1q exp(−q2/2) . (35)

In general therefore the n-th eigenfunction ψn(q) is given by

ψn(q) =
cn
cn−1

ba†ψn−1(q) = cn
cn−2

¡ba†¢2 ψn−2(q) = ... =

=
cn
c0

¡ba†¢n ψ0(q) , (36)

or using the explicit form of ba† by
ψn(q) =

cn√
2n

µ
q − d

dq

¶n
exp(−q2/2) . (37)

This last equation can be rewritten by collecting the constant factors in Nn and
multiplying with unity from the left hand side in the following sense:

ψn(q) = Nnexp(−q2/2) exp(q2/2)| {z }
=1

µ
q − d

dq

¶n
exp(−q2/2) =

= Nn exp(−q2/2)exp(q2/2)
µ
q − d

dq

¶n
exp(−q2/2)| {z }

=Hn(q)

=

= Nn exp(−q2/2)Hn(q) . (38)

It can be shown that the explicit evaluation of the normalization constants Nn

yields
Nn =

cn√
2n
=
¡
2nn!
√
π
¢−1/2

. (39)

The functions Hn(q),

Hn(q) = exp(q
2/2)

µ
q − d

dq

¶n
exp(−q2/2) , (40)

are the famous Hermite polynomials, which obey the following recursion
relations

Hn+1(q) = 2qHn(q)−H 0
n(q) , (41)

where

H 0
n(q) =

d

dq
Hn(q) = 2nHn−1(q) . (42)

As can be seen from the table below for the first few values of n the Hermite
polynomials are very simple polynomials in q:
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n Hn(q)

0 1
1 2q
2 4q2 − 2
3 8q3 − 12q

Suppose P is the inversion operator, Pq = −q, then from the above table,
but also from the general form of the Hermite polynomials, the symmetry can
be read off quite easily, namely

bPψn(q) = cn exp(−q2/2)Hn(−q) = (−1)ncn exp(−q2/2)Hn(q) =

= (−1)nψn(q) . (43)

For the eigenfunctions ψn(q) themselves compact relations can be given in
terms of the creation- and annihilation operators

ba†ψn(q) = √n+ 1ψn+1(q) (44)

baψn(q) = √nψn−1(q) (45)

as can be exemplified easily from the first two functions

1

c1
ψ1(q) =

1

c0
ba†ψ0(q) = ∙ 1√

2
(q − d

dq
)

¸
exp(−q2/2) =

=
√
2|{z}

=
√
n+1

q exp(−q2/2) . (46)

It should be noted that the eigenfunctions are products of the exponential func-
tion of the argument −q2/2 and a polynomial of order n (Hermite polynomial).
They have therefore n nodes (zero locations). Quite clearly eigenfunctions be-
longing to different eigenvalues bh(q), baba† or ba†ba are orthogonal (orthonormal):

∞Z
−∞

ψn(q)ψm(q)dq = δnm . (47)

For the first four eigenvalues the corresponding eigenfunctions are displayed
in Figure 17. From this figure one can in particular read off very easily the
inversion symmetry for the eigenfunctions (43). Note that the parabola in this
figure indicates the potential V (x) = 1

2kx
2.
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Figure 17: Eigenfunctions of the harmonic oscillator

11.3 Eigenvalues

Finally, the eigenvalues En of bH(q) can be obtained from the condition that
�0 = 1 (see (30)) and from the eigenvalue equation of baba† , see (17) and (20),

baba†ψn(q) = (�n2 + 12)ψn(q) , (48)

baba†(ba†ψn−1(q)) = (�n−12 +
1

2
+ 1)(ba†ψn−1(q)) , (49)

from which directly follows that

(
�n
2
+
1

2
) = (

�n−1
2

+
1

2
+ 1) , (50)

or
�n = �n−1 + 2 = �0 + 2n = 1 + 2n , (51)

i.e.,

En =
~ω
2 �n = ~ω(n+

1
2) (52)

11.4 Selection rules

The harmonic oscillator quite frequently serves in infrared spectroscopy (IR-
Spectroscopy) as the most simplest model of interpretation. For a molecule
such as

R
Ri C = O ,
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where R denotes a rest such as CH3− or C6H5−, the oscillation of the oxygen
constituent in direction of the C-O bond can be considered to be a harmonic os-
cillation. According to chapter 10, the transition probability for an (absorptive)
excitation is proportional to

Pnm ∼ |dnm|2 δ(En −Em − ~ω) , (53)

where En−Em is the energy difference between two eigenvalues of the harmonic
oscillator and dnm is the expectation value of the electric dipole moment d = eq
(e , elementary electric charge),

dnm ≡ hdnmi =
∞Z
−∞

ψ∗n(q)eqψm(q)dq . (54)

Omitting the normalizations for the eigenfunctions ψm(q) and ψn(q),

ψi(q) ∼ exp(−q2/2)Hi(q) ; i = n,m ,

the electric dipole moment can easily be calculated using the recursion formulae
for the Hermite polynomials in (41) and (42)

qHm(q) =
1
2Hm+1(q) +mHm−1(q) (55)

hdnmi ∼
∞Z
−∞

exp(−q2)Hn(q)
1

2
Hm+1(q)dq +

+

∞Z
−∞

exp(−q2)Hn(q)mHm−1(q)dq =

=
1

2

∞Z
−∞

ψ∗n(q)ψm+1(q)dq +m

∞Z
−∞

ψ∗n(q)ψm−1(q)dq . (56)

Since eigenfunctions to different eigenvalues of bH(q) are orthogonal, this implies
that

= 0 ; |n−m| 6= 1
hdnmi = {

6= 0 ; otherwise
. (57)

The selection rules for the harmonic oscillator are therefore simply given by

∆n = n−m = ±1 (58)

and hence the ”allowed” energy difference is given by

∆E = En+1 −En = {(n+ 1 + 1/2)− (n+ 1/2)}~ω = ~ω (59)
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12 Rotational motions - the rigid and the non-
rigid rotator

References
[1] E.Schrödinger, Ann.Physik 79, 489-527 (1926)

103



13 Quantum statistics and statistical thermody-
namics

13.1 Introduction

Phenomenological thermodynamics provides descriptions of a physical sys-
tem (gas, liquid etc.) based on empirical laws. Statistical thermodynam-
ics describes properties of a macroscopical systems in terms of the properties or
the interactions of its microscopical parts (particles). This implies that (1) the
microscopical properties have to be determined and (2) formal descriptions have
to be developed in order to map microscopical variables onto their macroscopi-
cal counterparts. Since the number N of particles of a macroscopical system is
very large, namely of the order of 1023, it is impossible, but also unnecessary,
to give a one-to-one mapping between the variables in the microcosmos and the
macrocosmos. These mappings have to based on to averages or probability re-
lations. Averages over a macroscopical system, however, can only be performed
if the determination of the microscopical properties is adequate. In principle
one could think of the following scheme of descriptions

⇐
Micro-
scopical
system

⇒

Classical Mechanics Quantum Mechanics
↓ ↓

Classical Statistics
(Boltzmann)

Quantum Statistics
(Bose-Einstein or
Fermi-Dirac)

↓ ↓

⇒
Macro-
scopical
system

⇐

An example is given in the following table, where m is the mass and u
the velocity of the particles and En the n-th energy eigenvalue of a harmonic
oscillator:
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⇐
Micro-
scopical
system

⇒

Averaged translational
energy of a monoatomic
gas at a given
temperature T

Averaged vibrational
energy of a twoatomic
gas at a given
temperature T

Ekin=m
2 |u|2 En=hν(n+1

2)

↓ ↓
Classical Statistics
(Boltzmann)

Quantum Statistics
(Bose-Einstein )

↓ ↓

⇒
Macro-
scopical
system

⇐
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13.2 A short reminder of the theory of probabilities

13.2.1 Relative frequencies

Let S1, S2, . . . , Sn be the results of n individual measurements,

Mn = {S1, S2, . . . , Sn} , (1)

and E1, E2, . . . , Em incidences in Mn. These incidences are subsets of Mn,
Ei ⊂Mn. If |Ei| and |Mn| denote the number of elements in these sets, then

hn(Ei) =
|Ei|
|Mn|

(2)

denotes the relative frequency (occurrence) of the incident Ei in Mn. Quite
clearly such a relative frequency is determined by |Mn|. The probability

p(Ei)

for the incidence Ei is then defined by the following limiting procedure

p(Ei) = lim
n→∞

hn(Ei) . (3)

The two possible trivial cases, namely Ei = {0} (empty set) and Ei =Mn imply
immediately that

0 ≤ p(Ei) ≤ 1 . (4)

If p(Ei) > p(Ej) then the incident Ei is more probable than the incident Ej , if
p(Ei) = p(Ej) then these two incidents have the same probability.
Consider for example that throwing a dice 20 times yields the following

results
M20 = {2, 6, 2, 2, 3, 1, 5, 4, 2, 2, 3, 5, 4, 6, 1, 6, 6, 4, 3, 5} .

The incidence to throw a one, a two etc. was then

E1 = {1, 1} E4 = {4, 4, 4}
E2 = {2, 2, 2, 2, 2} E5 = {5, 5, 5}
E3 = {3, 3, 3} E6 = {6, 6, 6, 6}

or to have only even or odd numbers by

A1 = {3, 1, 5, 3, 1, 3, 5}
A2 = {2, 6, 2, 2, 4, 2, 2, 4, 6, 6, 6, 4}

.

The relative frequency of a one was |E1| / |M20| = 1/10 etc.
Per definition the direct sum of two incidents Ei ∪ Ej is an incident that

either the incident Ei occurs or the incident Ej . From the above example one
immediately can see that

A1 = E1 ∪E3 ∪E5 , A2 = E2 ∪E4 ∪E6 .
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The probability for the sum of two independent incidents E1 and E2, p(E1+E2)
is therefore given by

p(E1 +E2) = lim
n→∞

|E1|+ |E2|
|Mn|

= lim
n→∞

|E1|
|Mn|

+ lim
n→∞

|E2|
|Mn|

=

= p(E1) + p(E2) , (5)

i.e., for two independent incidents Ei and Ej the individual probabilities are
additive

p(Ei + Ej) = p(Ei) + p(Ej) . (6)

Finally if the direct sum over all independent incidents Ei is denotes by
m[
i=1

Ei =Mn , (7)

then from (4) follows immediately that

p(E1 +E2 + · · ·+Em) = p(Mn) =
mX
i=1

p(Ei) = 1 . (8)

13.2.2 Probability functions...

...of discrete variables Let E1, E2, · · ·En be characteristic ”states” of one
and the same object that can be mapped onto the numbers x1, x2 , · · ·xn and
let p1, p2, · · · pn denote the probabilities for the occurrence of these numbers. If
there exists a function defined as follows

pk =W (xk) , (9)

then xk is called a stochastic variable and W the probability function.

...of continuous variables Consider now for a moment a fortune wheel whose
hand can stop anywhere between 00 and 3600. In terms of relative frequencies
the probability for one particular position of the hand is identically zero. If,
however, one asks for the probability of a position between 1800 and 1800+∆x,
then this probability is given by

p =
∆x

360
=W (180)∆x . (10)

If therefore dW (x) denotes the probability for the occurrence of a variable of
coincidence in the interval x and x+ dx then dW (x) is given by

dW (x) = w(x)dx , (11)

where w(x) is the so-called probability density. In analogy to the definition
of relative frequencies in (9) the probability density is normalized to unity byZ

{x}

w(x)dx = 1 , (12)

where {x} denotes the range of x.
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13.2.3 Products of probabilities

The product AB of two incidences A and B is an incidence AB where A as well
as B occur. If the incidences A and B are ”statistically” independent, i.e., the
probability of A is independent of the probability of B, then

p(AB) = p(A)p(B) . (13)

Similar definitions apply for probability densities.

13.2.4 Averages ...

...of variables For discrete variables averages are defined by

x = hxi =
NX
k=1

xkpk , (14)

whereas for continuous variables they are given by

x = hxi =
Z
{x}

w(x)xdx . (15)

The so-called standard deviation ∆x is then a ”traditional” measure for the
deviation of a single value of x from the corresponding average x,

∆x =

q
(x− x)2 , (16)

whereas
∆x =

p
x2 − x2 , (17)

is called a ”fluctuation”.

...of functions Let F (x1, x2, . . . , xn) be an arbitrary function of the con-
tinuous stochastic variables x1, x2, . . . , xn and let w(x1, x2, . . . , xn) be the proba-
bility density for the product of the corresponding single incidences w(x1), w(x2),
. . . w(xn). The average of F , F is then given by

F =

Z
· · ·
Z

{x1,x2,...,xn}

F (x1, x2, . . . , xn)w(x1, x2, . . . , xn)dx1dx2 . . . dxn . (18)

This equation can be written also in the following form

F =

Z
F

FW (F )dF , (19)

where W (F ) is the probability density for the case that F (x1, x2, . . . , xn) as-
sumes exactly the value F ,

W (F ) =

Z
· · ·
Z

{x1,x2,...,xn}

δ (F − F (x1, x2, . . . , xn)) ×
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× w(x1, x2, . . . , xn)dx1dx2 . . . dxn , (20)

and δ(x− y) is the Dirac distribution- (δ-) function:

f(y) =

∞Z
−∞

f(x)δ(x− y)dx ,

∞Z
−∞

δ(x)dx = 1 . (21)

109



13.3 Kinetic gas theory

In many aspects the (”classical”) kinetic theory of a gas of hard spheres was the
precursor to the atomistic picture that in the end lead to the famous Boltzmann
distribution. It is therefore worthwhile as a start to recall the main features of
this theory.

13.3.1 The ”molecular” distribution function

Let
f(r,u, t)dxdydz| {z }

dr

duxduyduz| {z }
du

(22)

be the number of molecules (atoms, hard spheres), which are at the time t at
r in the volume element dr and whose component velocities are in the intervals
[ux, ux+dux], [uy, uy+duy] and [uz, uz+duz]. The six-dimensional space of the
coordinates x, y, z, ux, uy, uz is called phase space. Integrating over all velocities,ZZZ

{ux,uy,uz}

f(r,u, t)drdu =n(r, t)dr , (23)

yields the so-called particle density, namely the number of (velocity indepen-
dent) particles which at the time t are located within the volume element dr.
Integration over the volume element dr,ZZZ

n(r, t)dr =N(t) , (24)

determines the total number of particles at a given time t. Quite clearly the
molecular distribution function f(r,u, t) is not normalized to unity, but to the
number of particles. In the following only equilibrium situations shall be con-
sidered. Obviously the individual gas molecules can move around quite a bit,
the averaged number of particles per volume, however, shall be assumed to be
not time dependent (”steady state approximation”, ”stationary state”),
i.e., to be a constant.

13.3.2 Atomistic picture of the pressure of an ideal gas

Suppose one wants to calculate the pressure p exerted by a monoatomic gas on
the walls of the container. Phenomenologically the averaged force F⊥ perpen-
dicular to a surface element ∆A is given by

F⊥ = p∆A . (25)
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This force can also be viewed as a time average in the interval [t, t+∆t] of the
forces exerted by the individual molecules hitting the wall:

p∆A = (F⊥)gas on wall =
1

∆t

Z
∆t

(F⊥)gas on wall dt . (26)

If p⊥ denotes the momentum of a gas particle perpendicular to ∆A, then the
force the wall exerts on to this particle is given by

(F⊥)wall on gas =
dp⊥
dt

, (27)

and oppositely the force exerted by the gas on the wall by

(F⊥)gas on wall = −
dp⊥
dt

, (28)

The equilibrium obviously is given by

(F⊥)wall on gas = − (F⊥)gas on wall . (29)

Combining therefore (26) and (28) one gets

p∆A∆t =

Z
∆t

µ
−dp⊥

dt

¶
dt = (p⊥)1 − (p⊥)2 = −∆p⊥ , (30)

where (p⊥)1 is the perpendicular component of the momentum of the particle
before the collision with the wall and (p⊥)2 after the collision. From Figure 18
one can see that for one particular velocity u, whose direction forms an angle θ,
0 ≤ θ ≤ π/2, with the surface normal, all those particles with velocity u that are
within the length |u|∆t from the wall will hit the wall within the time interval
∆t, i.e., one can see that all those molecules that are within the volume element
dV = ∆A |u|∆t cos θ will arrive at the wall within ∆t. If one assumes now a
distribution function of velocities, f(u), the number of particles actually hitting
the wall is given by

f(u)∆A |u|∆t cos θ| {z }
dV

du . (31)

Letm denote the mass of the particles then the momentum perpendicular to the
wall for one particular particle is given by m |u| cos θ and the total momentum
therefore by this momentum times the total number of particles, namely

m |u| cos θ × f(u)∆A |u|∆t cos θdu = m∆t∆A
³
|u|2 cos 2θ

´
f(u)du .

The total momentum before the collision ((p⊥)1, (30)) is therefore given by

(p⊥)1 = m∆t∆A

ZZZ
|u|2 cos 2θf(u)du ; 0 ≤ θ ≤ π/2 , (32)
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Figure 18: Atomistic picture of the pressure of an ideal gas

whereas after the collision with the wall the individual momentum is given by
− m |u| cos θ and the total momentum by

(p⊥)2 = − m∆t∆A

ZZZ
|u|2 cos 2θf(u)du ; π/2 ≤ θ ≤ π . (33)

Going now back to (30), one can see that by combining the last two equations,

p∆A∆t = (p⊥)1 − (p⊥)2 =

= m∆A∆t

ZZZ
|u|2 cos 2θf(u)du ; 0 ≤ θ ≤ π , (34)

or that the pressure p can be written as

p = mn

ZZZ
|u|2 cos 2θf(u)n−1| {z }du ; 0 ≤ θ ≤ π , (35)

where n is the particle density as given by the total number of particles N
divided by the volume V andN is according to the ”steady state approximation”
a constant. By including the particle density n to the integral, the quantity
f(u)n−1 is a probability density, since it is normalized to the ”total” particle
density, i.e., since

0 ≤ f(u)n−1 ≤ 1 .

Denoting now by u2⊥ the average of the square of the velocity in z-direction
(direction of the surface normal), then the pressure is given by

p = mnu2⊥ (36)
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If one finally assumes that the velocity distribution is isotropical, i.e., all di-
rections of the velocity, ux, uy and uz, are equally probable,

u2⊥ = u2x = u2y = u2z =
1

3
(u2x + u2y + u2z) =

1

3
u2 , (37)

one gets

p =
1

3
nmu2 . (38)

By denoting the averaged kinetic energy of a gas molecule (particle) by �t,

�t =
m

2
u2 , (39)

for an isotropic velocity distribution the pressure is then defined by

p =
2

3
n�t =

2

3

N

V
�t . (40)

Since the total number of particles N can be written as a multiple of the Avog-
ardo (Loschmidt) number L , N = νL, the pressure can be written also in
the following form

p =
2

3

νL

V
�t , (41)

or alternatively one gets

pV =
2

3
νL�t . (42)

If one compares this equation with the famous equation for an ideal gas,

pV = vRT , (43)

where T is the temperature, one immediately can deduce that

�t =
3

2

µ
R

L

¶
T =

3

2
kT , (44)

or alternatively find an ”atomistic-like” definition for the temperature

T =
2

3
k−1�t . (45)

In the last two equations k is the famous Boltzmann constant, k =1.38.10−23

J/K. Using (39) and (44),

u2 =
3kT

m
=
3RT

mL
=
3RT

μ
, (46)

where μ = mL is the molecular weight [g] one easily can calculate the averaged
velocity

√
u2 at a given temperature T . For He at T=273 K one gets for example√

u2 ∼1300msec−1.
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13.3.3 Maxwell-Boltzmann distribution of velocities

Suppose the velocity distribution f(r,u, t) is rewritten as a product of the par-
ticle density n(r, t) and a distribution F (r,u, t) normalized to unity,

f(r,u, t) = n(r, t)n(r, t)−1f(r,u, t)| {z } = n(r, t)F (r,u, t) . (47)

In equilibrium this new distribution function has to be time- and space inde-
pendent, i.e., F (r,u, t) ≡ F (u). By imposing the following two conditions,

F (u) = F (|u|) ≡ F (u) , (48)

F (u) = F1(ux)F2(uy)F3(uz) , (49)

namely that F (u) is isotropical and that the components of the velocity are
mutually independent, F (u) can be determined.
From (49) follows immediately that

lnF (u) = lnF1(ux) + lnF2(uy) + lnF3(uz) , (50)

which partially differentiated with respect to ux gives

∂ lnF (u)

∂ux
=

d lnF (u)

du

∂u

∂ux
=

ux
u

d lnF (u)

du
=

d lnF1(ux)

dux
, (51)

since u =
q
u2x + u2y + u2z. From the similar derivatives with respect to uy and

uz follows

1

u

d lnF (u)

du
=
1

ux

d lnF1(ux)

dux
=
1

uy

d lnF2(uy)

duy
=
1

uz

d lnF3(uz)

duz
. (52)

These expressions can only be equal to each other if they equal the same con-
stant, say −2γ. For example,

1

ux

d lnF1(ux)

dux
= −2γ . (53)

The solution of this differential equation is simply given by

F1(ux) = a exp(−γu2x) , (54)

where a and γ are constants yet to be determined. The distribution function
F (u) is therefore given by

F (u) = a3 exp(−γ(u2x + u2y + u2z)) = a3 exp(−γu2) . (55)

Since F (u) is normalized to unity, i.e.,Z
F (u)du = 1 , (du = u2du sin θdθdφ) , (56)
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a3 has to be (γ/π)3/2.
Finally the constant γ can be evaluated1 by determining the averaged square

of the velocity u2,

u2 =

Z
u2F (u)du = (γ/π)3/2

∞Z
0

πZ
0

2πZ
0

u4 exp(−γu2)du sin θdθdφ =

= 4π(γ/π)3/2
∞Z
0

u4 exp(−γu2)du = 3

2γ
. (57)

If one associates now this result with that for u2 in (46), one gets

γ =
m

2kT
, (58)

i.e., F (u) is given by

F (u) =
³ m

2πkT

´3/2
exp(−mu2

2kT
) =

³ m

2πkT

´3/2
exp(− �t

kT
) , (59)

where �t = mu2/2 is the translational energy. Equation (59) is nothing but the
famous Maxwell-Boltzmann (velocity) distribution.

13.4 Statistical mechanics

13.4.1 Phase space

For one particle the phase space, that is the collection of space (r)- and mo-
mentum (p) coordinates of this particle, is 6 dimensional. For N particles the
dimension of the phase space is 6N . If one considers the phase space to be
partioned into cells of the volume dφ,

dφ = dxdydzdpxdpydpz , (60)

then each particle (atoms, molecules) has to belong to one cell. If furthermore i
numbers these cells, then in each cell the number of particles Ni can be assumed
to be much larger than one, Ni À 1, since dφ only has to be small as compared
to the macroscopical dimensions of the system. The fundamental problem of
statistical mechanics is to find out how these numbers Ni can be related to the
phase space coordinates.

13.4.2 Microstates and macrostates

As is well-known from quantum mechanics, because of the uncertainty relation2,
the space- and momentum coordinates of a microscopical particle cannot be
determined simultaneously exact:

∆x∆px = ∆y∆py = ∆z∆pz ' h . (61)
1 the integral on the rhs of the following equation leads to a Gamma function
2 see also the discussion in chapter 1
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This implies that the space- and momentum coordinates of such a particle can
only be pinned down to the volume h3 in phase space. Such a volume shall
be called a subcell. It should be noted that while the volume of a cell, dφ, is
arbitrary, the volume of a subcell is fixed to h3. In general the volume of a cell
can be assumed to be large enough so as to contain a large number of subcells.
Quite clearly the number of subcells in a particular cell is given by

g =
dφ

h3
. (62)

The complete specification of all 6 coordinates of the subcell in which
a particular particle is located is called amicrostate. The specification of the
number of particles in each cell of the phase space is called a macrostate.
In order to exemplify these definitions in the following 4 cells, labelled by

a,b,c and d are considered below, where each of these cells contains 4 subcells,
labelled by 1,2,3 and 4. The number of particles in each subcell is denoted after
the semi-colon.

cell a:
1: 1 2: 0

3: 0 4: 2
cell b:

1: 0 2: 1

3: 1 4: 0

cell c:
1: 0 2: 0

3: 0 4: 0
cell d:

1: 2 2: 0

3: 0 4: 0

Microstates Macrostates
one particle: cell a, subcell 1 number of particles in cell a: 3
one particle: cell a, subcell 4
one particle: cell a, subcell 4
one particle: cell b, subcell 2 number of particles in cell b: 2
one particle: cell b, subcell 3
one particle: cell d, subcell 1 etc

etc

Up to now implicitly only monoatomic gases were considered for which it
is sufficient to specify the subcell into which a particular atom is located. For
molecules for example, one has to deal also with internal degrees of freedom,
corresponding to vibrational3 , rotational 4 and electronic energies in addition
to the translational energies.

3 see chapter 11
4 see chapter 12
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Thermodynamical probabilities In the following the question will be ad-
dressed of how many microstates belong to one given macrostate. Suppose there
are only two cells, labelled by i and j, each of them partitioned into 4 subcells.
Suppose further that a 4-particle system shall be described. If Ni and Nj denote
the number of phasepoints (particles) in these two cells then there are altogether
5 possible macrostates labelled by roman numbers:

i j

4 0| {z }
I

i j

3 1| {z }
II

i j

2 2| {z }
III

i j

1 3| {z }
IV

i j

0 4| {z }
V

I II III IV V
Ni 4 3 2 1 0
Nj 0 1 2 3 4

The number of microstates that belong to each macrostate is called
thermodynamical probability. However, before this number can be deter-
mined, one has to distinguish between
bosons: arbitrary number of phase points per cell and
fermions: only two phase points per cell.
The statistics that treats the case of two phase points per cell is called

Fermi-Dirac statistics, while the other case is the Bose-Einstein statistics.

13.4.3 Bose-Einstein statistics

Suppose one starts from the previous example of 4 particles in 2 cells, considers
macrostate II

i j

3 1

and partitions each cell into 4 subcells. In cell i the three particles can now be
distributed into the 4 subcells as follows:

3 0
0 0

2 1
0 0

0 2
0 1

1 0
2 0

0 0
1 2

1 1
0 1

0 3
0 0

2 0
0 1

0 2
1 0

0 1
2 0
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0 1
0 2

0 1
1 1

0 0
3 0

2 0
1 0

1 2
0 0

0 0
2 1

1 0
0 2

1 0
1 1

0 0
0 3

1 1
1 0

As one can see there are 20 different arrangements (possibilities) to distribute
these 3 particles. The thermodynamical probability Wi for cell i is therefore 20.
In cell j only one particle has to be distributed in 4 subcells. As one can see
from the arrangements below Wj = 4.

1 0
0 0

0 1
0 0

0 0
0 1

0 0
1 0

The product of Wi and Wj , W = WiWj = 80 is the number of possibilities
to arrange macrostate II. In general for an arbitrary number M of cells i with
individual probabilities Wi the total probability W is given by

W =
MY
i=1

Wi . (63)

Suppose that the subcells in one particular cell i can be labelled by 1, 2, 3, . . . , gi,
whereas the phase points (particles) in this cell are labelled by a, b, c, . . . , Ni.
For example

1ab 2cde 3 4fgh

implies that in subcell 1 there phase points a and b, in subcell 2 phase points
c, d and e, etc. By removing the boxes this gives a sequence of numbers and
letters that reflects exactly one particular occupation of these 4 subcells. For
the present example this sequence is 1ab2cde34fgh. In general such a sequence
has to start with a number between 1 and gi. The following (Ni+gi−1) symbols
can then be arranged in an arbitrary manner. The number of permutations is
then given by (Ni+gi−1)! The number of sequences that start with a number is
therefore gi(Ni+gi−1)! All permutations, however, that result from a pairwise
interchange of phase points, like in the above examples 1ab and 1ba, represent
the same microstate and therefore have to be excluded. There are altogether Ni!
such pairwise permutations of letters. Furthermore the numbering of cells has
to be in natural order, otherwise gi! double counting occurs. The total number
of microstates in cell i is therefore given by the following individual probability
Wi,

Wi =
gi(Ni + gi − 1)!

gi!Ni!
=
(Ni + gi − 1)!
(gi − 1)!Ni!

, (64)
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and consequently the thermodynamical probability is defined by

W =
MY
i=1

(Ni + gi − 1)!
(gi − 1)!Ni!

. (65)

By taking the logarithm of W,

lnW =
MX
i=1

⎧⎪⎨⎪⎩ln(Ni + gi − 1| {z }
' gi

)!− ln(gi − 1| {z }
' gi

)!− ln(Ni!)

⎫⎪⎬⎪⎭ , (66)

and using the Stirling formula,

ln(n!) = n lnn− n , nÀ 1 , (67)

one obtains the following expression,

lnW '
MX
i=1

{(Ni + gi) ln(Ni + gi)− gi ln gi −Ni lnNi} , (68)

where (gi − 1) was replaced by gi, since gi À 1.
Since particles in motion change their positions in phase space with respect

to time, the number of phase points Ni in the various cells also changes with
time. Quite clearly, ifW has amaximumW 0, then also lnW is at its maximal
value. Considering therefore small finite changes δNi (finite, because the Ni are
integer numbers!) and remembering that the number of subcells gi = dφi/h

3 is
fixed by the uncertainty relation, such changes results in the following change
δ lnW for lnW :

δ lnW =
MX
i=1

{ln(Ni + gi)δNi + (Ni + gi)δ ln(Ni + gi)| {z }
− lnNiδNi −Niδ lnNi| {z }} . (69)

From the relations

δ lnNi =
δNi

Ni
, δ ln(Ni + gi) =

δNi

Ni + gi
, (70)

one easily can see that

MX
i=1

Niδ lnNi =
MX
i=1

(Ni + gi)δ ln(Ni + gi) =
MX
i=1

δNi , (71)

which reduces (69) to

δ lnW =
MX
i=1

{ln(Ni + gi)δNi − lnNiδNi} =
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=
MX
i=1

ln(
Ni + gi
Ni

)δNi . (72)

The set of Ni for which δ lnW 0 = 0, shall be denoted by {N0
i },

δ lnW 0 =
MX
i=1

ln(
N0
i + gi
N0
i

)δNi = 0 . (73)

and obviously corresponds to the thermodynamical equilibrium. The variation
of the Ni, however, is restricted by the following two conditions,

MX
i=1

Ni = N = const →
MX
i=1

δNi = 0 , (74)

MX
i=1

Ni�i = U = const →
MX
i=1

δNi�i = 0 , (75)

namely that total number particles and the total energy of the system has to
be constant, �i being the energy of an individual particle. This implies that
Lagrange parameters have to be used of the form

λ1

MX
i=1

δNi = 0 , λ2

MX
i=1

δNi�i = 0 , (76)

such that
MX
i=1

½
ln(

N0
i + gi
N0
i

) + λ1 + λ2�i

¾
δNi = 0 . (77)

Since in (77) each factor of δNi has to vanish, by choosing for matters of con-
venience

λ1 = − lnB , λ2 = −β , (78)

one easily can see that

ln(
N0
i + gi
N0
i

)− lnB1 − β�i = 0 , (79)

from which immediately follows that

ln(
N0
i + gi
BN0

i

) = β�i → gi
N0
i

= B exp(β�i)− 1 . (80)

The ratio of the number of phase points Ni per cell and the number of subcells
(gi) is therefore given by

N0
i

gi
=

1

B exp(β�i)− 1
. (81)

This ratio is called the Bose-Einstein distribution function.
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13.4.4 Maxwell-Boltzmann statistics

If the number of particles per cell is much smaller than the number of subcells,
i.e.,

N0
i ¿ gi →

N0
i

gi
¿ 1→ B exp(β�i)− 1À 1

→ B exp(β�i)− 1 ' B exp(β�i) , (82)

then
N0
i

gi
=
1

B
exp(−β�i) , B À 1 . (83)

This last equation is exactly of the form of the Maxwell-Boltzmann distri-
bution (see also (59)). The inequalities in (82) imply that within a gedanken
experiment where the subcells become smaller and smaller, i.e. position and
momentum of a particle becomes sharper and sharper, the Bose-Einstein distri-
bution reduces to the Maxwell-Boltzmann distribution.

13.4.5 Partition function

The constant B appearing in (81) and (83) can be obtained from the condition
that the number of particles has to be constant. Assuming now always maximal
probability, the superscript specifying the ”optimal” set of numbers Ni can be
dropped. From (74) follows immediately that

MX
i=1

Ni = N =
1

B

MX
i=1

gi exp(−β�i) . (84)

The sum appearing on the rhs of this equation is called partition function
and traditionally is abbreviated by Z or Q

Z =
MX
i=1

gi exp(−β�i) . (85)

With this notation the constant B is given by

B =
Z

N
(86)

and the Maxwell-Boltzmann distribution can be formulated as

Ni =
N

Z
gi exp(−β�i) . (87)

The evaluation of the constant β will be given in the following section.
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13.4.6 Entropy and thermodynamical probability

Consider an isolated thermodynamical system that is partitioned into two iso-
lated subsystems 1 and 2 with thermodynamical probabilities W1 and W2.

1
S1
W1

2
S2
W2

Let S1 and S2 be two functions such that in thermodynamical equilibrium

S = S1 + S2 . (88)

S is called entropy. If there is a connection between this phenomenological
quantity S and the thermodynamical probability W = W1W2 (in thermody-
namical equilibrium) then S has to be a function of W such that

S = S1 + S2 = f(W ) = f(W1W2) = f(W1) + f(W2) . (89)

Quite clearly S can only be proportional to the logarithm of the thermodynam-
ical probability W , if

S = k lnW . (90)

Going now back to (68)

lnW 0 ≡ lnW =
MX
i=1

(Ni + gi) ln(Ni + gi)| {z }− gi ln gi −Ni lnNi , (91)

the first term on the rhs of this equation can be rewritten as follows

(Ni + gi) ln(Ni + gi) = gi(1 +
Ni

gi
) ln

µ
gi(1 +

Ni

gi
)

¶
=

= gi(1 +
Ni

gi
)

⎛⎜⎜⎝ln gi + ln (1 + Ni

gi
)| {z }
⎞⎟⎟⎠ . (92)

Using the following expansion of ln(1+x) = x−x2/2+x3/3±· · · ; (−1 ≤ x ≤ 1),
it is obvious that for gi À Ni (Maxwell-Boltzmann distribution)

ln(1 +
Ni

gi
) ' Ni

gi
,

and therefore

(Ni + gi) ln(Ni + gi) = gi ln gi +Ni ln gi +Ni +
N2
i

gi
'
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' gi ln gi +Ni ln gi +Ni (93)

In the case of the Maxwell-Boltzmann distribution (91) reduces therefore to

lnW =
MX
i=1

Ni ln gi +Ni −Ni lnNi =
MX
i=1

Ni(ln
gi
Ni
+ 1) . (94)

By using now in this equation the definition for the partition function Z (87),
which was derived from the condition that the number of particles has to stay
constant,

Ni

gi
=

N

Z
exp(−β�i)→ ln

gi
Ni

= ln
Z

N
+ β�i , Z =

MX
i=1

gi exp(−β�i) , (95)

one gets for the entropy S:

S = k lnW = k
MX
i=1

Ni(ln
Z

N
+ β�i + 1) =

= k ln
Z

N

MX
i=1

Ni + kβ
MX
i=1

�iNi| {z }
= U

+ k
MX
i=1

Ni =

= kN ln
Z

N
+ kβU + kN . (96)

From classical (phenomenological) thermodynamics, however, it is known
that in the case of only one type of particles the partial derivative of the entropy
with respect to the energy U at constant volume v is given by the inverse of the
temperature T , µ

∂S

∂U

¶
v

=
1

T
. (97)

In evaluating this derivative,µ
∂S

∂U

¶
v

=
kN

Z

dZ

dβ

µ
∂β

∂U

¶
v

+ kβ + kU

µ
∂β

∂U

¶
v

, (98)

one can make use of the fact that

dZ

dβ
= −

MX
i=1

�igi exp(−β�i) = −
UZ

N
, (99)

since from the definition of the partition function

Ni =
N

Z
gi exp(−β�i)
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it follows that
MX
i=1

�iNi = U =
N

Z

MX
i=1

gi�i exp(−β�i) . (100)

Using now the expression for dZ/dβ (99) in equation (98) one getsµ
∂S

∂U

¶
v

= −kN
Z

UZ

N

µ
∂β

∂U

¶
v

+ kβ + kU

µ
∂β

∂U

¶
v

= kβ . (101)

Comparing finally this result with the classical expression in (97) one can see
that obviously the constant β has to be of the form

β =
1

kT
. (102)

Now all Lagrange parameters are evaluated and the Boltzmann distribu-
tion in (87) - and for that matter also the Bose-Einstein distribution - can be
completed:

Ni =
Ngi
Z

exp(− �i
kT
) . (103)

The partition function Z is then given by

Z =
MX
i=1

gi exp(−
�i
kT
) , (104)

and the total energy U by

U =
N

Z

MX
i=1

gi�i exp(−
�i
kT
) =

NkT 2

Z

dZ

dT
= NkT 2

d lnZ

dT
. (105)

13.4.7 Fermi-Dirac statistics

In contrast to the Bose-Einstein case, in the Fermi-Dirac case only two phase
points can occupy one particular subcell. If one imagines each subcell to be
split into two half-subcells, then the number of such half-subcells is given by

gi =
2dφ

h3
, (106)

where as should be remembered dφ is the volume of a cell. Within this con-
struction in each half-subcell there can be only one phase point or none, i.e.,
these half-subcells can be either occupied or unoccupied. If Ni is the number of
particles in cell i then there Ni occupied and (Ni−gi) unoccupied half-subcells.
The number of microstates for each macrostate is then given by

Wi =

µ
gi
Ni

¶
≡
µ

gi
gi −Ni

¶
=

gi!

Ni!(gi −Ni)!
, (107)
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and the thermodynamical probability by

W =
MY
i=1

µ
gi
Ni

¶
. (108)

By assuming as before in the case of the Bose-Einstein statistics that gi, Ni À 1,
i.e., that the Stirling formula ln(n!) = n lnn− n can be used, the logarithm of
the thermodynamical probability is given by

lnW =
MX
i=1

gi ln gi −Ni lnNi + (Ni − gi) ln(gi −Ni) . (109)

This probability has to be a maximum (see also (74))

δ lnW =
MX
i=1

−Niδ lnNi − lnNiδNi + (Ni − gi)δ ln(gi −Ni) +

+ ln(gi −Ni)δNi =

=
MX
i=1

− lnNiδNi + ln(gi −Ni)δNi =
MX
i=1

ln(
gi −Ni

Ni
)δNi = 0 (110)

under the condition that the number of particles and the total energy stays
constant (δN = δU = 0), which implies that

MX
i=1

½
ln(

gi −Ni

Ni
)− lnB − β�i

¾
δNi = 0 , (111)

where the same convention for the Lagrange parameters is used as in (82). For
the ratio of the ”optimal” occupation Ni ( ≡ N0

i ) and gi one obtains therefore

Ni

gi
=

1

B exp(β�i) + 1
. (112)

The constant β can be obtained in a similar way as before (105), namely by
comparing the partial derivative of the entropy S with respect to the energy U
at constant volume v with its classical analogon:

β =
1

kT
. (113)

In order to determine the constant B in (112) gi and Ni are thought to be
replaced by the following infinitesimal quantities

gi →
2

h3
dxdydzdpxdpydpz =

2

h3
dφ , (114)

Ni → dNxdNydNzdWxdWydWz| {z }
d3W

, (115)
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where dWx, dWy and dWz are probability coordinates that correspond to an
integration over px, py and pz. With this replacement (112) can be written as

dNxdNydNzd
3W =

2

h3
1

B exp(β�) + 1
dxdydzdpxdpydpz . (116)

Integrating now over x, y and z yields

Nd3W ≡ d3N =
2

h3
v

1

B exp(β�) + 1
dpxdpydpz , (117)

where v is the volume. For B exp(β�i) À 1, this would lead again to the
Maxwell-Boltzmann statistics. For the Fermi-Dirac case, as given for example
by a system of electrons, this (unfortunately) is not the case. According to
Sommerfeld for fermions the constant B is of the form

B = exp(−�m/kT ) , (118)

where �m is a temperature-dependent reference energy,

�m = �m0(1 + (
πkT

�m0
)2 + · · · ) , (119)

with �m0 being a constant. With this ansatz (117) can be rewritten as follows

ρ ≡ d3N

dpxdpydpz
=
2

h3
v

1

exp( �−�mkT ) + 1
. (120)

Expanding now the exponential in this equation in the usual power series,

exp(
�− �m
kT

) = 1 +
1

1!
(
�− �m
kT

) +
1

2!
(
�− �m
kT

)2 + · · · ,

and truncating the series after the first term, one gets

ρ =
2

h3
v

kT

2kT + �− �m
. (121)

From the limit of T → 0, �m → �m0,

lim
T→0

ρ ≡ ρ0 =
2

h3
v lim
T→0

kT

2kT + �− �m
=

=
2

h3
v lim
T→0

d(kT )/dT

d(2kT + �− �m)/dT
=

v

h3
, (122)

one can see that
v/h3 ; � < �m0

ρ0 = {
0 ; � > �m0

(123)

The constant �m0 is called Fermi energy and is traditionally denoted by �F or
�f .
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13.5 Partition functions

In the Maxwell-Boltzmann statistics, which shall be applied in the following,
the partition function Z (85) is given by a sum over the exponential functions
only

Z =
MX
i=1

exp(−�i/kT ) . (124)

The energy �i in each cell i can be thought to be the sum of the translational
energy �trans of the center of gravity and an internal energy �int, which in turn
can be considered to be decomposed into a sum of the rotational energy �rot,
vibrational energy �vib, electronic energy �el, nuclear energy �nuc and chemical
energy �chem. In terms of such a decomposition the partition function is given
by

Z =
MX
i=1

exp(−(�trans + �rot + �vib + �el + �nuc + �chem)/kT ) =

=
MX
i=1

exp(−�trans/kT ) exp(−�rot/kT ) exp(−�vib/kT ) ×

× exp(−�el/kT ) exp(−�nuc/kT ) exp(−�chem/kT ) =
= ZtransZrotZvibZelZnucZchem . (125)

If therefore the various contributions to �i correspond to independent mo-
tions or can be considered to be independent from each other then the partition
function Z is a product of partition functions corresponding to the individual
energy contributions. In the following these individual partition functions are
discussed for some characteristic contributions to Z.

13.5.1 Translational partition function

For a particle (atoms, molecules etc.) moving in a three-dimensional box of
dimensions a, b and c the energy eigenvalues are given5 by

Enx,ny,nz =
π2~2

8m

(
n2x
a2
+

n2y
b2
+

n2z
c2

)
. (126)

The translational (Boltzmann) partition function is therefore defined by

Ztrans =

Ã ∞X
nx=1

exp(− ~2n2x
8mkTa2

)

!⎛⎝ ∞X
ny=1

exp(−
~2n2y
8mkTb2

)

⎞⎠ ×

×
Ã ∞X
nz=1

exp(− ~2n2z
8mkTc2

)

!
. (127)

5 see chapter 3, equ.(3.67)
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Since the energy differences between two following eigenvalues,

~2

8mkTa2
¡
(nx + 1)

2 − n2x
¢
∼ ~2

4mkTa2
nx , (128)

are rather very small for macroscopical dimensions of a, b and c, i.e., since the
quantum numbers nx, ny and nz are quasi-continuous, the sums in (126) can
be replaced by integrals:

∞X
nx=1

exp(− ~2n2x
8mkTa2

) =

∞Z
0

exp(− ~2n2x
8mkTa2

)dnx =
a(2πmkT )1/2

~
. (129)

Identifying finally abc as the volume v, the translational partition function is
given by an expression, well-known from classical thermodynamics

Ztrans =
v

~3
(2πmkT )3/2 . (130)

13.5.2 Rotational partition function

For a heteroatomic diatomic molecule like the CO molecule (covering symmetry
C∞v), the energy eigenvalues of a rigid rotator6 motion are given by

�rot = j(j + 1)
~2

2I
, I =

m1m2

m1 +m2
R , (131)

wherem1 andm2 are the masses of the two atoms and R the (rigid) distance be-
tween them. These eigenvalues are (2j+1)-fold degenerated. The corresponding
partition function is then defined by

Zrot =
∞X
j=0

(2j + 1) exp(−j(j + 1)Θrot
T
) , Θrot =

~2

2kI
. (132)

Since Θrot has the dimension of a temperature, it is sometimes also called the
characteristic temperature of the corresponding (rigid) rotation. For T À Θrot
the sum in (132) can again be replaced by an integral

Zrot =

∞Z
0

(2j + 1) exp(−j(j + 1)Θrot
T
)dj . (133)

By replacing j(j+1) by ξ ( (2j+1)dj = dξ ), one immediately can see that the
partition function for a rigid rotation of a two-atomic molecule is given by

Zrot =
2IkT

~2
=

T

Θrot
. (134)

6 see chapter 12
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Since for a homoatomic diatomic molecule like N2 the covering symmetry is
D∞h, i.e., a rotation over π perpendicular to the internuclear distance R leaves
the molecule invariant, a correction factor of 1/2 has to be augmented. For an
arbitrary diatomic molecule the rotational partition function is then given by

Zrot =
2IkT

κ~2
, κ = {

2 D∞h

1 C∞v

, (135)

where κ is sometimes also called symmetry correction factor. In general for a
molecule with three principal moments of inertia I1, I2 and I3 and a symmetry
correction factor κ > 1, the corresponding rotational partition function is given
by

Zrot =
(8πI1I2 I3)

1/2

κh3
(kT )3/2 . (136)

13.5.3 Vibrational partition function

Consider again a diatomic molecule such as CO or N2. In this case there is only
one vibrational degree of freedom. The vibrational energy is then of the form 7

Evib = ~ω(n+
1

2
) , (137)

and the corresponding partition function is given by

Zvib =
∞X
n=0

exp(−~ω(n+ 1
2
)/kT ) . (138)

In general, however, the energy difference between two subsequent eigenvalues
(~ω) is no longer small as compared to kT , and therefore the sum cannot be
converted directly into an integral. By factorizing the zero level contribution
~ω/2, and making use of the geometrical series,

1

1− x
= 1 + x+ x2 + x3 + · · · ,

one can see that the vibrational partition function

Zvib = exp(−
~ω
2kT

)
∞X
n=0

exp(−n~ω
kT

) =

= exp(− ~ω
2kT

)

⎛⎜⎜⎝1 + exp(−~ωkT )| {z }
x

+ exp(−2~ω
kT

)| {z }
x2

+ · · ·

⎞⎟⎟⎠ , (139)

7 see chapter 11
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can (at least) be summed up in a closed form:

Zvib =
exp(− ~ω

2kT )¡
1− exp(− ~ω

kT )
¢ . (140)

A polyatomic molecule with s atomic constituents has in general 3s − 6
vibrational degrees of freedom. Each degree of freedom corresponds then to a
so-called normal coordinate and a normal vibrational frequency ωi.

13.6 Thermodynamical functions

Up to now it was assumed that like in a gas the macroscopic system consists
of a large number of particles (single molecules) that do not interact. The
discussed thermodynamical properties like the energy U or the entropy S corre-
spond therefore to the partition functions for those particles. For liquid or solid
systems, however, one has to take into account the interaction between these
particles.
Consider a collection of particles (molecules), which can be termed a ”super-

molecule”, and consider further that the macroscopical system can be viewed
as a collection of such ”super-molecules”, each of them having exactly the same
number of particles and the same volume:

° ° °
° ° °
° ° °

° ° °
° ° °
° ° °

° ° °
° ° °
° ° °

° ° °
° ° °
° ° °

If this set of L super-molecules is in thermodynamical equilibrium, then it is
called a canonical ensemble of super-molecules. As compared to the large num-
ber of internal degrees of freedoms, the three translational degrees of freedom
can be neglected. The internal energies El of a super-molecule are considered
to be quantized, even so they are quite dense. Assuming for the equilibrium a
Boltzmann distribution of the kind

Wl =
exp(−El/kT )
LP
l=1

exp(−El/kT )

, (141)

the corresponding partition function

eZ = LX
l=1

exp(−El/kT ) (142)

is called canonical partition (”macroscopical”) function.
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13.6.1 Weakly interacting particles

If the super-molecule can be considered as a gas with very small interactions
between the individual molecules, then the internal energy El is a sum of the
internal energies of the individual molecules numbered by α

El ∼
NαX
α=1

Eαm,l , (143)

where the subscript αm, l denotes the m − th energy eigenvalue of the α − th
individual molecule that belongs to the l − th energy eigenvalue of the super-
molecule. In this case the canonical partition function reduces to

eZ = LX
l=1

exp

Ã
−(

NαX
α=1

Eαm,l)/kT

!
=

LX
l=1

NαY
α=1

exp(−Eαm,l)/kT =

=

NαY
α=1

LX
l=1

exp(−Eαm,l)/kT . (144)

For the model of an ideal gas, i.e., for the case that there are no interactions
within the super-molecule, the energy eigenvalues Eαm,l are independent of l,
i.e., Eαm,l ≡ Eαm ≡ Em. The corresponding canonical partition function is
then given by

eZ = NαY
α=1

LX
m=1

exp(−Eαm)/kT =

=
1

Nα!

Ã
LX

m=1

exp(−Em)/kT

!Nα

=
1

Nα!
ZNα , (145)

where the factor 1/Nα! arises from the fact that there areNα! possibilities to add
up the energy eigenvalues for the super-molecule from Nα individual molecules.
It should be noted that in (145) Z is the partition function for an individual
molecule.

Internal energy The internal energy of a system of N weakly interacting
particles (molecules) can be formulated as

U =
NX
i=1

NiEi = NE , (146)

where E is the averaged energy per particle,

E =

NP
i=1

NiEi

NP
i=1

Ni

=

NP
i=1

Ei exp(−Ei/kT )

NP
i=1
exp(−Ei/kT )

=

NP
i=1

Ei exp(−Ei/kT )

Z
. (147)
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Since according to (99)µ
∂Z

∂β

¶
v

= −
NX
i=1

Ei exp(−Ei/kT ) , β = 1/kT , (148)

the internal energy can be written as

U = −N
µ
∂ lnZ

∂β

¶
v

= −
Ã
∂ ln eZ
∂β

!
v

, (149)

or alternatively as

U = −nR
µ

∂ lnZ

∂(1/T )

¶
v

, nR = kN , (150)

where R is the ideal gas constant. For the specific heat at constant volume one
gets therefore

cv =
1

n

µ
∂U

∂T

¶
v

=
R

T 2

µ
∂2 lnZ

∂(1/T )2

¶
v

. (151)

Entropy The entropy of a system of weakly interacting particles is given by
(see also (96))

S = kN ln(
Z

N
) + kβU + kN = kN(ln(

Z

N
) + 1) +

U

T
, (152)

or alternatively using the ideal gas constant and (150) by

S = nR

µ
ln(

Z

N
)− 1

T

µ
∂ lnZ

∂(1/T )

¶
v

+ 1

¶
(153)

In terms of the macroscopical partition function eZ the entropy can be written
as

S = k

Ã
ln eZ − 1

T

Ã
∂ ln eZ
∂(1/T )

!
v

!
, (154)

where because of the Sterling formula the one in (153) can be omitted.

Helmholtz free energy Using the definition for the (Helmholtz) free energy
F ,

F = U − TS , (155)

it is now easy to see that

F = −nRT
µ
ln(

Z

N
) + 1

¶
or F = −kT ln eZ . (156)
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Pressure, Gibbs free energy and enthalpy By recalling the following
famous thermodynamical definitions,

G = U − TS + pv = F + pv , (157)

p = −
µ
∂F

∂v

¶
T

, (158)

it is again easy to show that the pressure p is given by

p = nRT

µ
∂ lnZ

∂v

¶
T

, (159)

and the Gibbs free enthalpy G therefore by

G = −nRT
µ
ln(

Z

N
) + 1− v

µ
∂ lnZ

∂v

¶
T

¶
. (160)

For the enthalpy H,
H = U + pv , (161)

one finally gets

H = nRT

µµ
∂ lnZ

∂ lnT

¶
v

+

µ
∂ lnZ

∂ ln v

¶
T

¶
. (162)

13.7 Summary of thermodynamical functions for weakly
interacting particles

In summarizing all the above expressions for the various thermodynamical quan-
tities or functions, one can see at one glance the overall importance of the par-
tition function in statistical thermodynamics:

U = −nR
µ

∂ lnZ

d(1/T )

¶
v

cv =
R

T 2

µ
∂2 lnZ

∂(1/T )2

¶
v

S = nR

µ
ln(

Z

N
)− 1

T

µ
∂ lnZ

∂(1/T )

¶
v

+ 1

¶
F = −nRT

µ
ln(

Z

N
) + 1

¶
p = nRT

µ
∂ lnZ

∂v

¶
T

G = −nRT
µ
ln(

Z

N
) + 1− v

µ
∂ lnZ

∂v

¶
T

¶
H = nRT

µµ
∂ lnZ

∂ lnT

¶
v

+

µ
∂ lnZ

∂ ln v

¶
T

¶
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15 Second Quantization
The concept of operators, functionals, and the isomorphism between the ab-
stract Hilbert space and the L2 function space, i.e. the space of all quadratic
integrable functions, became quite familiar in quantum mechanics. In fact most
of this book is confined to this concept, which is summarized in chapter 14.
Since the so-called second quantization, which is not a new or another form
of quantization, but a very elegant and efficient way to describe n-particle
systems, is perhaps less known than the ”first” quantization, this chapter deals
with its general concepts in quite some detail.

15.1 The n-particle space

Suppose ψn is an element of the abstract Hilbert space Hn that corresponds
to a quantum mechanical system of n identical particles. The configurational
space representation of this element is continuous,

ψ(x1, x2, x3, ..., xn; t) = hx1, x2, x3, ..., xn | ψn(t)i , (1)

where xi = (ri, σi) comprises the space- and spin coordinates of the i-th particle.
In configurational space the resolution of the identity and the orthogonality
relation is given byZZZ

...

Z
| xn, ..., x3, x2, x1ihx1, x2, x3, ..., xn | dx1dx2dx3...dxn = 1 , (2)

hx0n, ..., x03, x02, x01 | x1, x2, x3, ..., xni = δ(x1 − x01)...δ(xn − x0n) . (3)

Rather than using continuous representations in most cases discrete rep-
resentations are needed, as given for example in terms of a basis formed by the
eigenfunctions of an (Hermitian) operator with a discrete eigenvalue spectrum.
Let {φk(x)} be a complete and orthonormal set of one-particle wave func-

tions,
φk(x) = hx | φki = hx | ki , (4)

hφi | φji = hi | ki = δij , (5)

nX
k=1

| φkihφk | =
nX

k=1

| kihk |= 1 , (6)

then the transformation to a discrete representation of ψn can be expressed
by the following generalized resolution of the identity, where ki stands for all
indices k in (6) for the i-th particle,X

k1,k2,...,kn

| kn, kn−1, ..., k2, k1ihk1, k2, ..., kn−1, kn | =

=
X
{ki}

| kn, kn−1, ..., k2, k1ihk1, k2, ..., kn−1, kn | = 1 , (7)
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such that
ψn(x1, x2, ..., xn; t) =

=
X
{ki}

hx1, x2, ..., xn | kn, .., k2, k1i hk1, k2, ...kn | ψn(t)i| {z } =
=
X
{ki}

φk1(x1)φk2(x2)...φkn(xn)cn(k1, k2, ...kn; t) =

=
X
{ki}

φ{ki}(x1, x2, ..., xn)cn(k1, k2, ...kn; t) . (8)

The functions cn(k1, k2, ...kn; t) are now the transformed n-particle wave func-
tions and the set of discrete variables {ki} is called a configuration. As is
well-known a system of n identical particles can be either a system of bosons
or of fermions. This additional symmetry (permutational symmetry) helps
tremendously to simplify (8).

15.1.1 Configuration interaction

For bosons the occupation numbers ni of a particular (one-particle) state φi
can be 0, 1, 2, .. , whereas for fermions they are restricted to 0 and 1. These
occupation numbers ni specify how often a particular argument xi (one-particle
wave function φi(xi)) occurs in a given function ψ(x1, x2,, .., xi, ..., xn; t) .

Bosons Because of multiple occupations, for a particular configuration {ki}
there are more contributions of the same kind to the sum in (8), namely exactly

n!

n1!n2!...ni!..
. (9)

Boson wave functions, ψBn (x1, x2, ..., xn; t) , have to be symmetric with respect
to permutations of the coordinates x1, x2, ..., xn , i.e. have to be invariant with
respect to the symmetrization operator O(n)s ,

O(n)s =
1

n!

X
P∈Sn

P(x) , (10)

where Sn is the permutational group,

ψBn (x1, x2, ..., xn; t) = O(n)s ψBn (x1, x2, ..., xn; t) =

=
X
{ki}

O(n)s φk1(x1)φk2(x2)...φkn(xn)c
B
n (k1, k2, ...kn; t) =

=
X
{ki}0

n!

n1!n2!...ni!..
O(n)s φk1(x1)φk2(x2)...φkn(xn)c

B
n (k1, k2, ...kn; t) . (11)
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It should be noted that the permutational group is of order n! There are only two
one-dimensional irreducible representations, namely the trivial representation
and the so-called alternating representation, where each permutation is repre-
sented by �P , see also the below case of fermions. Permutating e.g. (x1, x2, x3)
in the alternating representation, �P is in turn 1, -1 and 1. The symmetrization
operator projects1 onto the subspace of totally symmetric states, the antisym-
metrization operator onto the subspace of totally antisymmetric states. The
index (x) indicates that the coordinates are permutated.
In (11) {ki}0 now denotes the set of all different configurations, the summa-

tion is therefore restricted to only those configurations! Denoting {ki}0 simply
by K, equation (11) can also be written as

ψBn (x1, x2, ..., xn; t) =
X
K

φBK(x1, x2, ..., xn)c
B
K(t) , (12)

where

φBK(x1, x2, ..., xn) =

r
n!

n1!n2!...ni!..
O(n)s φk1(x1)φk2(x2)...φkn(xn) (13)

is a normalized and symmetric product of single particle wave functions
(Hartree product) and

cBK(t) =

r
n!

n1!n2!...ni!..
cBn (k1, k2, ...kn; t) =

=

r
n!

n1!n2!...ni!..
hk1, k2, ...kn | ψBn (t)i . (14)

Because of the normalization of the n-boson wave functions,

hψBn (x1, x2, ..., xn; t) | ψBn (x1, x2, ..., xn; t)i = 1 , (15)

the sum over the squares of cBK(t) has to be unity,X
K

¯̄
cBK(t)

¯̄2
= 1 . (16)

Fermions The n-fermion wave function ψFn (x1, x2, ..., xn; t) has to be anti-
symmetric with respect to permutations of the coordinates x1, x2, ..., xn , i.e.
has to be invariant with respect to the antisymmetrization operator O(n)as ,

O(n)as =
1

n!

X
P∈Sn

�PP(x) , (17)

O(n)as ψ
F
n (x1, x2, ..., xn; t) = ψFn (x1, x2, ..., xn; t) . (18)

1 see for example the discussion in the book by Jansen and Boon, p 233 ff
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For fermions the occupation numbers ni are restricted to the set {0, 1} . Using
as before a discrete representation,

ψFn (x1, x2, ..., xn; t) =

=
X
{ki}

O(n)as φk1(x1)φk2(x2)...φkn(xn)c
F
n (k1, k2, ...kn; t) , (19)

it turns out that the transformed functions cFn (k1, k2, ...kn; t) have the same
symmetry as the original wave function,

O(n)as c
F
n (k1, k2, ...kn; t) = cFn (k1, k2, ...kn; t) . (20)

Since according to (17)O(n)as acts on the x coordinates, the functions cFn (k1, k2, ...kn; t)
are only determined up to the sign, the set {k1, k2, ...kn} that characterizes a
configuration has to satisfy an additional condition in order to specify configu-
rations uniquely, namely k1 < k2 < ... < kn , i.e. this set has to be naturally
ordered. Denoting such a naturally ordered sequence of arguments ki by K

K = {k1 < k2 < ... < kn} , (21)

K is also called an ordered configuration. Altogether there are n! such
ordered configurations. The n-fermion wave function in (19) can therefore be
written as

ψFn (x1, x2, ..., xn; t) =

=
X

{k1<k2<...<kn}
n!O(n)as φk1(x1)φk2(x2)...φkn(xn)c

F
n (k1, k2, ...kn; t) =

=
X
K

φFK(x1, x2, ..., xn)c
F
K(t) , (22)

where
φFK(x1, x2, ..., xn) =

√
n!O(n)as φk1(x1)φk2(x2)...φkn(xn) , (23)

is a normalized and antisymmetric product of one-particle wave func-
tions (Slater determinant) that belongs to a particular ordered configuration
K. The transformed functions cFK(t) comprise the remainder of the right hand
side of (22),

cFK(t) =
√
n!cFn (k1, k2, ...kn; t) . (24)

Because of the normalization for the n-fermion wave function,

hψFn (x1, x2, ..., xn; t) | ψFn (x1, x2, ..., xn; t)i = 1 , (25)X
K

¯̄
cFK(t)

¯̄2
= 1 . (26)
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Equations (12) and (22), rewritten below in a more compact formP
K

φBK(x1, x2, ..., xn)c
B
K(t) ; bosons

ψn(x1, x2, ..., xn; t) = { P
K

φFK(x1, x2, ..., xn)c
F
K(t) ; fermions

(27)

represent nothing but the so-called configuration interaction for an n-particle
system of either bosons or fermions. It should be noted that in both cases this
interaction includes all possible (allowed) configurations.

15.2 The occupation number representation

Each configuration corresponds to a set N of occupation numbers,

N = {n1, n2, ..., nn} , (28)

for which the following sum rule applies

∞X
i=1

ni = n , (29)

where n is the number of particles. Because of this unique relation a set K =
{k1, k2, ..., kn} can be mapped uniquely onto a set N = {n1, n2, ..., nn}.

15.2.1 Bosons

Using these sets of occupation numbers N for Bosons equation (12) can also be
formulated as

ψBn (x1, x2, ..., xn; t) =
X
N

φBN (x1, x2, ..., xn)f
B
N (t) , (30)

where
φBN(x1, x2, ..., xn) = hx1, x2, ..., xn | nn, ..., n2, n1iB =

=

r
n!

n1!n2!...
O(n)s hx1, x2, ..., xn | kn, ..., k2, k1iB , (31)

and

fBN (t) = hn1, n2, ..., nn | ψBn (t)i =
r

n!

n1!n2!...
cBn (k1, k2, ..., kn; t) . (32)

The function fBN (t) is called occupation number representation of an n-
boson wave function for a given set of occupation numbers N .
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15.2.2 Fermions

For fermions one similarly obtains from equation (22)

ψFn (x1, x2, ..., xn; t) =
X
N

φFN (x1, x2, ..., xn)f
F
N (t) , (33)

where
φFN (x1, x2, ..., xn) = hx1, x2, ..., xn | nn, ..., n2, n1iF =√

n!O(n)as hx1, x2, ..., xn | kn, ..., k2, k1iF , (34)

and
fFN (t) = hn1, n2, ..., nn | ψFn (t)i =

√
n!cFn (k1, k2, ..., kn; t) . (35)

In (34) φFN (x1, x2, ..., xn) is a Slater determinant corresponding to a set of
occupations numbers N and fFN (t) is called occupation number represen-
tation of an n-fermion wave function.

15.3 The Fock space and the occupation number space

15.3.1 The abstract Fock space

The abstract Fock space or ”graded” Hilbert space bH is the direct sum of
all n-particle Hilbert spaces,bH = H0 ⊕H1 ⊕H2 ⊕ ...Hn ⊕ ... , (36)

where the ”zero-particle” space H0 is the (one-dimensional) space (field) of all
complex numbers. In (36) H1 is the abstract one-particle Hilbert space,
H2 = H1 ⊗ H1 is the abstract two-particle Hilbert space, and in general
Hn = Hn−1 ⊗H1 is the abstract n-particle Hilbert space, where ⊗ denotes
the tensorial product. For bosons the symmetric tensorial product has to
be taken, for fermions the antisymmetric. The n-boson space (HB

n ) and the
n-fermion space (HF

n ) are formally subspaces of the abstract n-particle Hilbert
space,

HB
n = O(n)s Hn , (37)

HF
n = O(n)as Hn . (38)

If bIH denotes the identity operator in the Fock space2, then this operator can
be written as the sum over all projections PHn into the subspaces Hn,

bIH = ∞X
n=0

PHn , (39)

where the projection operator PHn =
∞P
n=0

| nihn | in turn is the identity operator
in the n-particle Hilbert space Hn.

2 In the following all operators in the Fock space are denoted by hats, all representations
(matrices) of such operators are underlined and carry a hat! The same applies to a basis
(vector) in the Fock space, it is underlined and denoted by a hat.
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15.3.2 Realizations of the abstract Fock space

The configurational space The abstract Fock space can be represented by
the space bH(c) of all quadratic integrable functions of the variables x1, x2, ..., xn, ...
. In the configurational space bH(c) the identity operator (39) is given by

bIH(c) =
∞X
n=0

P
H
(c)
n
=
∞X
n=0

Z
dnx | xn, ..., x2, x1ihx1, x2, ..., xn | . (40)

The occupation number space In order to use the concept of occupation
numbers for a realization of the abstract Fock space, two different kinds of
representations can be constructed. By selecting in each (n-particle) subspace
Hn a basis of vectors

{| nii} = {| n1, n2, ..ni, ...;ni} , (41)

such that the following sum rule is fulfilled

∞X
i=1

ni = n , (42)

the identity operator (39) can be represented by

bIH(d) =
∞X
n=0

P
H
(d)
n
=
∞X
n=0

⎧⎨⎩X
{|nii}

| n; ..., n2, n1ihn1, n2, ...;n |

⎫⎬⎭ , (43)

where the superscript (d) stands for discrete. bH(d) is sometimes called the
discrete occupation number space.
If one omits the sum rule in (42) as condition and considers the following

orthonormal set

{| ni =| ..., n2, n1i ; hm | ni = δm1n1δm2n2 ..δmini .... } , (44)

then the representation of the identity in the Fock space is given by

bIH(o) =
X

n1,n2,....

| ..., n2, n1ihn1, n2, ... | , (45)

i.e. the set {| ni} is a realization of a basis in the Fock space and contains the
basis sets for the subspaces Hn as subsets. bH(o) is called occupation number
space. If one considers now the following subspaces Ri, i = 1, 2, ..., namely the
Hilbert spaces corresponding to the occupation numbers ni, i = 1, 2...., where i
numbers the one-particle states (φi(xi)),

Ri = {| nii} , (46)

then for fermions these subspaces (RF
i = {| 0i, | 1i}) are two-dimensional,

whereas for bosons the dimensionality of these subspaces (RB
i = {| 0i, | 1i, |
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2i, ...}) is infinite. According to the resolution of the identity in (45), the occu-
pation number space bH(o) can be written as the following tensorial product of
subspaces, bH(o) = R1 ⊗R2 ⊗ ...Ri ⊗ ... , (47)

where of course for fermions the antisymmetric and for bosons the symmetric
tensorial product has to be taken.

15.4 Representation of states and operators in Fock space

15.4.1 Abstract Fock space

States Let bn be an orthonormal basis in the abstract Fock space,
bn = {| 0i, | 1i, | 2i, ..., | ni, ...} , (48)

bn†bn = b1H , bIH = ∞X
n=0

| nihn | , (49)

where b1H (unit matrix) is the representation of the identity operator bIH in bH.
Any arbitrary element bψ ∈ bH can then be represented in this basis,

bψ = ∞X
n=0

| nihn | bψ = ∞X
n=0

| niψn = bnbψ , (50)

where ψn = hn | bψ is its component in the (abstract) Hilbert space Hn. The
column vector bψ is of the following form

bψ =
⎛⎜⎜⎜⎜⎜⎜⎝

ψo
ψ1
...
ψn
...

⎞⎟⎟⎟⎟⎟⎟⎠ . (51)

The norm of bψ ∈ bH is defined by

k bψ k2= nbψ | bψo = nbnbψ | bnbψo = bψ† {bn | bn} bψ = ∞X
n=0

hψn | ψni , (52)

where hψn | ψni is the ”traditional” scalar product3 in the (abstract) n-particle
Hilbert space Hn. If bψ is a pure n-particle state, say bφN , then this state is
represented by bφN =| nihn | bφN = bnbφN , (53)

3 see also chapter 14
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where

bφ
N
=

⎛⎜⎜⎜⎜⎜⎜⎝
0
...

(φN )n
0
...

⎞⎟⎟⎟⎟⎟⎟⎠ . (54)

A very particular case is the so-called vacuum state bψ0, which formally is
identical to the zero basis vector | 0i

bψ0 =| 0ih0 | bψ0 = | 0ih0 | 0i| {z }
=1

= | 0i = bnbψ
0

, (55)

where

bψ
0
=

⎛⎜⎜⎜⎝
1
0
0
...

⎞⎟⎟⎟⎠ (56)

clearly is normalized to unity.

Operators An operator bA, defined in Fock space, can be represented in the
following way

bA = ∞X
i=0

∞X
k=0

| iihi | bA | kihk | = ∞X
i=0

∞X
k=0

| iiAikhk | = bnbAbn† , (57)

where Aik is the ik-th element of the matrix bA,

bA =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

A00 A01 . . . A0n · · ·
A10 A11 · · · · · · · · ·
...

... · · · · · · · · ·

An0

... . . . Ann · · ·
...

... . . . · · · . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (58)

The operator bA maps an element bψ ∈ bH onto an element bφ ∈ bH,
bAbψ = bφ . (59)

Represented in the basis bn this mapping yieldshbnbAbn†i bnbψ = bnbφ→ bAbψ = bφ or :
∞X
k=0

Aikψk = φi . (60)
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Figure 18: Mappings between Hilbert spaces

This looks pretty much like ”ordinary” matrix algebra with a slightly more
fancy notation. It is not! Maybe this is partially the source of a rather common
misunderstanding of the concepts of the second quantization, because the matrix
elements Aik are in general mappings from the k-particle Hilbert space
onto the i-particle Hilbert space (see also Figure 18). Quite clearly in
order to define the adjoint operators (Aik)

† = (A†)ki, one carefully has to
keep track of properly defined scalar products.
Consider first the following elements in the Hilbert space Hi,

ψi, Aikψk ∈ Hi ; ψk ∈ Hk , (61)

where the scalar product

hψi | Aikψki ≡ hψi | AikψkiHi , (62)

is of course well-defined, which is indicated by the additional subscript Hi. The
domain of the mapping Aik, DAik , however, is the space Hk,

DAik = Hk . (63)

Since ψk ∈ Hk can always be expressed as a linear combination of elements
χk ∈ Hk , the scalar product in (62) is also a linear functional L(ψk)Hk

defined
in Hk,

L(ψk)Hk = hψi | AikψkiHi . (64)

Consequently, according to the Fischer-Riesz theorem4 there exists one and only
one element φk ∈ Hk , such that

L(ψk)Hk
= hφk | ψkiHk

, (65)
4 see also chapter 14
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where the scalar product hφk | ψkiHk
is defined in Hk. If one defines now the

adjoint operator A†ki such that

φk = (A
†)kiψi = hk | A† | iiψi , (66)

then obviously the following crucial equation is valid

hψi | AikψkiHi = h(A†)kiψi | ψkiHk
(67)

It should be noted that on the lhs of the last equation there is a scalar product
in the (abstract) Hilbert space Hi, whereas on the right hand side it is a scalar
product in Hk!
Obviously according to (67) two kinds of operators in the abstract Fock space

can be distinguished, namely

Aik = 0 i 6= k first kind (order) or diagnoal operators

Aik 6= 0 i 6= k second kind (order) operators
. (68)

15.4.2 The configurational space bH(c)

In the configurational space bH(c) the basis bn is given by
bn = {| 0i, {x1}, {x1, x2}, ..., {x1, x2, ..., xn}, ...} , (69)

from which elements and operators in bH(c) can be constructed.

Elements Representations of elements in bH(c) are obtained in the following
way bψ = ∞X

n=0

Z
dnx | xn, ..., x2, x1ihx1, x2, ..., xn | bψ = bnbψ , (70)

hx1, x2, ..., xn | bψ = ψn(x1, x2, ..., xn) ,

where bψ and the vacuum state bψ
0
are of the form

bψ =
⎛⎜⎜⎜⎜⎜⎜⎝

ψ0
ψ1(x1)
ψ2(x1, x2)
...
...

⎞⎟⎟⎟⎟⎟⎟⎠ , bψ
0
=

⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0
...
...

⎞⎟⎟⎟⎟⎟⎟⎠ . (71)

The norm of such an element in bH(c) is given by

k bψ k2 = ∞X
n=0

Z
dnxψ∗n(x1, x2, ..., xn)ψn(x1, x2, ..., xn) . (72)
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Operators In a similar way representations of operators in bH(c) are obtained,

bA = ∞X
i=0

∞X
n=0

Z Z
dixdky | xi, ..., x2, x1iAikhy1, y2, ..., yk | , (73)

where the matrix elements are mappings from one subspace of bH(c) to another
one. These mappings are general functions of the following kind

Aik = hx1, x2, ..., xi | Aik | y1, y2, ..., yki =

= Aik(x1, x2, ..., xi; y1, y2, ..., yk) . (74)

The adjoint operators are then defined according to (67) asZ
dixψ∗i (x1, x2, ..., xi) ×

×
∙Z

dkyAik(x1, x2, ..., xi; y1, y2, ..., yk)ψk(y1, y2, ..., yk)

¸
=Z

dkxψk(x1, x2, ..., xk) ×

×
∙Z

diyA†ki(x1, x2, ..., xk; y1, y2, ..., yi)ψi(y1, y2, ..., yi)

¸∗
. (75)

15.4.3 Occupation number space representations

If one wants to construct representations in the discrete occupation number
space (see (41)-(43)) the corresponding basis is defined by

bn(d) = {| 0i, | 1i, ..., | ni...} , (76)

where the basis | ni ≡| n;n1, n2, ..i,
∞P
i=1

ni = n, refers to the sum rule restricted

sets of occupation numbers. In terms of this basis a general element in the Fock
space is then described by

bψ = ∞X
n=0

| nif
n
= bn(d)bψ(d) ; f

n
= hn | bψ , (77)

and has the following norm

k bψ(d) k2 = {bψ(d) | bψ(d)} = ∞X
n=0

hf
n
| f

n
i . (78)

Representations of operators are formulated in a similar way as before,
namely,

bA = ∞X
i=0

∞X
k=0

| iiA(d)ik hk | = bn(d)bA(d) ³bn(d)´† ; A
(d)
ik = hi | bA | ki , (79)
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where the adjoint operators are given by³
A
(d)
ik

´†
=

µ
(bA(d))†¶

ki

. (80)

Consider now for a given set of occupation numbers {ni} the corresponding
projection operator

| ..., ni, ...n2, n1, ihn1, n2, ..., ni, ... | ,
∞X
i=1

ni 6= n , (81)

then
ψ
(o)
{ni} = hn1, n2, ..., ni, ... | bψ (82)

is the component of bψ in this (one-dimensional) subspace. In principle therefore
the matrix element of the Fock space operator bA corresponding to the sets {ni}
and {n0i},

A{ni},{n0i} = hn1, n2, ..., ni, ... |
bA | ..., n0i, ...n02, n01, i . (83)

maps the component ψ(o){ni} into a component ψ
(o)

{n0i}. The adjoint representation
can formally be written as

A†{n0i},{ni}
= hn01, n02, ..., n0i, ... | bA | ..., ni, ...n2, n1, i , (84)

15.5 Creation and annihilation operators in the abstract
Fock space

15.5.1 Annihilation operators

An annihilation operator bb(φ), where φ is an arbitrary element from the one-
particle Hilbert space, φ ∈ H1, is an operator of second kind with the following
representation in the Fock space

bb(φ) =
⎛⎜⎜⎜⎜⎜⎝
0 b01(φ) 0 0 · · ·
0 0 b12(φ) 0 · · ·
0 0 0 b23(φ) · · ·
0 0 0 0 · · ·
...

...
...

...
...

⎞⎟⎟⎟⎟⎟⎠ , (85)

where the matrix elements have the following meaning:

bn−1,n(φ) = hn− 1 | bb(φ) | ni = √nhφ | (86)

The operator bn−1,n(φ) is defined in Hn and maps an element ψn∈ Hn into an
element in Hn−1,
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bn−1,n(φ)ψn =
√
nhφ | ψni ; hφ | ψni ∈ Hn−1 . (87)

If therefore bb(φ) acts onto an element bψ ∈ bH, then in each subspace Hn one
particle is removed by means of the one-particle state φ . The annihilation oper-
ator bb(φ) is only unique if bψ describes a system of non-distinguishable particles
such as bosons or fermions,

hφ | ψBn i = O(n−1)s hφ | ψBn i , (88)

hφ | ψFn i = O(n−1)as hφ | ψFn i . (89)

15.5.2 Creation operators

The adjoint operator of the annihilation operator bb(φ) is the creation operator
and is defined in terms of its matrix elements

b†n,n−1(χ) = hn | bb(χ) | n− 1i = √nχ ; χ ∈ Hn . (90)

If ψn−1 ∈ Hn−1, then the operator b
†
n,n−1(χ) maps ψn−1 into an element ∈ Hn

,
b†n,n−1(χ)ψn−1 =

√
nχψn−1 . (91)

It should be noted that χψn−1 is the direct product of χ and ψn−1. The creation
operator is also an operator of second kind in the Fock space with the following
matrix structure

bb†(χ) =
⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 · · ·
b†10(χ) 0 0 0 · · ·
0 b†21(χ) 0 0 · · ·
0 0 b†32(χ) 0 · · ·
...

...
...

...
...

⎞⎟⎟⎟⎟⎟⎠ . (92)

Since the mapping is from Hn−1 onto Hn (anti-)symmetrization with respect
to the permutational group has to be performed in each subspace. If therefore
| nBi and | nF i are properly symmetrized basis sets in Hn,

| nBi = O(n)s | ni , (93)

| nF i = O(n)as | ni , (94)

then the following symmetry conserving property for creation operators is validh
b†n,n−1(χ)

iB/F
ψ
B/F
n−1 =

√
nO

(n)
s/asχψ

B/F
n−1 , (95)

where h
b†n,n−1(χ)

iB
= hn | O(n)s

bb†(χ)O(n−1)s | n− 1i , (96)h
b†n,n−1(χ)

iF
= hn | O(n)as

bb†(χ)O(n−1)as | n− 1i . (97)
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15.5.3 Commutator and anticommutator relations

From the representations of bb(φ) and bb†(χ), φ, χ ∈ H1 in (85) and (92), one can
see that the product operators bb†(χ)bb(φ) and bb(φ) bb†(χ) are operators of first
kind in the Fock space, i.e., are diagonal operators,

bb†(χ)bb(φ) =
⎛⎜⎜⎜⎝

b†10(χ)b01(φ) 0 0 · · ·
0 b†21(χ)b12(φ) 0 · · ·
0 0 b†32(χ)b23(φ) · · ·
...

...
... · · ·

⎞⎟⎟⎟⎠ , (98)

bb(φ)bb†(χ) =
⎛⎜⎜⎜⎝

b01(φ)b
†
10(χ) 0 0 · · ·
0 b12(φ)b

†
21(χ) 0 · · ·

0 0 b23(φ)b
†
32(χ) · · ·

...
...

... · · ·

⎞⎟⎟⎟⎠ . (99)

For an arbitrary element bψ ∈ bH the action of these product operators is therefore
confined to a particular Hilbert space Hn

hn | bb†(χ)bb(φ) | niψn = hn | bb†(χ) | n− 1ihn− 1 | bb(φ) | niψn =
= b†n,n−1(χ)bn−1,n(φ)ψn , (100)

hn | bb(φ)bb†(χ) | niψn = hn | bb(φ) | n+ 1ihn+ 1 | bb†(χ) | niψn =
= bn,n+1(φ)b

†
n+1,n(χ)ψn . (101)

Bosons For bosons it can be shown that the last two equations yield

b†n,n−1(χ)bn−1,n(φ)ψ
B
n = nχhφ | ψBn i , (102)

bn,n+1(φ)b
†
n+1,n(χ)ψ

B
n = hφ | χiψBn + nχhφ | ψBn i , (103)

which subtracted from each other define the commutator of the creation and
annihilation operator in Fock space,hbb(φ),bb†(χ)i

−
= hφ | χibIB (104)

where bIB is the identity operator in the boson-part of the Fock space. By simply
reading off the respective matrix structures, one can see thathbb(φ),bb(χ)i

−
=
hbb†(φ),bb†(χ)i

−
= 0 (105)
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Fermions Explicitly evaluated for fermions equations (100) and (101) give

b†n,n−1(χ)bn−1,n(φ)ψ
F
n = nχhφ | ψFn i , (106)

bn,n+1(φ)b
†
n+1,n(χ)ψ

F
n = hφ | χiψFn − nχhφ | ψFn i , (107)

from which one can see that in this case the anticommutator of the creation and
annihilation operator in Fock space is of the following formhbb(φ),bb†(χ)i

+
= hφ | χibIF (108)

where bIF now is the identity operator in the fermion-part of the Fock space. In
a similar way one obtains the equivalent forms of (105), namelyhbb(φ),bb(χ)i

+
=
hbb†(φ),bb†(χ)i

+
= 0 (109)

Quite clearly, for bosons as well as for fermions, a special case arises if the one
particle functions φ = φi and χ = φj are orthogonal, hφi | φji = δij .

15.6 Creation and annihilation operators in the occupa-
tion number space

Acting on the vacuum state bψ0 =| 0i, bψ0 ∈ bH, the creation operator yields the
following result

bb†(φ)bψ0 = bnbb†(φ)bn†bnbψ0 =| 1ih1 | bb†(φ) | 0ih0 | 0i| {z }
=1

=

= | 1ib†10(φ) =| 1iφ ≡ bφ1 , (110)

namely a pure one-particle state in bH (see (54)),

bφ1 = bn
⎛⎜⎜⎜⎝
0
1
0
...

⎞⎟⎟⎟⎠ . (111)

By repeated application of the creation operator bb†(φαi) on the vacuum state,

bb†(φαn)bb†(φαn−1)....bb†(φα1) | 0i = √n!O(n)s/as
bφαn1 bφαn−11 ...bφα11 , (112)

a pure n-particle state in the Fock space can be generated. If one chooses now
an orthonormal set of one-particle functions, then by means of the last
equation and by making use of the transformation described in (4)-(8) a suitable
basis for representations in the occupation number space bH(o) can be obtained.
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15.6.1 Bosons

Let | n1, n2, ... : niB be a pure n-boson state,

| n1, n2, ... : niB ∈ bH(o) , (113)

| n1, n2, ... : niB = bnBbφBN = (| 0i, | 1i, ..)B
⎛⎜⎜⎜⎜⎜⎜⎝

0
...

(φBN )n
0
...

⎞⎟⎟⎟⎟⎟⎟⎠ , (114)

then by using (32) this state is given by

| n1, n2, ... : niB =| ni(φBN )n =| ni
(r

n!

n1!n2!...
O(n)s

nY
i=1

φki

)
. (115)

This state, however, as was said before can be only obtained by means of
the creation operators in (112). Abbreviating for a moment bb†(φi) by bb†i andbb(φi) by bbi, the pure n-boson state has to be derived from repeated application
of the creation operator on the vacuum state

| n1, n2, ... : niB =
1√
n1!

hbb†1in1 1√
n2!

hbb†2in2 ... | 0i . (116)

By acting with bb†i or bbi on the pure n-boson state one can show thatbb†i | n1, n2, ... : niB = √ni + 1 | n1, n2, ..., ni + 1, . . . : n+ 1iB , (117)bbi | n1, n2, ... : niB = √ni | n1, n2, ..., ni − 1, . . . : n− 1iB . (118)

According to the general commutator relations for the creation and annihilation
operator in (104)-(105), these relations are now given byhbbi,bb†ji− = δij bIHB

,
hbbi,bbji

−
=
hbb†i ,bb†ji− = 0 (119)

where the product operators bb†ibbi and bbibb†i have the following properties (see also
(102) and (103))bb†ibbi | n1, n2, ..., ni, ... : niB = ni | n1, n2, ..., ni, ... : niB , (120)bbibb†i | n1, n2, ..., ni, ... : niB = (ni + 1) | n1, n2, ..., ni, ... : niB . (121)

Because of equation (120) the product operator bb†ibbi is also called number oper-
ator Ni, which, however, is only defined in certain subspace of bH(o), namely Ri

, see (46). The sum over these number operators Ni,

bN =
∞P
i=1

Ni (122)
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is again an operator in the Fock space and is generally called the number
operator bN . The properties of bN follow from (120),bN | n1, n2, ..., ni, ... : niB ≡ bN | niB = n | niB . (123)

According to this equation , the number operator bN has the following represen-
tation in bH(o),

| nihn | bN | mihm | = m| nihn || {z }
=1

mihm || {z }
=1

= m , (124)

bN =

⎛⎜⎜⎜⎝
0 0 0 · · ·
0 1 0 · · ·
0 0 2 · · ·
...
...
...

...

⎞⎟⎟⎟⎠ . (125)

15.6.2 Fermions

For fermions the procedure is pretty much the same as for bosons with the excep-
tion that only ordered configurations (22 ) can be used. Let | n1, n2, ..., ni, ... :
niF be a pure n-fermion state and K = {k1 < k2... < kn} such an ordered con-
figuration, then

| n1, n2, ..., ni, ... : niF = bb†(φk1)bb†(φk2)...bb†(φkn) | 0i =
=| ni(φFK)n =| ni

n√
n!O(n)as φk1φk2 ...φkn

o
. (126)

By acting now with bb†(φi) = bb†i or bb(φi) = bbi on this pure n-fermion state, one
gets bb†i | n1, n2, ..., ni, ... : niF =

= (−1)si(1− ni) | n1, n2, ..., ni + 1, ... : n+ 1iF (127)

and bbi | n1, n2, ..., ni, ... : niF =
= (−1)sini | n1, n2, ..., ni − 1, ... : n− 1iF (128)

where

si =
i−1X
k=0

nk . (129)

The anticommutator relations follow from the general relations in (108) and
(109), hbbi,bb†ji

+
= δijIHF

,
hbbi,bbji

+
=
hbb†i ,bb†ji

+
= 0 (130)

The definition of the number operator is the same as for bosons

bN =
∞P
i=1

bb†ibbi = ∞P
i=1

Ni (131)
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15.7 Field operators

In H
(c)
1 , H(c)

1 ⊂ bH(c), the projection operator for one particle states is given by

P
H
(c)
1
=

Z
| xihx | dx , (132)

where as is well-known | xi strictly speaking is not normalizable inH1. Formally,
however, a pure one-particle state in bH(c) can be written as

| bxi =
⎛⎜⎜⎜⎜⎜⎝

0
| xi
0
0
...

⎞⎟⎟⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎜⎝

o
x
0
0
...

⎞⎟⎟⎟⎟⎟⎠ , (133)

| bxi =X
n

Z
dnx | xn, ..., x2, x1ihx1, x2, ..., xn | bxi =
=

Z
| x1ihx1 | bxidx1 =

= bn(c)
⎛⎜⎜⎜⎜⎜⎝

0
δ(x− x1)

0
0
...

⎞⎟⎟⎟⎟⎟⎠ , (134)

where δ(x− x1) is the Dirac Deltafunction (δx).
If one denotes now the creation and annihilation operators in the ”tradi-

tional” notation by

bΨ†(x) ≡ bb†(x) , bΨ(x) ≡ bb(x) , (135)

then according to the general form of such operators they have the following
matrix elements

b†n,n−1(x) =
√
nO

(n)
s/asx , (136)

bn−1,n(x) =
√
nhx | . (137)

The operators bΨ†(x) and bΨ(x) are usually called field operators. According
to (134) the representations of the matrix elements of the field operators (in
configurational space) are given by

b†n,n−1(δx) =
√
nO

(n)
s/asδ(x− xn) , (138)

bn−1,n(δx) =
√
n

Z
dxnδ(x− xn) . (139)
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The matrix element b†n,n−1(δx) maps a pure (n−1) particle function ∈ H
(c)
n−1

onto an n particle function ∈ H
(c)
n ,

b†n,n−1(δx)ψn−1(x1, x2, ..., xn−1) =

=
√
nO

(n)
s/asδ(x− xn)ψn−1(x1, x2, ..., xn−1) , (140)

whereas by bn−1,n(δx) an n particle function is mapped into a (n− 1) particle
function

bn−1,n(δx)ψn(x1, x2, ..., xn) =
√
n

Z
dxnδ(x− xn)ψn(x1, x2, ..., xn) =

=
√
nψn(x1, x2, ..., xn−1, x) , (141)

where in the last equation x now has to be viewed as a (dummy) parameter.
Suppose now a pure n-particle state is denoted by | xn, ..., x2, x1i with the

following formal representations in the abstract Fock space bH and in the con-
figurational space bH(c), respectively,

⎛⎜⎜⎜⎜⎜⎝
0
0

O
(n)
s/asx1x2...xn

0
...

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0

O
(n)
s/as

nQ
m=1

δ(xm − xm)

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (142)

then as before with all other representations this state has to be generated from
the vacuum state by means of repeated application of the creation operatorbb†(x) (135),
bb†(xn) | 0i =| xni , bb†(xn−1)bb†(xn) | 0i = √2O(2)s/as | xn−1, xni , (143)

i.e. is given by

| x1, , x2, ..., xniB/F =
1√
n!
bb†(x1)bb†(x2)...bb†(xn) | 0i . (144)

If one compares this result with the corresponding equations for the occu-
pation number space representations (112), (115) and (127), one can see that
the operators bb†(φi) and bb†(x) are obviously related to each other by the same
kind of general transformation (7) as discussed for n particles states right at the
beginning of this chapter,

| x1, , x2, ..., xni = bb†(x1)...bb†(xn) | 0i =
=
X
{ki}

| k1, k2, ..., knihkn, kn−1, ...k1 | x1, , x2, ..., xni =
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=
X
{ki}

1√
n!
bb†(φk1)...bb†(φkn) | 0ihkn, kn−1, ...k1 | x1, , x2, ..., xni . (145)

The relation between the field operators and the creation and annihilation
operators is therefore given by

bb†(x) =P
i

bb†(φi)hφi | xi ≡P
i

bb†i hi | xi (146)

bb(x) =P
i
hx | φiibb(φi) ≡P

i
hx | iibbi (147)

or (assuming orthogonal one particle functions) oppositely by

bb†(φi) = R dxφi(x)bb†(x) (148)

bb(φi) = R dxφ∗i (x)bb(x) (149)

According to these relations, the commutator (bosons) or anticommutator rela-
tions (fermions) for field operators can be definedhbb(x),bb†(x0)i

−
= δ(x− x0)bIHB

;
hbb(x),bb(x0)i

−
=
hbb†(x),bb†(x0)i

−
= 0 (150)

hbb(x),bb†(x0)i
+
= δ(x− x0)bIHF

;
hbb(x),bb(x0)i

+
=
hbb†(x),bb†(x0)i

+
= 0 (151)

from which one clearly can see that in the configurational space the number
operator is given by bN =

Z bb†(x)bb(x)dx . (152)

15.8 A second quantization formulation for diagonal op-
erators in Fock space

Suppose an operator bA in Fock space is of first kind,

bA =
⎛⎜⎜⎜⎝

A11 0 0 · · ·
0 A22 0 · · ·
0 0 A33 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎠ , (153)

and the representations of its matrix elements in configurational space,

Ann = hn |
ZZ

dnxdyn | x1, ..., xniAnn(x1, .., xn; y1, ..., yn)hy1, ..., yn | ni ,
(154)
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are for example of the following form

Ann(x1, .., xn; y1, ..., yn) = A(y1, ..., yn)
nY

m=1

δ(ym − xm) . (155)

Furthermore, it shall be assumed that the function A(y1, ..., yn) can be written
as a sum of the form

A(y1, ..., yn) =
MX

{l1,··· ,lk}
A(yl1 , yl2 , ..., ylk) , k < n ,M =

µ
n

k

¶
. (156)

The matrix elements in (155) can now be reformulated in terms of creation
and annihilation operators. Consider first only one term in (156), A(y1, ..., yk) ,
to be used in (155),

hn |
ZZ

dnxdny | x1, ..., xniA(y1, ..., yk)
kY

m=1

δ(ym − xm)hy1, ..., yn | ni =

1

n!
hn |

Z
dnxbb†(x1)...bb†(xn) | 0iA(x1, ..., xk)h0 | bb(xn)| {z }

step−wise

...bb(x1) | ni . (157)

By developing the integral step-wise, one gets

(n− k)!

n!
hn |

Z
dkxbb†(x1)...bb†(xk)A(x1, ..., xk)bb(xk)...bb(x1) | ni . (158)

If one finally sums according to (156), the matrix elements of the operator bA
are given by

hn | bA | ni = hn | 1
k!

Z
dkxbb†(x1)...bb†(xk)A(x1, ..., xk)bb(xk)...bb(x1) | ni ,

(159)
and therefore the operator by

bA = 1

k!

Z
dkxbb†(x1)...bb†(xk)A(x1, ..., xk)bb(xk)...bb(x1) . (160)

15.8.1 The Fock formulation of the Hartree-Fock equations

Suppose as an example for the above general formulation that the Hamilton
operator Hnn for a n-particle system is restricted to two-particle interactions
only,

Hnn =
nX
i=1

hi +
1

2

X
i6=j

gij , (161)
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then the corresponding operator in Fock space, bH can be formulated immedi-
ately using (160),

bH =

Z
dxbb†(x)h(x)bb(x) + 1

2

ZZ
dx1dx2bb†(x1)bb†(x2)g(x1, x2)bb(x2)bb(x1) ,

(162)
or bH =

X
i,j

bb†i hi | h1 | jibbj + 12 X
i,j,k,l

bb†ibb†jhij | g12 | klibbkbbl . (163)

In order to evaluate the expectation value of bH in Fock space,nbψ | bHbψo = ∞X
n=1

hψn | Hnnψni , (164)

each term in this sum has to be evaluated,

hψn | Hnnψni = hψn |
½
hn |

Z
dxbb†(x)h(x)bb(x) | ni¾ | ψni +

hψn |
½
hn | 1

2

ZZ
dx1dx2bb†(x1)bb†(x2)g(x1, x2)bb(x2)bb(x1) | ni¾ | ψni . (165)

For x = x0 the first term on the rhs of the last equation can be rewritten as

hψn |
½
hn |

Z
dxbb†(x)h(x)bb(x) | ni¾ | ψni =

=

Z
dx

⎧⎪⎨⎪⎩h(x)hψn | hn | bb†(x)bb(x0) | ni | ψni| {z }
=Γ(1)(x;x0)

⎫⎪⎬⎪⎭
x=x0

, (166)

where Γ(1)(x, x0) is the so-called first order density matrix :

Γ(1)(x;x0) = hψn | hn | bb†(x)bb(x0) | ni | ψni =
=

Z
dnxψ∗n(x1, x2, ..., xn)

nX
l=1

δ(x− xl)ψn(x1, x2, ..., xl, x
0, xl+1, ..., xn) =

= n

Z
ψ∗n(x, x2, ..., xn)ψn(x

0, ..., xn)dx2dx3...dxn . (167)

In a similar way the second term in (165) can be rewritten,

hψn | hn |
ZZ

dx1dx2bb†(x1)bb†(x2)g(x1, x2)bb(x2)bb(x1) | ni | ψni =
=

ZZ
g(x1, x2)Γ

(2)(x1, x2;x1, x2)dx1dx2 , (168)
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where Γ(2)(x1, x2;x1, x2) is the so-called second order density matrix,

Γ(2)(x1, x2;x1, x2) =

=
1

2

Z
dnx0ψ∗n(x

0
1, x

0
2, x

0
3, ..., x

0
n) ×

×
nX

k 6=l=1
δ(x1 − x0k)δ(x2 − x0l)ψn(x

0
1, x

0
2, x

0
3, ..., x

0
n) =

=

µ
n

2

¶Z
ψ∗n(x1, x2, x

0
3, ..., x

0
n)ψn(x1, x2, x

0
3, ..., x

0
n)dx

0
3...dx

0
n . (169)

15.9 Quantization of matter fields - the relation between
first and second quantization

The time-dependent Schrödinger equation for a single particle moving in its own
field is given by

(h(x) + V (x))ψ(x, t) = i~
∂

∂t
ψ(x, t) , (170)

where x = (r, σ) comprises the space (r) and spin (σ) coordinates. The one-
particle operator contains the kinetic energy and some potential term U(r),

h(x) = − ~
2

2m
∇2 + U(r) , (171)

and V (x) is the so-called self-interaction contribution,

V (x) = e2
Z

ψ∗(x0)ψ(x0)

|r− r0| dx0 . (172)

The so-called time evolution operator bU = bU(t),
bψS(t) = bU bψS(0) ≡ bU bψH , (173)

which transforms any operator bAS in the Schrödinger picture into an operatorbAH(t) in the Heisenberg picture5,bAH(t) = bU bAS
bU† , (174)

has the property that bU† bU = bU bU† = 1 . (175)

Transforming therefore the operator on the lhs of (170) into the Heisenberg
picture one gets³

hH(x, t) + bVH(x, t)´ = bU ³h(x) + bV (x)´ bU† . (176)

5 In the following the Schrödinger and the Heisenberg picture are specified by indices S and
H, respectively.
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If one attempts to replace in (170) ψ(x, t) by the field operator bbH(x, t),
where the index H indicates that this is an operator in the Heisenberg picture,
this equation now reads as³

hH(x, t) + bVH(x, t)´bbH(x, t) = i~
∂

∂t
bbH(x, t) , (177)

which in turn applied to an arbitrary element bψH ∈ bH yields³
hH(x, t) + bVH(x, t)´bbH(x, t)bψH = i~

∂

∂t

³bbH(x, t)bψH´ . (178)

By multiplying this equation from the left with the evolution operator bU one
gets ³

h(x) + bV (x)´bb(x)bψS(t) = i~
µbU ∂

∂t
bbH(x, t)bU†¶ bψS(t) , (179)

since bU bAH
bψH = bU bU† bAS

bU bψH = bAS
bψS(t) . (180)

The rhs of (178) can now be rewritten using again the evolution operator

i~
∂

∂t

³bbH(x, t)bψH´ = i~
∂

∂t

³bbH(x, t)bU† bU bψH´ =
= i~

∂

∂t

³bbH(x, t)bU†´ bψS(t) , (181)

i~
∂

∂t

³bbH(x, t)bψH´ = i~
∂

∂t

³bU†bb(x)bU bψH´ = i~
∂

∂t

³bU†bb(x)bψS(t)´ . (182)

from the last two equations one obtains therefore the relation

i~
∂

∂t

³bbH(x, t)bU†´ bψS(t) = i~
∂

∂t

³bU†bb(x)´ bψS(t) , (183)

which multiplied from the left with bU leads to the following equation

i~bU ∂

∂t
bbH(x, t)bU†bψS(t) =

= i~bU Ã∂ bU†
∂t

!
| {z }

=−H

bb(x)bψS(t) + i~
∂

∂t

³bb(x)bψS(t)´ . (184)

In here bH , bH = −i~bU ∂ bU†
∂t

, (185)

is a Hermitian operator in the Fock space bH such that

bHbψ = i~
∂

∂t
bψ , bψ ∈ bH . (186)
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This property follows directly from the transformation bψS(t) = bU bψH ,µ
∂

∂t

¶ bψS(t) =
Ã
∂ bU
∂t

! bψH =
Ã
∂ bU
∂t

! bU†bψS(t) =
Ã
∂ bU
∂t
bU†! bψS(t) . (187)

and from the unitary properties of the evolution operator, namely bU bU† = 1,
∂

∂t

³bU† bU´ = ∂ bU†
∂t

bU + bU† ∂ bU
∂t

= 0 . (188)

It is therefore easy to see that

bH = i~bU† ∂ bU
∂t

= −i~bU ∂ bU†
∂t

= bH† (189)

If therefore bU is a diagonal operator in Fock space, which implies that the
number of particles is not changed with respect to the time variable t, then alsobH is a diagonal operator in bH.
Using now (184) , (185) and (189) in equation (179) one finally gets³bh(x) + bV (x) + bH´³bb(x)bψS(t)´ = i~

∂

∂t

³bb(x)bψS(t)´ . (190)

Equation (190) can also be formulated in the following way using only operators
and the definition of bH in (186),³bh(x) + bV (x)´bb(x) = µ− bHbb(x) + i~

∂

∂t
bb(x)¶ = hbb(x), bHi

−
. (191)

By transforming this last equation into the Heisenberg picture one gets

bU† hbb(x), bHi
−
bU = hbbH(x, t), bHH

i
−
=

= bU† ³bh(x) + bV (x)´ bU bU†bb(x)bU = ³bhH(x, t) + bVH(x, t)´bbH(x, t) . (192)

This, however, is nothing but the lhs of (177),³bhH(x, t) + bVH(x, t)´bbH(x, t) = i~
∂

∂t
bbH(x, t) , (193)

i.e., one finally can comprise the essence of the second quantization by
means of an equation of motion for the field operator in the Heisenberg
picture

i~
∂

∂t
bbH(x, t) = hbbH(x, t), bHH

i
−

. (194)
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15.9.1 A configurational space formulation of the second quantiza-
tion

Using a configurational representation of (190),³bh(x) + bV (x) + bH´bb(x)bψ
S
(t) = i~

∂

∂t

³bb(x)bψ
S
(t)
´

, (195)

bh(x) and bV (x) are of the following form in bH(c)

bV (x) = bn(c)
⎛⎜⎜⎜⎝
0 0 0 0
0 V11(x1, x) 0 0
0 0 V22(x1, x2, x) 0

0 0 0
. . .

⎞⎟⎟⎟⎠ , (196)

bh(x) = bn(c)
⎛⎜⎜⎜⎝

h00(x) 0 0 0
0 h11(x) 0 0
0 0 h22(x) 0

0 0 0
. . .

⎞⎟⎟⎟⎠ . (197)

If one takes therefore the projections into the subspaces

H
(c)
0 ,H

(c)
1 ,H

(c)
2 , ..,H(c)

n , .. ⊂ bH(c) ,

the various components of (195) are found. For n = 0 one gets

h0 | bh(x) + bV (x) + bH | 0ih0 | bb(x) | 1ih1 | ψS(t) =
= h0 | bh(x) + bV (x) + bH | 0ib01(x)ψ1(t) =

= (h00(x) + V00(x) +H00)| {z }
= h(x)

b01(δx)ψ1(x1, t)| {z }
= ψ1(x,t)

= i~
∂

∂t
ψ1(x, t) . (198)

By comparing this equation with the definition for bH in (186), one easily can
see that in H

(c)
1

H(x) = h(x) . (199)

For n = 1 one similarly obtains

h1 | bh(x) + bV (x) + bH | 1ih1 | bb(x) | 2ih2 | ψS(t) =
= h1 | bh(x) + bV (x) + bH | 1ib12(x)ψ2(t) =

= (h11(x) + V11(x1, x) +H11(x1)) b12(δx)ψ2(x1, x2, t) =

=

µ
h(x) +

e2

|r− r1|
+H(x1)

¶
ψ2(x1, x, t) = i~

∂

∂t
ψ2(x1, x, t) , (200)

or

H(x1, x) = h(x) +H(x1) +
e2

|r− r1|
. (201)
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In general, for an arbitrary n one obtains a recursion formula for the operatorbH ,

H(x1, x2, ..., xn, x) = h(x) +H(x1, x2, ..., xn) +
nX

k=1

e2

|r− rk|
. (202)

It should be noted that bH therefore is nothing but the Hamilton operator
for an n-particle system in the ordinary (first) quantization.
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16 Resolvents and Green functions
In this chapter basic properties of resolvents and of Green functions are briefly
reviewed. These properties are the formal basis of scattering theory to be dis-
cussed in one of the following chapters.

16.1 Resolvents

Consider the eigenvalue equation

H | ψi = � | ψi , (1)

where H (Hamiltonian) is a linear Hermitian time-independent (differential)
operator. The resolvent of H, G(z), is defined by

G(z) = (z −H)−1 , (2)

(z −H)(z −H)−1 = 1 , (3)

where z is a complex variable. G(z) is an analytic function of z, whose singu-
larities constitute the eigenvalue spectrum of H. If ∆(z) is the square of the
distance from z to the closest eigenvalues of H, then the norm of G(z), k G(z) k,
is given by

k G(z) k = 1/∆(z) , (4)

which implies that G(z) is bounded in the whole complex plane except the
eigenvalues of H.

G(z) and H have the same eigenfunctions, since by subtracting both sides
of (1) from z | ψi and multiplying the left-hand side with G(z), one gets

(z −H) | ψi = (z − ε) | ψi ,

G(z)(z −H) | ψi = (z − ε)G(z) | ψi ,

| ψi = (z − ε)G(z) | ψi ,

G(z) | ψi = (z − ε)−1 | ψi . (5)

16.2 Resolvents and symmetry

Suppose for simplicity that the eigenvalue spectrum of H is only discrete

�1 < �2 < �3 < · · · < �n .

If Pi denotes the projection operator onto the eigenspace of �i,

Pi | ψi =| ψii , PiPj = δij (6)X
i

Pi = 1 , (7)
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then by a similar manipulation as for eqns (5), one can show that

(z − εi)
−1Pi | ψi = G(z)Pi | ψi . (8)

Quite clearly, summing over all i yieldsX
i

G(z)Pi | ψi = G(z) | ψi =
X
i

1

(z − εi)
Pi | ψi , (9)

which can be written as an operator equation as

G(z) =
X
i

1

(z − εi)
Pi , (10)

or in terms of Dirac’s ’bra’ and ’ket’ notation

G(z) =
X
i

| ψiihψi |
(z − εi)

. (11)

If Ci (see also Figure 16.1) denotes a contour in the complex plane encircling
the i-th eigenvalue of H, by means of the Cauchy integral formula the projection
operator Pi can be expressed as

Pi =
1

2πi

Z
Ci

G(z)dz . (12)

Furthermore, if C is a closed contour in the complex plane circumscribing a
subset of eigenvalues �i, �i+1, · · · , �i+n with corresponding projection operators
Pi, Pi+1, · · · , Pi+n, one gets

HPC =
1

2πi

Z
C

G(z)zdz , (13)

where PC is the projection operator onto the direct sum of the corresponding
eigenspaces.

G(z) has simple poles precisely at the positions of the discrete eigenvalues
of H. If H has (also) a continuous spectrum, side limits of the resolvent have
to be formed:

z = �+ iδ , δ > 0

G±(�) = lim
δ→0

(�−H ± iδ)−1 , (14)

i.e. the resolvent is expressed as a limit of operators in Hilbert space. The
meaning of (14) is as follows: if z tends to � from above the real axis, Im(z) >
0, (z − H)−1 tends to G+, whereas if z tends to � from below the real axis,
Im(z) < 0, (z−H)−1 tends to G−. For each eigenvalue of H in the continuum,
G(z) has a branch point. For G(z) the continuum therefore corresponds to a
dense line of branch points, i.e. to a branch cut.
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16.3 Green functions

Any representation (representative) of a resolvent is called a Green function.
Usually such representations are denoted by a small or capital G with the span-
ning vectors of the representation appearing either as arguments or subscripts.
For example G(r, r0, z),

G(r, r0, z) = hr | (z −H)−1 | r0i , (15)

is called the configuration space representation (representative) of (z − H)−1.
It is extremely useful to adopt from the outset the Dirac notation

Φi(r) = hr | Φii , Φ∗i (r) = hΦi | ri , (16)X
i

| ΦiihΦi | , hΦi | Φji = δij , (17)

Z
dr | rihr | = 1 , (18)

hr | r0i = δ(r− r0) . (19)

Switching representation is then simply a matter of using the resolution of the
identity (7) and (18). If, for example, H has only a discrete eigenvalue spectrum
of eigenvalues �i with corresponding orthonormal eigenstates | Φii, then the
configuration space representation in (15) can easily be switched into what is
called the spectral representation of the resolvent G(z):

hr | (z −H)−1 | r0i = hr |
X
i

| ΦiihΦi | (z −H)−1
X
j

| ΦjihΦj | r0i ,

(z −H)−1 | Φji =
1

(z − �j)
| Φji ,

hr | (z −H)−1 | r0i =
X
i,j

hr | Φii
hΦi | Φji
(z − �j)

hΦj | r0i =

=
X
i

hr | ΦiihΦi | r0i
(z − �i)

=
X
i

Φi(r)Φ
∗
i (r

0)

(z − �i)
. (20)

Of course, eqn (20) can be obtained directly by taking the configurational rep-
resentation of (11).

16.4 The configuration space representation of G0(z)

If the Hamiltonian H has (also) a continuous spectrum the problem of finding
representations of G(z) is much more involved. Suppose H is the Hamiltonian
for a free particle, H0,

H0 | pi = p2 | pi , (21)
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(z −H0)
−1 | pi = G0(z) | pi =

1

z − p2
| pi , (22)

z = ε+ iδ . (23)Z
dp | pihp |= 1 , hp | p0i = δ(p− p0) , (24)

hr | pi = (2π)−3/2 exp(ip · r) , (25)

then from (22) the configuration space representation of G0(z) can be obtained
by again using the resolution of the identity:

hr | G0(z) | r0i =
Z
hr | pihp | G0(z) | p0ihp0 | r0idpdp0 =

=
1

8π3

Z
exp(ip · r) 1

z − p2
exp(−ip · r0)dp . (26)

By setting R = r− r0 and changing z to κ2, where Re(κ) > 0, one gets

hr | G0(z) | r0i = G0(R, z) =

=
1

8π3

2πZ
0

dΦ

πZ
0

sinΘdΘ

∞Z
0

exp(ipR cosΘ)

κ2 − p2
p2dp =

=
1

4π2

∞Z
0

1

ipR

exp(ipR)− exp(−ipR)
κ2 − p2

p2dp =

1

2πR

1

2πi

∞Z
−∞

p exp(ipR)

κ2 − p2
dp , (27)

where Θ and Φ are the angles between p and R. The value of the last integral
is not changed by using a semicircular contour in the upper half of the complex
plane. Rewriting the integrand in (27) as v(p)/w(p), where v(p) = p exp(ipR)
and w(p) = κ2 − p2, one can see immediately that v(p) is a regular function,
whereas w(p) has a simple zero location at κ2 = p2. The residue is therefore
given by the value of v(p)/w0(p) at p2 = κ2. According to the two roots of p2,
the contour integration yields the following situation:

Im(z) Pole Residue
δ > 0 p = κ − exp(iκR)/2
δ < 0 p = −κ − exp(−iκR)/2
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The configurational representation of G0(z) is therefore given by

hr | G0(z) | r0i = G0(r, r
0
, z) = − 1

4πR

½
exp(iκR) ; δ > 0
exp(−iκR) ; δ < 0

. (28)

Since this representation depends on the sign of the imaginary part of z, its is
not well defined. From (28) one can see that

G0(r, r
0, z)∗ = G0(r, r

0, z∗) . (29)

The configurational representations of the side limits (14), however, are well
defined:

hr | G±0 (�) | r0i = G±0 (r, r
0, �) = − 1

4πR

⎧⎨⎩
exp(±i�1/2R) � > 0
1 � = 0

exp(− |�|1/2R) � < 0

. (30)

It should be noted that, because of (3), similar ’formal’ operator equations
pertain for G±0 (�)

(�−H0)G
±
0 (�) = G±0 (�)(�−H0) = 1 , (31)

which, however, do not imply that (�−H0) has an inverse!

16.5 Side limits and Dirac delta functions

In general the Hamiltonian has a discrete spectrum {εi} and a continuous spec-
trum {�j}. Using the following notation for the resolution of the identityX

i

| ΦiihΦi | +
Z

dj | ΦjihΦj | =
X
k

| ΦkihΦk | , (32)

then from the spectral representation ofG(z), z = �+iδ, one can see immediately
in (20) that

G(r, r0, z)∗ = G(r, r0, z∗) , (33)

which in turn implies that, for the side limits G±(r, r0, �),

G+(r, r0, �)∗ = G−(r, r0, �) . (34)

Taking therefore the difference of G+(r, r0, �) and G−(r, r0, �):

G(r, r0, �) = G+(r, r0, �)−G−(r, r0, �) = 2iIm[G+(r, r0, �)] , (35)

it can be understood that G(r, r0, �) is the discontinuity of the spectral repre-
sentation of G(z) across the branch cut of G(z).
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Since formally the Dirac delta function δ(ε − �0) can be expressed by the
following limiting property (see, in particular Messiah 1969)

lim
δ→0+

∙
1

�± iδ − �0

¸
= PP

∙
1

�− �0

¸
∓ iπδ(ε− �0) , (36)

where PP stands for principal part, G(r, r0, �) or Im[G±(r, r0, �)] can be written
as

G(r, r
0
, �) = −2πi

X
k

hr | ΦkihΦk | r0iδ(ε− �k) ,

Im[G±(r, r0, �)] = ∓π
X
k

hr | ΦkihΦk | r0iδ(ε− �k) . (37)

Integration over r of the diagonal elements (r = r0) of a configurational space
representation defines the trace (Tr) of this representation. Since, however,Z

hr | ΦkihΦk | ridr =
Z
hΦk | rihr | Φkidr =

= hΦk |
Z
| rihr |dr | Φki = hΦk | Φki = 1 ,

one gets directly the density of states per unit volume, n(ε),

Tr
£
Im[G±(r, r0, �)]

¤
= ∓π

X
k

δ(ε− �k) ,

n(ε) =
X
k

δ(ε− �k) = ∓π−1Tr
£
Im[G±(r, r0, �)]

¤
. (38)

16.6 Resolvents and perturbation theory

Suppose the Hamiltonian H is given in terms of an unperturbed Hamiltonian
H0 and a perturbation operator λV , where λ is a suitable (real) parameter,

H = H0 + λV . (39)

Let G(z) and G0(z) be the resolvents of H and H0, respectively,

G(z) = (z −H)−1 , Go(z) = (z −Ho)
−1 . (40)

Then G(z) can be expressed in terms of G0(z) as

G(z) =
1

z −H
=

1

z −H0 − λV
=

z −Ho

z −Ho

∙
1

z −H0 − λV

¸
=

=
1

z −Ho

∙
z −Ho + λV − λV

z −H0 − λV

¸
= Go(z)

∙
1 +

λV

z −H0 − λV

¸
=

= Go(z) [1 + λV G(z)] = Go(z) [1 +G(z)λV ] = [1 +G(z)λV ]Go(z) . (41)

169



On the right-hand side of (41) G(z) can be substituted by the value of G(z) on
the left-hand side:

G(z) = Go(z) [1 + λV Go(z) [1 + λV G(z)]] .

Repeated application of this procedure yields the following series for G(z):

G(z) =
∞X
n=0

λnGo(z) [V Go(z)]
n . (42)

The convergence radius of this series is defined by the norm of the operator
λV Go(z), i.e. kλV Go(z)k . The series is absolutely convergent if

kλV k < ∆0(z) , (43)

where ∆0(z) is the square of the distance of z to the closest eigenvalue of Ho.
Choosing in particular λ to be unity, (41) can be reduced to

G(z) = Go(z) [1 + V G(z)] , (44)

G(z) = [1 +G(z)V ]Go(z) . (45)

Formally, these two equations can also be obtained by using the operator identity

A−1 = B−1 +B−1(A−B)A−1

with A = z −H and B = z −H0 for (44) and A and B interchanged for (45).
Equation (44) (or for that matter (45)) is called the Lippmann-Schwinger
equation for the resolvent G(z).
Defining Ω(z) as

Ω(z) = [1 + V G(z)] , (46)

the Lippmann-Schwinger equation can also be written as

G(z) = Go(z)Ω(z) = Ω(z)Go(z) (47)

On the left-hand side of (47) the definition of G(z) can again be used to give

Ω(z)Go(z) = Go(z) [1 + V G(z)] = Go(z) +Go(z)V G(z) =

= Go(z) +Go(z)V Ω(z)Go(z) ,

Ω(z) = 1 +Go(z)V Ω(z) , (48)

which is yet another way to formulate a Lippmann-Schwinger equation.
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16.7 The T-operator

For many purposes it is convenient to define the following operator T (z) as

T (z) = V + V G(z)V . (49)

T (z) is an analytic function of z and has the same properties as G(z), namely
a pole for each discrete eigenvalue of H, H = H0 + V , and a branch cut for the
continuum. Multiplying from the left with Go(z) one gets

Go(z)T (z) = [Go(z) +Go(z)V G(z)]V = Go(z) [1 + V G(z)]V = ,

Go(z)T (z) = V G(z) = G(z)V , (50)

which can be written in terms of (44) as

Go(z)T (z) = V Go(z) [1 + V G(z)] ,

T (z) = V + V G0(z)T (z) . (51)

Equation (51) is usually called the Lippmann-Schwinger equation for the T
operator. because of the definition in (49), side limits can be taken as in the
case of G(z):

lim
δ→0+

T (�± iδ) = T±(�) = V + V G±(�)V . (52)

Similar to G(z) the adjoint operator of T (z), T (z)†, is given by

T (z)† = T (z∗) , (53)

and T (z) can also be expressed in terms of the operator Ω(z) as

T (z) = V [1 + V G(z)] = V Ω(z) = Ω(z)V (54)

16.8 The Lippmann-Schwinger equation

The usefulness of the T operator can be seen by considering the following ho-
mogeneous and inhomogeneous problems

(�−H0) | Φ(�)i = 0 , (55)

(�−H0) | Ψ(�)i = V | Ψ(�)i , (56)

where | Φ(�)i is an eigenstate of H0 to the same eigenvalue � as (56). Because
of eqn (31), the general solution of eqn (56) is given by

| Ψ±(�)i = | Φ(�)i+G±0 (�)V | Ψ±(�)i . (57)

Using eqn (57) iteratively,

| Ψ±(�)i = | Φ(�)i+G±0 (�)V
£
| Φ(�)i+G±0 (�)V | Ψ±(�)i

¤
, etc.
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one gets

| Ψ±(�)i = | Φ(�)i+G±0 (�)T
±(�) | Φ(�)i =

£
1 +G±0 (�)T

±(�)
¤
| Φ(�)i , (58)

or, using eqn (50)

| Ψ±(�)i =
£
1 +G±(�)V

¤
| Φ(�)i , (59)

or, using eqn (46)

| Ψ±(�)i = Ω±(�) | Φ(�)i (60)

Equations (58) - (60) are usually called the Lippmann-Schwinger equation.
In each of these three equations the solution of H = H0 + V , | Ψ±(�)i, is given
in terms of the (known) unperturbed eigenstate | Φ(�)i.

16.9 Green functions and perturbation theory

In principle all that is necessary now is to form representations of the vari-
ous Lippmann-Schwinger equations discussed previously by making use of the
’resolution of the identity’.
The configuration space representation of the Lippmann-Schwinger equation

for the resolvent G(z),

G(z) = G0(z) [1 + V G(z)] ,

is given by

hr | G(z) | r0i = hr | G0(z) | r0i+

+
RR
hr | G0(z) | r1ihr1 | V | r2ihr2 | G(z) | r0idr1dr2

. (61)

However, since in reality V will be a potential given within the framework of
the local density functional, the representation of V in configuration space can
be assumed to be diagonal

hr | V | r0i = δ(r− r0)hr | V | ri = δ(r− r0)V (r) .

This reduces (61) to

hr | G(z) | r0i = hr | G0(z) | r0i+

+
R
hr | G0(z) | r”ihr” | V | r”ihr” | G(z) | r0idr”

(62)

or

G(r, r0, z) = G0(r, r
0, z) +

Z
G0(r, r”, z)V (r”)G(r”, r

0, z)dr” (63)

In particular from the more ’traditional’ form (eqn(63)) one can see that the
Green function G(r”, r0, z) satisfies an inhomogeneous integral equation, where
the integral kernel is given by G0(r, r”, z)V (r”).
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In momentum space the corresponding representation of eqn (44) can be
similarly found:

hp | G(z) | p0i = hp | G0(z) | p0i+

+
RR
hp | G0(z) | p1ihp1 | V | p2ihp2 | G(z) | p0idp1dp2

. (64)

Using the relation

hr | pi = 1

(2π)d/2
exp(ip · r) , (65)

where d = 1, 2, 3 is the dimensionality of the problem, one easily can show that
eqn (64) is the Fourier transform of (61).
Turning now to eqn (58), which in configuration space representation is given

by
hr | Ψ±(�)i = hr | Φ(�)i+ hr | G±(�)V | Φ(�)i

= hr | Φ(�)i+ hr | G±0 (�)T±(�) | Φ(�)i
, (66)

one can see immediately that by using | pi as eigenstates of H0 (eqn (21)) one
gets the equation

H0 | pi = p2 | pi , p =
√
� ,

hr | Ψ±(p)i = hr | pi+ hr | G±0 (p)T±(p) | pi . (67)

16.10 Green functions and scattering theory

Suppose that the representation of V in eqn (67) is diagonal in configuration
space and that V (r) decays rapidly as r approaches infinity. Equation (67) can
now be interpreted in terms of a scattering formalism: an incident particle of
energy � = p2 in state | pi is perturbed by V (r) resulting in a modified state
| Ψ±(p)i, which will be analyzed as r approaches infinity. Using explicitly the
representation of | pi in configuration space (eqn (65)) and the resolution of the
identity, eqn (67) is simply given by

hr | Ψ±(p)i = (2π)−3/2 {exp(ip · r)+RR
hr | G±0 (p) | r0ihr0 | T±(p) | r”i exp(ip · r”)dr0dr”

ª . (68)

Since
|r− r0| −→

r>>r0
r− (r · r0)/r +O(r−2) , (69)

where O(x) stands for ’orders of x’ the free-particle Green function hr | G±0 (p) |
r0i (eqn(30)) can be written as

hr | G±0 (p) | r0i −→
r>>r0

−exp(±ipr)
4πr

exp (∓ip(r · r0)/r)
£
1 +O(r−1)

¤
. (70)
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As r goes to infinity, hr | Ψ±(p)i has the asymptotic form

hr | Ψ±(p)i −→
r→∞

(2π)−3/2 {exp(ip · r)− (exp(±ipr)/4πr)×

×
RR
exp (∓ip(r · r0)/r) hr0 | T±(p) | r”i exp(ip · r”)dr0dr”

ª
(71)

Because of the factor exp(±ipr)/r only hr | Ψ+(p)i is physically acceptable, i.e.
only the side limits G+0 (p) and T

+(p) have to be considered. Inspecting now the
argument of the first exponential in the integrand, ip(r · r0)/r, one can see that
pr/r is a vector of length p but with direction r/r. Denoting this vector by pf ,
the double integral in eqn (71) is nothing more than a change of representationsZZ

exp (−ipf · r) hr | T±(p) | r0i exp(ip · r0)drdr0 = 8π3hpf | T±(p) | pi .

(72)
Equation (71) can therefore be written in th form

hr | Ψ±(p)i −→
r→∞

(2π)−3/2

×
©
exp(ip · r) + (exp(ipr)/r)

£
−2π2hpf | T±(p) | pi

¤ª , (73)

i.e. hr | Ψ±(p)i can be identified as the familiar scattering wavefunction in
elementary collision theory, usually written as

hr | Ψ±(p)i −→
r→∞

(2π)−3/2
∙
exp(ip · r) + f(pf ,p)

exp(ipr)

r

¸
. (74)

The quantity f(pf ,p) is the so-called scattering amplitude. The scattering
amplitude is proportional to a momentum space representation of T±(p), hp |
T±(p) | p0i, in which p and p0 have the same length: p2 = (p0)2 = �. For this
very reason this particular representation of T±(p) is called the ’on the energy
shell T-matrix’.
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17 Relativistic quantum mechanics

17.1 Minkowski-space

Suppose the set of space-time vectors is given by

M = {xμ} , (1)

xμ ≡ (x0, x1, x2, x3) = (x0, xk) = (ct, r) , (2)

μ = 0, 1, 2, 3 , k = 1, 2, 3 ,

where x0 = ct is the time component and r = (x1, x2, x3) the space component
of an arbitrary space-time vector xμ. For any arbitrary pair of elements x, y ∈M
the scalar product in M is defined as follows

(x, y) ≡
3X

μ=0

xμy
μ = x0y

0 −
3X

k=1

xky
k , (3)

and in particular therefore the norm as

k x k = (x, x) = x0x
0 − (r, r) . (4)

The metric inM is said to be pseudo-euclidean, since themetric tensor gμν
is of the following form

gμν =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ =

µ
1 0
0 −13

¶
= gμν . (5)

The set M is sometimes also called Minkowski space.
In M a vector a is called contravariant (usually denoted by e.g. aμ) if it

”transforms like a space-time vector” xμ and covariant (usually denoted by
e.g. aμ) if transforms like ∂/∂xμ. The transformation of a contravariant vector
by means of the metric tensor gμν yields a covariant vector:

aμ =
3X

v=0

gμνa
ν ≡ gμνa

ν , (6)

while by the opposite procedure a contravariant vector is obtained:

aμ =
3X

v=0

gμνaν ≡ gμνa
ν . (7)

It should be noted that in either case a0 = a0. The implicit summation over
repeated indices as indicated in the last two equations is usually called the
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Einstein sum convention. Quite clearly this implies e.g. for the product of the
metric tensor with itself that

3X
ρ=0

gμρg
ρν ≡ gμρg

ρν = δμ
ν , δμ

ν = { 1 , ν = μ
0 , ν 6= μ

, (8)

a unit matrix is the result.
A vector aμ is called a space-like vector if its norm aμa

μ < 0 and oppositely
a time-like vector if the norm is positive.
Defined in M the gradient can be written as a covariant vector ∂μ,

∂μ ≡
∂

∂xμ
= (

∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3
) = (

∂

∂ct
,∇) (9)

or as contravariant vector ∂μ

∂μ = (
∂

∂ct
,−∇) , (10)

whereby

∂μ∂
μ ≡ ¤ = 1

c2
∂2

∂t2
−∇ ·∇ =

1

c2
∂2

∂t2
−∆ (11)

usually is called D’Alembert operator.
IfA = A(r, t) denotes the vector potential and φ =φ(r, t) the scalar potential

then the electromagnetic field can be written as the following contravariant
vector Aμ

Aμ = (φ,A) (12)

such that the electric and magnetic field, E and H, respectively, are given by

E = (Ex, Ey, Ez) = −∇φ−
∂A

∂x0
, (13)

H = (Hx,Hy,Hz) = rotA . (14)

The so-called electro-magnetic field tensor Fμν , formally written as

Fμν =
∂Aν

∂xμ
− ∂Aμ

∂xν
, (15)

is an antisymmetric tensor in M , whose elements are given by the components
of E and H,

Fμν =

⎛⎜⎜⎝
0 Ex Ey Ez

−Ex 0 −Hz Hy

−Ey Hz 0 −Hx

−Ez −Hy Hx 0

⎞⎟⎟⎠ . (16)

The gradient and the electromagnetic field vectors finally can be combined to
yield the following four component vector Dμ

Dμ = δμ + ieAμ = (
∂

∂x0
+ ieφ,∇− ieA) (17)
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17.2 Poincaré and Lorentz transformations

Poincaré transformations are inhomogeneous linear transformations that pre-
serve the quadratic form xμx

μ, i.e. the norm in M . Such a transformation is
defined by obtained

(xμ)0 = Ωμvx
υ + aμ (18)

where (xμ)0 is the transformed vector, Ωμ v a space-time point operation Ω,
which keeps the origin invariant, and aμ a translation. If denotes (Ω | a) the
operator that maps xμ on (xμ)0,

(Ω | a)xμ = Ωμvxυ + aμ = (xμ)
0

, (19)

then the matrix Ωμ v is the representations of the corresponding space-time
point operation, whereby matrices like Ωμυ and Ωμν can be obtained by using
the metric tensor gμν such as in the following transformation

Ωμν = g ρ
ν Ω

μ
ρ .

From the condition that the norm is left invariant and that the transformations
are real, the properties of the matrices Ω ν

μ can be deduced, namely

Ω∗μυ = Ωμυ , (20)

ΩμυΩ
μλ = ΩνμΩ

λμ = δ λ
ν , (21)

det | Ωμv | = ±1 . (22)

The set of operators (Ω/a) forms a group, the so-called Poincaré group,

P = {(Ω | a) / (Ω | a)(Ω0 | a0) = (ΩΩ0 | Ωa0 + a)} , (23)

in which the identity element (� | 0) has the following representation for the
pure space-time point operation �

D(�) =

µ
1 0
0 13

¶
. (24)

Similarly the pure time-inversion operator (T | 0) and pure space inversion
operator (J | 0) are defined by the representations of their corresponding space-
time point operations

D(T ) =

µ
−1 0
0 13

¶
, D(J) =

µ
1 0
0 −13

¶
. (25)

The set of operator (Ω | a) for which Ω00 > 0, i.e., which preserve the
direction of time, form a subgroup P ⊂ P of index two:

P = {(Ω | a) / Ω00 ≥ 0} , (26)
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since the complement (P − P ) is defined by

(P − P ) = {(Ω | a) / (Ω | a) = (Ω | a)(T | 0)} . (27)

P is called orthochronous Poincaré group, which in turn has a subgroup of
index two, namely the so-called proper orthochronous Poincaré group P+,
which is the set of time conserving transformations for which det | Ωμv | = 1:

P+ = {(Ω | a) / Ω
00 ≥ 0,det | Ωμv | = 1} . (28)

In terms of left cosets, the Poincaré group P ⊃ P ⊃ P+ can therefore be written
as

P = {P, (T | 0)P} , (29)

P = {P+, (J | 0)P+} . (30)

These three Poincaré groups contains as corresponding subgroups all those op-
erations for which the translation a = 0:

L = {(Ω | a)} = {L, (T | 0)L} (31)

L = {L+, (J | 0)L+} . (32)

L is called Lorentz group, L orthochronous Lorentz group and L+ proper
orthochronous Lorentz group.
It should be noted that the subset of operators of the Poincaré group that

corresponds to pure space translations only also forms a subgroup, the so-called
Euclidean group:

P ⊃ E = {(Ω | a) / ∀a0 = 0} . (33)

The corresponding subgroup of the Lorentz group is the familiar Rotation-
Inversion group in the three-dimensional vector space R3.
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17.3 Postulates of relativistic quantum mechanics

Missing
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17.4 Dirac equation

For a single particle of charge e and mass m the relativistic Hamilton function
is given by1

H = eφ+
p
(p− eA)2 +m2 , (34)

where φ is the scalar potential, A the vector potential and p the momentum.
Assuming now as discussed in the previous section that the probability density
ρ = ψ∗ψ is positive definite then it follows immediately that the corresponding
Hamilton operator bH has to be Hermitian, since:Z

∂ρ

∂t
d3x = − i

~

Z
(ψ∗Hψ − (Hψ)∗ψ) d3x = 0 . (35)

For the sake of simplicity in the following discussion only the Hamilton
function in the absence of a field shall be considered:

H =
p
p2 +m2 . (36)

Since the lhs of (35) is linear in ∂/∂t (≡ ∂/∂x0 in (9)) this implies that alsobH on the rhs of (35) has to be linear with respect to ∂/∂xk, k = 1, 3, i.e., with
respect to components of the momentum operator p. This condition is usually
called the condition of relativistic covariance. If one replaces according
to the correspondence principle E → i∂/∂t and p → −i∇, one immediately
can see that the condition of linearity cannot be fulfilled in a straightforward
manner, since the square root is not a linear operator. The Dirac problem,
but also the problem of Pauli’s spin theory, however, can be associated with a
special polynomial algebra.

17.4.1 Polynomial algebras

Let P2(x) be a second order polynomial of the following form

P2(x) = a21
X
i6=j

xixj + a22
X
j

x2j , i, j = 1, 2, . . . ,m , (37)

where the aij are elements of a symmetric matrix. Consider further that the
linear form

L(x) =
mX
j=1

αjxj (38)

satisfies the condition
P2(x) + L2(x) = 0 , (39)

then the set of coefficients {αj} has to satisfy the following properties2:

i = j : [αi, αj ]+ = −2a22I , (40)

1 for a discussion of classical relativistic dynamics see e.g. the book by Messiah
2 see in particular the paper by Raghavacharyulu and Menon, 1970
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i 6= j : [αi, αj ]+ = −a21I , (41)

where I denotes the identity element in {αj} and [, ]+ anticommutators. The
set of coefficients {αj} is called an associative algebra. Two special cases carry
famous names, namely

a21 = a22 = 0 → [αi, αj ]+ = 0 , (42)

the so-called Grassmann algebra3 and

a21 = 0 , a22 = −1 → [αi, αj ]+ = 2δij , (43)

the so-called Clifford algebra. Comparing now with (36) one can see that
exactly the case of the Clifford algebra is needed in tackling the problem of the
linearization of the square root:vuut( mX

j=1

p2j)| {z }
P2(p)

=
mX
j=1

αjpj| {z }
L(p)

. (44)

In the following first the case for m = 2 and 3 (Pauli spin theory) is discussed
by considering the smallest groups with Clifford algebraic structure and only
then in a similar way the Dirac problem (m = 4) is addressed.

17.4.2 The Pauli groups

For m = 2 the smallest set of elements αi that shows group closure4 is given by

G
(m=2)
P = {±I,±α1,±α2,±α1α2} . (45)

This group is of order 8 and has 5 classes (Ci), namely C1 = {I}, C2 = {−I},
C3 = {±α1}, C4 = {±α2}, C5 = {±α1α2}. There are therefore 5 irreducible
representations (Γ(m=2)i , i = 1, 5) of dimensions ni such that

5X
i=1

n2i = 8 . (46)

This implies that 4 irreducible representations (Γ(m=2)i , i = 1, . . . , 4) have to be
one-dimensional and one two-dimensional. Since one-dimensional representa-
tions are commutative, i.e., do not satisfy the conditions of a Clifford algebra,
only the two-dimensional representation (Γ(m=2)5 ) is of help. The matrices for
this irreducible representation are listed below:

Γ
(m=2)
5 (±I) = ±

µ
1 0
0 1

¶
, Γ

(m=2)
5 (±α1) = ±

µ
0 1
1 0

¶
,

3 this is exactly the algebra of creation and annihilation operators for fermions, see also
chapter 15

4 for the discussion in the following sections see also chapter 18
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Γ
(m=2)
5 (±α2) = ±

µ
0 −i
i 0

¶
, Γ

(m=2)
5 (±α1α2) = ±

µ
i 0
0 −i

¶
. (47)

Using this set of matrices it is easy to show that it indeed forms a representation
of G(m=2)P and that these matrices are Clifford algebraic. For the case of m = 2
the problem of the linearization of the square root is therefore solved:q

p21 + p22

µ
1 0
0 1

¶
= p1

µ
0 1
1 0

¶
+ p2

µ
0 −i
i 0

¶
. (48)

For m = 3 the smallest set of elements σi forming a group is given by

G
(m=3)
P = {±I,±α1,±α2,±α3,±α1α2,±α1α3,±α2α3,±α1α2α3} . (49)

The order of this group is 16. It has 10 classes, namely

C1 = {I}, C2 = {−I},

C3 = {±α1}, C4 = {±α2}, C5 = {±α3}
C6 = {±α1α2}, C7 = {±α1α3}, C8 = {±α2α3}

C9 = {α1α2α3}, C10 = {−α1α2α3}, (50)

and therefore 10 irreducible representations,

10X
i=1

n2i = 16 , (51)

of which 8 (Γ(m=3)i , i = 1, 8) are one-dimensional and two (Γ(m=3)i , i = 9, 10) are
two-dimensional. Again only the two-dimensional irreducible representations
are Clifford algebraic.
For α1 and α2 one can use the same matrix representatives as in the m = 2

case,
Γ
(m=3)
9 (α1) = Γ

(m=2)
5 (α1) , Γ

(m=3)
9 (α2) = Γ

(m=2)
5 (α2) , (52)

provided that the corresponding matrix for α3 is defined by

Γ
(m=3)
9 (α3) = −iΓ(m=3)9 (α1)Γ

(m=3)
9 (α2) . (53)

The second two-dimensional irreducible representation (Γ(m=3)10 ) is by the way
the complex conjugate representation of Γ(m=3)9 . It is rather easy to proof that
these two irreducible representations are indeed non equivalent.
For them = 3 case the problem of the linearization of the square root reduces

therefore to the following matrix equation:q
p21 + p22 + p23Γ

(m=3)
9 (I) = (54)

= p1Γ
(m=3)
9 (α1) + p2Γ

(m=3)
9 (α2) + p3Γ

(m=3)
9 (α3) . (55)
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The matrices

Γ
(m=3)
9 (α1) ≡ σ1 =

µ
0 1
1 0

¶
, Γ

(m=3)
9 (α2) ≡ σ2 =

µ
0 −i
i 0

¶
,

Γ
(m=3)
9 (α3) ≡ σ3 =

µ
1 0
0 −1

¶
, (56)

carry a famous name. They are the so-called Pauli spin matrices, usually - as
indicated in the last equ. - denoted simply by σ1, σ2 and σ3. For m = 2, 3 the
corresponding groups are called Pauli group (as indicated by the index P ).

17.4.3 The Dirac group

For m = 4 the following subset of the Clifford algebra forms the smallest group

G
(m=4)
D = {±I,±αi (i ≤ 4),±αiαj (i < j),±αiαjαk (i < j < k),

±α1α2α3α4 ≡ ±α5} , (57)

where ”traditionally” the elements αi are usually also denoted by γμ. The order
of this group is 32. It has 17 classes,

C1 = {I}, C2 = {−I},

C3−6 = {±αi | i ≤ 4}, C7−12 = {±αiαj | i < j ≤ 4},
C13−16 = {±αiαjαk | i < j < k ≤ 4}, C17 = {±α1α2α3α4}, (58)

and therefore 17 irreducible representations. As can be checked in analogy
to (46) 16 of these irreducible representations (Γ(m=4)i , i = 1, . . . , 16) are one-
dimensional and one is four-dimensional (Γ(m=4)17 ). Again only the matrices
of the four-dimensional irreducible representation satisfy the conditions of the
Clifford algebra. The following matrices

Γ
(m=4)
17 (αi) ≡ αi ≡ γi =

µ
0 σi
σi 0

¶
, i = 1, 2, 3 , (59)

Γ
(m=4)
17 (α4) ≡ β ≡ γ4 =

µ
12 0
0 −12

¶
, (60)

where the σi are the Pauli spin matrices and 12 is a two-dimensional unit matrix,
are irreducible representatives of the elements αi ∈ G

(m=4)
D . These particular

representatives, usually denoted simply by αi and β, are calledDirac matrices,
G
(m=4)
D Dirac group.
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17.4.4 Relations between the Dirac group and the Pauli groups

The subgroup structure The Dirac group contains the Pauli groups as sub-
groups,

G
(m=2)
P ⊂ G

(m=3)
P ⊂ G

(m=4)
D , (61)

whereby G(m=2)P is a normal subgroup in G(m=3)P and G(m=4)D . This implies that
in a coset decomposition of G(m=4)D in terms of G(m=2)P ,

G
(m=4)
D = {IG(m=2)P , α3G

(m=2)
P , α4G

(m=2)
P , α3α4G

(m=2)
P } , (62)

left and right cosets are identical,

α3G
(m=2)
P = {±α3,±α3α1,±α3α2,±α3α1α2} =

= {±α3,±α1α3,±α2α3,±α1α2α3} = G
(m=2)
P α3 (63)

and that G(m=2)P consists of complete classes of G(m=4)D (58) denoted for a mo-
ment as Ci(G

(m=4)
D ),

G
(m=2)
P = {C1(G(m=4)D ), C2(G

(m=4)
D ) ,

C3(G
(m=4)
D ), C4(G

(m=4)
D ), C5(G

(m=4)
D )} .

(64)

It should be noted that G(m=3)P is not a normal subgroup in G
(m=4)
D , since

C17(G
(m=4)
D ) = C9(G

(m=3)
D ) ∪C10(G(m=3)D ) (65)

Subduced representations The set of matrices

Γ
(m=4)
17 (G

(m=2)
P ) ≡ {Γ(m=4)17 (α),∀α ∈ G

(m=2)
P }

and
Γ
(m=4)
17 (G

(m=3)
P ) ≡ {Γ(m=4)17 (α),∀α ∈ G

(m=3)
P }

of course also forms a representation forG(m=2)P andG(m=3)P , respectively, which,
however, is reducible. Such representations are called subduced representa-
tions. Reducing these two representations (for example by means of the or-
thogonality relation for characters), one finds the following decompositions into
irreducible representations:

Γ
(m=4)
17 (G

(m=2)
P ) = 2Γ

(m=2)
5 (G

(m=2)
P ) (66)

and
Γ
(m=4)
17 (G

(m=3)
P ) = Γ

(m=3)
9 (G

(m=3)
P ) + Γ

(m=3)
10 (G

(m=3)
P )

= Γ
(m=3)
9 (G

(m=3)
P ) +

³
Γ
(m=3)
9 (G

(m=3)
P )

´∗ (67)

Since the irreducible representation Γ(m=4)17 of G(m=4)D always sub-
duces only the group of the Pauli spin matrices (and their complex
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conjugates), there is no way to deal with the problem posed by (36) in
terms of 2×2 matrices only, i.e., to linearize properly the square rootp
p2 +m2 for a three-component vector p! In other words: there is

no other ”truely” relativistic description but the one using the Dirac
matrices.
One can summarize the properties of these three groups very compactly in

the below short table:

m Group- # of # of one- # of two- # of four-
order classes dimensional dimensional dimensional

irreps irreps irreps
2 8 5 4 1 0
3 16 10 8 2 0
4 32 17 16 0 1

2m+1 m2 + 1 2m

(68)

The so-called fundamental theorem of Dirac matrices, namely that a
necessary and sufficient condition for a set of 4 matrices γ0i to be Dirac matrices,
i.e., to be irreducible and Clifford algebraic, is that they have to be obtained
via a similarity transformation W from the matrices in (59,60):

γ0i =W−1γiW , i = 1, 4 , (69)

is in the context of the Dirac group nothing but the Schur lemma for irreducible
representations.

17.5 The Dirac Hamiltonian

In terms of the postulates of relativistic quantum mechanics a Hamilton operator
corresponding to the Hamilton function in (36) can now be formulated

i~
∂ψ

∂t
= HDψ , (70)

where HD is the so-called Dirac Hamiltonian:

HD = cα · p+ βmc2 , (71)

or using ~ = c = 1,
HD = α · p+ βm , (72)

α · p =
3X

k=1

αkpk . (73)

Equation (70) is not symmetrical with respect to the space and time derivatives
(see also (9) and (10)):µ

i
∂

∂t
−α · p− βm

¶
ψ =

µ
i14

∂

∂t
+ iα ·∇− βm

¶
ψ = 0 . (74)
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Multiplying however from the left with β and denoting the resulting set of Dirac
matrices by γμ,

γμ = (γ0, γ1, γ2, γ3) = (γ0,γ) = β(14,α) , (75)

a covariant form of the Dirac equation is obtained

(γμ(i∂μ)−m)ψ = 0 , (76)

whose Hermitian conjugated form is given by

(−i∂μ)ψ†γμ† −mψ† = 0 . (77)

If one defines now the following quantity ψ,

ψ = ψ†γ0 → ψ† = ψγ0 , (78)

then (77) can be rewritten as

(−i∂μ)ψγμ −mψγ0 = 0 . (79)

Multiplying now (76) from the left with ψ and (79) from the right with ψ,

γμψ(i∂μ)ψ −mψψ = 0

(−i∂μ)ψγμψ −mψγ0ψ = 0
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20 Single-site and multiple scattering

20.1 The muffin-tin approximation

Suppose that the potential Veff (r) in a Schrödinger- or Dirac-type Kohn-Sham
Hamiltonian can be written as follows:

Veff (r) = V (r) =
X
i

V i
eff (ri) =

X
i

Vi(ri) , (1)

ri = r−Ri ,

where the ’individual’ potentials Vi(ri) are loctaed at positions ri such that the
domains of any arbitrary pair of potentials Vi and Vj , ∆i and ∆j , are disjoint
in the tensorial space of spin and configuration

∆i ∩∆j = 0 , ∀i, j .

The positions Ri can be positions of Coulomb singularities and can also refer
to ’empty’ sites. Equation (1) can be viewed from a very pragmatic standpoint,
namely as a partioning of the configuration space into regions of different phys-
ical interest. For a semi-inifinite crystal, for example, one can thus talk about
’bulk’ regions, ’surface’ regions, and a ’vacuum’ region. Within an infinite crys-
tal, the positions Ri are quite ’naturally’ provided by the real space lattice. The
application of eqn (1) can be greatly simplified by using the approximation

Vi(ri) =

⎧⎨⎩ Vi(ri) , |ri| ≤ Ri
s

constant , otherwise
, (2)

i.e. by using spherical symmetric potentials Vi(ri). This approximation is tra-
ditionally called the muffin-tin approximation, and Ri

s is correspondingly
refered to as the muffin-tin radius for the i-th sphere. In addition, for all fur-
ther applications it will be assumed that all individual potentials Vi(ri) are
’regular potentials’:

lim
ri→0

r2i Vi(ri) = 0 , ∀i . (3)

Clearly, the great advantage of the muffin-tin approximation is that in each do-
main ∆i the corresponding Hamiltonian Hi has very useful constants of motion,
such as L2 and Lz, for example, in the case of a non-relativistic approach. It
seems most appropriate therefore to discuss first the scattering from a single
finite range spherical potential well and then adress the multi-centre problem
by joining the various single-site solutions together. In the following a single
site finite range potential V (r),

V (r) =

⎧⎨⎩ V (r) , |r| ≤ Rs

constant , otherwise
, lim

r→0
r2V (r) = 0 , (4)

will be considered from various standpoints. First of all, however, the case of
zero potential has to be considered.
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20.2 The zero potential case

20.2.1 The non-relativistic zero potential case

In the absence of a potential V (r) the radial Schrödinger equation is simply
given by µ

d2

dr2
− l(l + 1)

r2
+ p2

¶
Pl(r) = 0 , (5)

Pl(r) = rRl(r) , p2 = 2� , � ≥ 0 . (6)

Equation (5) is an ordinary second order linear differential equation and there-
fore has two linear independent solutions. The regular solution must behave
like rl+1 (see for example Messiah 1969). The regular solution of (5) is given as
zjl(z), where z = pr and jl(z) is a spherical Bessel function (Abramowitz and
Stegun, 1972):

jl(z) = (π/2z)
1/2Jl+1/2(z) , (7)

jl(z) −→
z→0

zl

(2l + 1)!!
. (8)

The other solution, which behaves like r−l (Messiah 1969), is conveniently cho-
sen to be z times a spherical Neumann function, nl(z) (Abramowitz and Stegun,
1972):

nl(z) = (π/2z)
1/2Nl+1/2(z) , (9)

nl(z) −→
z→0
−z−l−1(2l − 1)!! (10)

As r approaches infinity the spherical bessel and neumann functions show the
following limiting behaviour:

jl(z) −→
|z|→∞

sin(z − lπ/2)/z , (11)

nl(z) −→
|z|→∞

− cos(z − lπ/2)/z . (12)

However, as r approaches infinity the centrifugal term in (5) vanishes and the
solutions should behave like exp(±ipr), which in fact implies that they behave
like ± [nl(z)± ijl(z)]. The Hankel functions h±(z) (Abramowitz and Stegun,
1972) as used traditionally in scattering theory (see, for example, Lloyd and
Smith 1972),

h±(z) = (π/2)H±
l+1/2(z) , h±(z) = jl(z)± inl(z) , (13)

show the required asymptotic behaviour (multiplied by a phase factor exp(±iπ/2).
They refer also to the irregular solutions: h+(z) and h−(z) behave asymptoti-
cally as ’incoming’ and ’outgoing’ spherical waves, respectively. Like the Bessel
and Neumann functions they are functions in general of a complex argument z.
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The spherical Bessel and Neumann functions are summarized for the first few
values of l in the following table.

Spherical Bessel and Neumann functions

l jl(z) nl(z)
0 sin(z)/z − cos(z)/z
1 sin(z)/z2 − cos(z)/z − cos(z)/z2 − sin(z)/z
2 sin(z)(3z−3 − z−1)− 3z−2 cos(z) − cos(z)(3z−3 − z−1)− 3z−2 sin(z)

For � < 0, p in eqn (6) is purely imaginary. In this case the regular and
the irregular solutions are the so-called modified Bessel functions il(pr) and the
modified Hankel functions k+l (pr), respectively:

il(pr) = (−i)ljl(ipr) , (14)

k+l (pr) = (−i)−lh+(ipr) . (15)
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