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1 Introduction
”Physics (al-’ilm-al-tabi’i) investigates bodies that exist by nature, not human
will, such as the various species of minerals, plants, and animals. Physics in-
vestigates all these and whatever exists in them, I mean, all their accidents,
properties, and causes, as well as all that in which they exist by necessity, like
time, space, and motion”

”Guide to the Perplexed”, Moses Maimonides (1138-1204)

Physical phenomena are related to the number of particles participating in
the corresponding processes. Just as well of course one could say that physical
phenomena are a question of dimensions or of the scale under consideration.
Measurements of macroscopical properties are determined by macroscopical

dimensions, those of microscopical properties by the dimensions in the micro-
cosmos:

MACROCOSMOS MICROCOSMOS
# of particles ∼ 1023 ∼ 10n, n ≤ 5

length [cm] 10−8 [cm]
mass [g] 10−28 [g]
time [s] 10−10 [s]

Macroscopical properties can be related to microscopical properties by means
of statistical methods, they never can never be used to interpret microscopical
quantities, since statistically averaged quantities do not permit to single out a
”single event” (”single case”).

MACROCOSMOS MICROCOSMOS
Classical Mechanics Quantum Mechanics

↑ ↓

←− Statistical
Mechanics

←−

CLASSICAL MECHANICS:

”The coordinates of space0 (x, y, z) and momentum (px, py, pz) of a
body in motion can be determined simultaneously exact.”

0By space the so-called configuration space is meant, ie.e, the set of (cartesian) position
coordinates of an object.
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”The energy E of a body in motion is always a continuous function
of its space and momentum coordinates.”

”The laws of classical mechanics are equations of motion for ”clas-
sical particles”:

∆px∆x = ∆py∆y = ∆pz∆z = 0 , (0)

where

∆x =
p
hx2i− hxi2 , ∆px =

p
hp2xi− hpxi2 , (1)

i.e., where ∆x is the statistical fluctuation of the measured value of
x around the averaged value of x, hxi, etc.

QUANTUM MECHANICS

”Space and momentum coordinates of a body in motion can not be
determined simultaneously exact.”

”The energy of a body in motion is not a continuous function of its
space and momentum coordinates.”

The uncertainty for a simultaneous measurement of space and mo-
mentum coordinates or of the energy and time is a universal con-
stant, namely Planck’s constant:

h = 6.62517.10−34 Js

The laws of quantum mechanics are equations of motion for ”non-
classical particles”:

∆px∆x ≥ ~, ∆py∆y ≥ ~, ∆pz∆z ≥ ~, (2)

∆E∆t =≥ ~, ~ = h/2π . (3)

The uncertainty relations in (2) and (3) are usually called Heisenberg
Uncertainty Principle.
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2 The postulates of quantum mechanics

2.1 Postulate 1

”The states of a physical system are completely described by in gen-
eral complex functions Ψ(q1, q2, q3, ..., qn; t).”

A physical (microscopical) system can be an atom, a molecule or a solid
1. By completely is implied that the function Ψ(q1, q2, q3, ..., qn; t) contains all
information obtainable by experiments. The qi, i = 1, .., n, are called char-
acteristic variables such as space coordinates, t is the time dependence. The
functions Ψ are called state functions or wavefunctions. These functions
have to satisfy the following conditions:
(1) The wavefunctions have to be continuous functions of their independent

variables.
(2) They have to have continuous derivatives with respect to their indepen-

dent variables.
(3) They have to be square integrable, i.e., the integral

N =

Z
..

Z
Ψ∗(q1, q2, q3, ..., qn; t)Ψ(q1, q2, q3, ..., qn; t)dq1dq2..dqn (1)

has to exist and has to be finite. N is called the norm of the wavefunction
and dτ = dq1dq2..dqn the volume element.
(4) They are only unique with respect to a complex phase factor

Ψ0 = eiαΨ, (Ψ0)∗ = e−iαΨ∗ , (2)

since

N =

Z
(Ψ0)∗Ψ0dτ =

Z
e−iαeiα| {z }

=1

Ψ∗Ψdτ =

Z
Ψ∗Ψdτ . (3)

2.2 Postulate 2

”To each dynamical variable (observable) a linear (Hermitian) oper-
ator can be assigned, which acts on the state function Ψ.”

An operator is a formal description (operation) by which from one function
another one is generated. Let bO be such an operation then

bOΨ = Ψ0 . (4)

1A careful reader will immediately guess that in the end still Democrit’s view of matter is
the underlying principle.
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In other words bO is an operation by which Ψ is mapped onto Ψ0.

The differential operator d
dx is defined for functions, for which the

independent variable is x such as for the following function f(x)

f(x) = exp

µ
−1
2
x2
¶

, (5)

d

dx
f(x) = (−1

2
2x) exp

µ
−1
2
x2
¶
= −x exp

µ
−1
2
x2
¶

. (6)

As one can see from this example d
dx maps the function exp

¡
−12x2

¢
onto the function −x exp

¡
−12x2

¢
.

2.3 Linear operators:

Consider two operators bO1 and bO2 . They are called linear if and only if
bOi(Ψ+Φ) = bOiΨ+ bOiΦ , i = 1, 2 , (7)

( bO1 + bO2)Ψ = bO1Ψ+ bO2Ψ , (8)

bOi(cΨ) = c bOiΨ , i = 1, 2, c ∈ Z , (9)

where Z is the field of complex numbers.

2.4 Hermitian operators:

An operator cO is called Hermitian2 if and only if bO is a
(real) linear operator andZ

Φ∗i bO Φj| {z }
=φk

dτ =

Z
Φi( bO Φj)∗| {z }

=φ∗k

dτ ≡
Z
Φi bOΦ∗jdτ , (10)

i.e., Z
Φ∗iΦkdτ −

Z
ΦiΦ

∗
kdτ = 0 . (11)

2For a more formal definition see chapter 14
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2.5 Correspondence principle

The operators that describe physical observables can be obtained from the
corresponding quantities in classical mechanics using the following assignment
for the three basic quantities space, momentum and energy ( ~ = h/2π ):

classical observable QM − operator

space x, q bx , bq
r = (x, y, z) br = (bx, by, bz)

momentum px bpx = −i~ ∂
∂x = −i~∇x

p = (px, py, pz) bp = (bpx, bpy, bpz) = −i~∇
energy E bE = i~ ∂

∂t

With the help of these three basic ”correspondences” most other operators
can be composed:

classical observable QM − operator

potential V = V (r) bV = V (r)
energy

kinetic T = p2

2m = bT = p2

2m = − ~2
2m [∇ ·∇] =

energy = 1
2m(p

2
x + p2y + p2z) = − ~2

2m∆

energy H(p, r) = T (p) + V (r) bH = bT + bV =

= − ~2
2m∆+ V (r)

H(p, r) is the (classical) Hamilton function, bH is therefore consequently
called theHamilton operator. The correspondence principle is sometimes also
called Bohr’s principle. The operator ∆ = ∇ ·∇ = ∇2 carries a famous name.
It is the Laplace operator, ∇ is sometimes also called Nabla operator.

2.6 Postulate 3

”If the state function Ψi(q1, q2, q3, ..., qn; t) is an eigenfunction of an
operator bO that corresponds to the observable Ω then the measured
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value of Ω assumes exactly one particular value λi:

bOΨi(q1, q2, q3, ..., qn; t) = λiΨi(q1, q2, q3, ..., qn; t) . (12)

Ψi(q1, q2, q3, ..., qn; t) is then called eigenfunction of the operator bO corre-
sponding to the eigenvalue λi.

Suppose the operator bO is given by d2

dφ2
and Ψi by cos(4φ),

d2

dφ2
(cos(4φ)) = −16 cos(4φ) . (13)

The function cos(4φ) is therefore an eigenfunction of d2

dφ2
correspond-

ing to the eigenvalue -16. Quite clearly also sin(4φ) is an eigenfunc-
tion of d2

dφ2
to the eigenvalue -16, and so is any linear combination

of cos(4φ) and sin(4φ), α cos(4φ) + β sin(4φ) , α, β ∈ Z.

2.7 Schrödinger equation

For a physical system for which the classical Hamilton function is not explic-
itly time-dependent an eigenvalue equation applies for the Hamilton operatorbH, the so-called stationary or time-independent Schrödinger equation,

bHΨn(q) = EnΨn(q) , q = (q1, q2, .., qn) (14)

where the Ψn(q) are the eigenfunctions and the En the possible energy (eigen-)
values of bH. If the Hamilton function is explicitly time-dependent then the state
function describes the time evolution of the system. Using the correspondence
principle in order to identify bH with the energy operator bE, one gets the so-
called time-dependent Schrödinger equation:

bHΨ(q, t) = bHΨ(q, t) = i~
∂

∂t
Ψ(q, t) (15)

The time-dependent Schrödinger equation applies in general also to the case
of a time-independent classical Hamilton function. In this particular case the
wave function Ψ(q, t) can be separated with respect to space and time using the
following product of functions:

Ψ(q, t) = ψn(q)F (t) . (16)

With the above ansatz in the time-dependent Schrödinger equation, one gets:
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bHΨ(q, t) = bH{ψn(q)F (t)} = { bHψn(q)}F (t) =

= i~
∂

∂t
{ψn(q)F (t)} = ψn(q){i~

∂

∂t
F (t)} . (17)

Dividing by ψn(q)F (t), bHψn(q)

ψn(q)
=

i~ ∂
∂tF (t)

F (t)
, (18)

it is evident that the left hand side (lhs) is only space dependent, whereas the
right hand side (rhs) is only time dependent. The equality implies that the lhs
and the rhs equals a constant, say En,bHψn(q)

ψn(q)
= En , (19)

i~ ∂
∂tF (t)

F (t)
= En , (20)

En being a so-called Lagrange parameter.
The first equation is nothing but the time-independent Schrödinger equation,

the second equation,

i~
∂

∂t
F (t) = EnF (t) , (21)

is easy to solve using as solution F (t) = exp (−iEnt/~) . If therefore the Hamil-
ton operator bH is not explicitly time-dependent, the wavefunction Ψ(q, t) is
given by

Ψ(q, t) = Ψ(q) exp (−iEnt/~) . (22)

2.8 Postulate 4

If the state function ψ(q, t) is not an eigenfunction of the operatorbO corresponding to the observable Ω, then the measured value of Ω
can be any of the possible eigenvalues of bO. The average over a series
of measurements, however, is identical to the so-called expectation
value of bO :

< bO > =

R
ψ∗(q, t) bOψ(q, t)dqdtR
ψ∗(q, t)ψ(q, t)dqdt

. (23)

Once the state function is known, by means of this postulate for all well-
defined observables the corresponding expectation values can be obtained. In
particular also an interpretation of the state functions can be given. In a single
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particle system the probability dW to find the particle at a particular time t in
the vicinity dτ = dxdydz of the position r =(x, y, z) is given by

dW =
Ψ∗(r, t)Ψ(r, t)dτR
Ψ∗(r, t)Ψ(r, t)dτ

=
|Ψ(r, t)|2 dτR
|Ψ(r, t)|2 dτ

. (24)

In a many particle system the expression

dW =
|Ψ(q1,q2, ..,qn, t)|2 dq1dq2..dqnR
..
R
|Ψ(q1,q2, ..,qn, t)|2 dq1dq2..dqn

, (25)

defines the probability to find at a given time t simultaneously particle 1 in
dq1 = (dx1dy1dz1) , particle 2 in dq2 = (dx2dy2dz2) etc.
In general ρ(q1,q2, ..,qn, t) ,

ρ(q1,q2, ..,qn, t) =
dW

dq1dq2..dqn
=

=
|Ψ(q1,q2, ..,qn, t)|2R

..
R
|Ψ(q1,q2, ..,qn, t)|2 dq1dq2..dqn

, (26)

is called probability density or (less appropriate particle density or charge
density). As one can see from (24) and (25) only the square of the state function
is physically meaningful, the state function itself (see also (2)) has no meaning
at all.

2.9 Consequences

2.9.1 Norm of a one-dimensional wavefunction

Suppose the wavefunction Ψi(x) is defined within the interval [a,b]. The norm
of this wavefunction is then a positive number N:

bZ
a

Ψ∗i (x)Ψi(x)dx = N . (27)

Suppose that Ψi is given by cos θ and the interval by [0, 2π] then

N =

2πZ
0

cos 2θdθ =

¯̄̄̄
sin θ cos θ

2
+

θ

2

¯̄̄̄2π
0

= π . (28)

Is the norm of a wavefunction identically unity, then the wavefunction is
called normalized. An unnormalized wavefunction has to be normalized by
the square root of the norm. Suppose Ψi(x) is the unnormalized wavefunction
and Ψ0i(x) the corresponding normalized wavefunction,
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Ψ0i(x) =
1√
N
Ψi(x) , (29)

then

bZ
a

(Ψ0i(x))
∗
Ψ

0

i(x)dx =

bZ
a

µ
1√
N
Ψ∗i (x)

¶µ
1√
N
Ψi(x)

¶
dx =

=
1

N

bZ
a

Ψ∗i (x)Ψi(x)dx = 1 . (30)

2.10 Properties of a Hermitian operator

2.10.1 Eigenvalues

The eigenvalues of a Hermitian operator are always real
numbers and correspond therefore to real measured values
of the corresponding observable.

Suppose the eigenvalue equation of a Hermitian operator bO is given by

bOφn = λnφn . (31)

( bOφn)∗ = λ∗nφ
∗
n , (32)

and that the eigenfunction φn is square integrableZ
φ∗nφndτ = N , N > 0 . (33)

Multiplying from the left (31) with φ∗n and (32) with φn , one gets

φ∗n bOφn = λnφ
∗
nφn , (34)

φn( bOφn)∗ = λ∗nφnφ
∗
n . (35)

Integrating now the above two equations over the volume element dτ (see (33))
one gets Z

φ∗n bOφndτ = λn

Z
φ∗nφndτ , (36)Z

φn( bOφn)∗dτ = λ∗n

Z
φnφ

∗
ndτ . (37)

By taking the difference of these two equations
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Z
φ∗n bOφndτ − Z

φn bOφ∗ndτ| {z }
= 0

= N(λn − λ∗n) , (38)

one easily can see that if the operator is indeed Hermitian the lhs is zero (see
(10)), this in turn implies for the rhs that either the norm of the eigenfunction
is zero, which was excluded, or that the eigenvalue λn is real.

2.10.2 Orthogonality relations

Suppose φi and φj are two functions defined over the same range corresponding
to the volume element dτ . These two functions are called orthogonal, if and
only if

Z
φ∗iφjdτ =

Z
φ∗jφidτ = 0 . (39)

Eigenfunctions φi, i = 1, 2, ..,∞, of a Hermitian operator bO
that belong to different eigenvalues are orthogonal to each
other.

Let φi and φj be two functions belonging to different eigenvalues of bO:
bOφi = λiφi , (40)bOφj = λjφj . (41)

If one multiplies from the left the first equation with φ∗j and the second with φ
∗
i

one simply gets:

φ∗j bOφi = λiφ
∗
jφi , (42)

φ∗i bOφj = λjφ
∗
iφj . (43)

Integrating now both equations over dτ and subtracting the first equation from
the second yieldsZ

φ∗i bOφjdτ − Z φ∗j bOφidτ| {z }
= 0

= (λj − λi)

Z
φ∗iφjdτ . (44)

Now it is easy to see that either λi = λj , which was excluded, or
R
φ∗iφjdτ = 0

.
Orthogonal and normalized (”orthonormalized”) eigenfunctions φi of a

Hermitian operator can therefore be characterized compactly by
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Z
φ∗iφjdτ =

Z
φ∗jφidτ = δij , (45)

where δij is the so-called Kronecker symbol,

1 , i = j
δij = {

0 , i 6= j
. (46)

If not only one eigenfunction φi belongs to a particular eigenvalue λi, but
a set of functions Φij , j = 1, 2..,m, then this eigenvalue is said to be m-fold
degenerated (see also Example 2). The set of eigenfunctions belonging to one
and the same eigenvalue forms a linear manifold.

2.10.3 Completeness relation

The set of eigenfunctions of a Hermitian operator is not
only a set of orthogonal functions, but is also complete3 .

In order to illustrate this statement one can make use of the properties
of Postulate 4, namely of expectation values. Suppose one expands the state
function Ψ(q) in terms of the normalized eigenfunctions φn(q) of the operatorbO corresponding to the observable Ω,

Ψ(q) =
X
n

cnφn(q) , (47)

Ψ∗(q) =
X
m

c∗mφ
∗
m(q) ; cn, cm ∈ Z , (48)

bOφn(q) = λnφn(q) . (49)

Forming now the expectation value of bO , one gets:

< bO > =

Z
Ψ∗(q) bOΨ(q)dτ =

=
X
n,m

c∗mcn

Z
φ∗m(q) bOφn|{z}

=λnφn(q)

(q)dτ =
X
n,m

c∗mcnλn

Z
φ∗m(q)φn(q)dτ =

=
X
n,m

c∗mcnλnδnm =
X
n

c∗ncnλn =
X
n

|cn|2 λn =
X
n

Wnλn . (50)

Quite clearly |cn|2 is a real number and therefore Wn is the probability that
Ω takes on the eigenvalue λn of the corresponding operator bO . In particular

3For a more formal definition see chapter 14
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consider now that the operator bO is the identity operator bI, bIΨ(q) = Ψ(q) ,
and recall Postulate 1 :Z

Ψ∗(q)bIΨ(q)dτ =X
n

|cn|2 = 1 . (51)

This last equation is nothing but the statement that the set of eigenfunctions
of a Hermitian operator is complete, formulated in terms of Postulate 4.

2.11 Products of operators, commutators and constants
of motion

Very often one has to deal with products of operators. The operator of the
kinetic energy for example can be viewed as such product, bT = 1

2m
bp ·bp = 1

2m bp2,
namely as a scalar product.
Let bO1 and bO2 be two operators acting in turn on the function φ ,

bO1 bO2φ = bO1( bO2φ|{z}
=φ0

) = bO1φ0 = φ00 , (52)

then in general

bO1 bO2φ 6= bO2 bO1φ; ³ bO1 bO2 − bO2 bO1´φ = [ bO1, bO2]−φ 6= 0 . (53)

However, if [ bO1, bO2]− = b0 (zero operator), then these two operators are said
to commute . The expression [ bO1, bO2]− is called the commutator of the
operators bO1 and bO2.

If two operators commute then they share the same set of
eigenfunctions.

Suppose that the operators bA and bB commute, [ bA, bB]− = b0 , and that they
belong to the following two eigenvalue problems:

bAψi = αiψi , (54)

bBφj = βjφj .

Formally therefore one can write

( bA bB)ψi = ( bB bA)ψi = bB( bAψi) = bB(αiψi) = αi( bBψi) . (55)
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However, since
( bA bB)ψi = bA( bBψi) = αi( bBψi) , (56)

quite obviously the functions bBψi are also eigenfunctions of the operator bA ! If
one assumes for matter of simplicity that the functions ψi are not degenerated
then bBψi = cψi , c ∈ Z , (57)

i.e., the action of bB on ψi can only generate a (complex) multiple of ψi, which in
turn means that ψi is also an eigenfunction of the operator bB belonging to the
eigenvalue c! In particular if one of the operators in a vanishing commutator
is the Hamilton operator the other operator is called a constant of motion.

2.12 Coordinate transformations, invariance transforma-
tions

If the Hamilton operator bH = bH(r) is invariant under a
coordinate transformation eP ( eP−1 eP = eP eP−1 = eI , eI identity
transformation), then the (function space) operator bP of this
transformation commutes with bH , i.e. [ bH, bP ]− = 0.

Suppose the coordinates of the function f(x) are transformed by eP and cP
is the corresponding function space operator, then

bPf(x) = f 0(x) = f( bP−1x) = f(x0) . (58)

Since equation (58) looks awfully abstract the following example shall be con-
sidered.

Let f(x) be a parabola and the coordinate transformation a trans-
lation eT by a constant a :eTx = x+ a , eT−1x = x− a , (59)eT−1 eTx = eT−1(x+ a) = x+ a− a = x = eIx = eT eT−1x . (60)

Consider now each step from Fig. 1:

y = f(x) = x2 7−→
x0=x+a

f 0(x0) = (x0 − a)2 = y0 , (61)

f 0(x0) = (x0 − a)2 = (x+ a− a)2 = x2 = f(x) . (62)
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Figure 1: Translation of a parabola

Converting the figural aspects into an operator language, one gets:bTf = f 0 , eTx = x0 , (63)

f 0(x0) = bTf(eTx) = f(x) . (64)

Substituting now x by eT−1q
f 0(x0) = bTf(eTx) = bTf(eT eT−1q) = bTf(q) , (65)

f(x) = f(eT−1q) , (66)

and combing the rhs’s of (65) and (66), one indeed regains (58)bTf(q) = f( eT−1q) . (67)

Suppose finally that the Hamilton operator is given by bH(r) 4 ,bH(r)ψ(r) = Eψ(r) , (68)

and eR , eR eR−1 = eR−1 eR = eI, leaves bH(r) invariant, i.e.,bR bH(r) = bH( eR−1r) = bH(r) , (69)

then transforming equation (68) with eR yields immediately thatbR{ bH(r)ψ(r)} = { bR bH(r)}{ bRψ(r)} = E{ bRψ(r)} , (70)

{ bH( eR−1r)}{ bRψ(r)} = bH(r){ bRψ(r)} = E{ bRψ(r)} , (71)

namely that the transformed functions bRψ(r) are also eigenfunctions ofbH(r) , i.e., h bH, bRi
−
= 0 , (see equations (56) and (57)).

4Note that a product of functions is transformed by transforming each of the factors.
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2.13 Compatible and complementary variables

Let bO1 and bO2 be two operators that correspond to the dynamical
variables Ω1 and Ω2. If ψ(q; t), q = (q1, q2, . . . , qn) denotes the state
function then the root mean square of these operators is defined by

∆ bOi =

r³bOi − h bOii
´2

, i = 1, 2 , (72)

and the following uncertainty relation holds true:

∆ bO1∆ bO2 ≥ 1
2
~ | h bO3i | , (73)

where bO3 = − i

~
[ bO1, bO2]− . (74)

If bO1 and bO2 commute then the dynamical variables Ω1 and
Ω2 are called compatible variables, otherwise they are called
complementary variables.

As can be read off from the table summarizing the correspondence principle,
the momentum and position coordinates, pk and qk, are such complementary
variables, i.e.,

[qk, pk]− = i~ . (75)

The Heisenberg uncertainty principle,

∆qk∆pk ≥
1

2
~ , (76)

is therefore a special case of (74).
It should be noted that the energy-time uncertainty principle5 ,

∆E∆t ≥ 1
2
~ , (77)

does have a different meaning, since at any given time t the energy E can
have a well-defined value. ∆E is the difference between two values for the
energy E, say E1 and E2, measured at t = t1 and t = t2 (∆t = t2− t1). The
uncertainty relation for complementary variables states that at a given time
t, these variables cannot be measured simultaneously exact.

5 see also chapter 1
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3 The importance of boundary conditions
In this chapter three very important concepts shall be discussed, namely bound-
ary conditions, symmetry operators and the separability of differential
equations. These concepts are introduced using simple quantum mechanical
models. The basis of all discussions is of course the time-independent or the
time-dependent Schrödinger equation.

3.1 Free particles - matter waves

A free particle is classically characterized by the fact that its motion is indepen-
dent of the coordinates of its potential energy (”Galilei motion”). As energy
zero one can choose therefore the potential energy to be zero. The Hamilton
operator for a ”one-dimensional” free motion is then simply given by

bH = − ~
2

2m

d2

dx2
, (1)

and the corresponding time-dependent Schrödinger equation by

i~
∂

∂t
ψ(x, t) = − ~

2

2m

d2

dx2
ψ(x, t) . (2)

If one uses the separation of space and time variables as discussed in the previous
chapter, namely,

ψ(x, t) = φ(x) exp(−iEt/~) , (3)

then the time-independent Schrödinger equation is of the following form

− ~
2

2m

d2

dx2
φ(x) = Eφ(x), −∞ < x < +∞ . (4)

This is nothing but a second order linear differential equation with a constant
coefficient, the solution of which is immediately found using the ansatz φ(x) =
exp(±ikx) :

− ~
2

2m

d2

dx2
exp(±ikx) = ~2

2m
k2 exp(±ikx) . (5)

The time-dependent solution, obviously a periodic function in space and time,

ψ(x, t) = exp(±ikx) exp(−iEt/~) = exp(±ikx− iEt/~) = (6)

= exp

µ
i

~
(±pxx−Et)

¶
.

is called a ”matter wave”. The energy E = E(k) can assume all possible
values in the interval (−∞,∞). Although ψ(x, t) formally is a solution of the
Schrödinger equation, it is not an acceptable wavefunction, since its norm di-
verges for x tending to +∞ ,

∞Z
−∞

ψ∗(x, t)ψ(x, t)dx =
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Figure 2: Particle in a box

=

∞Z
−∞

exp

µ
i

~
(±pxx−Et)

¶
exp

µ
− i

~
(±pxx−Et)

¶
dx (7)

3.2 Particle in a box

”Physically useful” solutions of a differential equation such as in (4) are only
obtained if boundary conditions for a particular problem are defined . For (4)
the following boundary condition shall be considered by confining the particle
to a ”one-dimensional box” with infinite barriers (see Fig. 2):

Ψ (|x| ≥ a) = 0 , (8)

The differential equation is still the same, namely,

d2

dx2
ψ(x) +

2mE

~2
ψ(x) = 0 , (9)

which formally is of the form

ψ00 + Cψ = 0 , C =
2mE

~2
. (10)

The general solution of such a differential equation is given by

ψ(x) = A exp(i
√
Cx) +B exp(−i

√
Cx) , (11)

i.e., ψ(x) is a superposition of two ”plane waves”, with opposite directions of
propagation and amplitudes A and B. Using now the boundary condition (8),

ψ(−a) = 0 → A exp(−i
√
Ca) +B exp(+i

√
Ca) = 0 , (12)

ψ(+a) = 0 → A exp(+i
√
Ca) +B exp(−i

√
Ca) = 0 , (13)
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one gets
ψ(−a) = 0 → A = −B exp(2i

√
Ca) , (14)

ψ(+a) = 0 → A = −B exp(−2i
√
Ca) . (15)

If one divides the first condition by the second, one obtains

1 =
exp(2i

√
Ca)

exp(−2i
√
Ca)

= exp(4i
√
Ca) = exp(2i

√
Ca) exp(2i

√
Ca) . (16)

The squareroot of this equation,

exp(2i
√
Ca) = ±1 , (17)

directly leads to a ”quantization” of the energy, since

exp(iα) = 1 only if the phase α = nπ , n: even ,

exp(iα) = −1 only if the phase α = nπ , n: odd ,

i.e.,

2
√
Ca = nπ ,

√
C =

r
2mE

~2
, (18)

E = En =
~2π2

8ma2
n2 ; n = 1, 2, .... . (19)

Quite obviously the value n = 0 has to be excluded, since then ψ(x) would be
identically zero for all values of x (∀x ; see also (11)and (12)) and consequently
its norm would be identically zero. Equation (19) clearly shows that the particle
in the box can have only discrete energies, i.e., the energy is quantized be-
cause of the chosen boundary conditions! n is therefore called a quantum
number.
Using now the result from (18), namely

√
C = nπ/2a in the boundary con-

ditions
ψ(−a) = 0→ A = −B exp(inπ) , (20)

ψ(+a) = 0→ A = −B exp(−inπ) , (21)

one can immediately see that

A = −B; n: even , (22)

A = B; n: odd . (23)

The wavefunction, i.e., the general solution in (11) can now be formulated in
terms of the quantum number n

ψn(x) = A
h
exp(i

√
Cx) + (−1)n+1 exp(−i

√
Cx)

i
. (24)
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Figure 3: Wavefunctions for a particle in a box

However, since exp(±iα) = cosα± i sinα , one gets

2A cos(
√
Cx) , n : odd ,

ψn(x) = {
2Ai sin(

√
Cx) , n : even .

(25)

As a final step the wavefunctions have to be normalized (see also example 3)

n : odd → 4A2
aZ
−a

h
cos(
√
Cx)

i2
dx = 4A2a , → A =

1

2
√
a

, (26)

n : even → −4A2
aZ
−a

h
sin(
√
Cx)

i2
dx = −4A2a ,→ A =

−i
2
√
a

, (27)

1√
a
cos(nπ2a x) , n : odd ,

ψn(x) = {
1√
a
sin(nπ2a x) , n : even .

(28)

For the first few values of n the shape of the wavefunctions is shown in Figure
3.
Suppose now eP is the inversion operator, ePx = −x, then

1√
a
cos(−nπ

2a x) =
1√
a
cos(nπ2a x) n : odd ,bPψn(x) = {

1√
a
sin(−nπ

2a x) = − 1√
a
sin(nπ2a x) n : even .

(29)
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Quite clearly these results can be summarized as followsbPψn(x) = (−1)n+1ψn(x) , (30)

which only means that the wavefunction ψn(x) is also an eigenfunction of bP with
respect to the eigenvalue (−1)n+1and therefore that the commutator

h bH, bPi
−
=

0.
From Figure 3-1, the starting point of the present discussion, one can see

that the Hamilton operator is given by

bH ≡ H(x) = − ~
2

2m

d2

dx2
+ V (x) , (31)

V (|x| < a) = 0, V (|x| ≥ a) =∞ . (32)

Since both the kinetic energy term − ~2
2m

d2

dx2 and V (x) are invariant under bP ,

bPH(x) = H( eP−1x) = H(x) . (33)

Not only the Hamilton operator is invariant under the inversion, but also the
boundary conditions bPψn(a) = ψn(−a) = ψn(a) = 0 . (34)

An operator that leaves the Hamilton operator and the boundary
conditions invariant is called a symmetry operator. Since then bP
commutes with bH, bP is also a constant of motion.

3.3 Cyclic boundary conditions

In order to convince how important boundary conditions are for the quantization
of the energy, in the following the same Schrödinger equation as in (9)

d2

dx2
ψ(x) +

2mE

~2
ψ(x) = 0 ,

and therefore the same general solution as in (11)

ψ(x) = A exp(i
√
Cx) +B exp(−i

√
Cx) , C =

2mE

~2
,

shall be considered, however, with different boundary conditions:

ψ(x) = ψ(x+ L) , (35)

ψ0(x) = ψ0(x+ L) , ψ0(x) =
d

dx
ψ(x) . (36)

Boundary conditions of this type are called cyclic or periodic boundary
conditions, since after a certain length L (”period”) the wavefunction is con-
tinuously repeated. Using these boundary conditions in the general solution for
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the wavefunction, i.e. repeating the same procedure as before in the case of a
particle in a box, one gets

A exp(i
√
Cx) +B exp(−i

√
Cx) = (37)

= A exp(i
√
C(x+ L)) +B exp(−i

√
C(x+ L)) .

By collecting the terms with A on one side and those with B on the other side
and taking out the phase exp(i

√
Cx) one obtains

A exp(i
√
Cx)

³
1− exp(i

√
CL)

´
= (38)

−B exp(−i
√
Cx)

³
1− exp(−i

√
CL)

´
.

However, since the number one on the rhs can be also be interpreted as
exp(−i

√
CL) exp(i

√
CL) the last equation can be formulated as

A exp(i
√
Cx)

³
1− exp(i

√
CL)

´
= (39)

B exp(−i
√
Cx) exp(−i

√
CL)

³
1− exp(i

√
CL)

´
.

Extracting now the common factor
³
1− exp(i

√
CL)

´
one gets³

1− exp(i
√
CL)

´
×

×
³
A exp(i

√
Cx) −B exp(−i

√
Cx) exp(−i

√
CL)

´
= 0 (40)

Since for ∀x the second factor on the lhs of this equation is not vanishing the
first factor has to be zero

1− exp(i
√
CL) = 0 , (41)

which only can be the case if
√
CL = 2πn . (42)

Resubstituting this result into C = 2mE/~2 , the discrete values of the energy
are given by

En =
~2π2

2mL2
(2n)2 , n = 0,±1,±2, ... . (43)

Contrary to the particle in a box the quantum number n = 0 is allowed, since
then for ∀x exp(i

√
Cx) = 1 and the corresponding wavefunction is a constant

ψ(n=0)(x) = A+B ,
d

dx
ψ(n=0)(x) = 0 ,∀x , (44)

and therefore normalizable.
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The wavefunctions themselves are easy to obtain, since

d2

dx2
cos(
√
Cx) = −C cos(

√
Cx) , (45)

d2

dx2
sin(
√
Cx) = −C sin(

√
Cx) , (46)

where C = 2mE/~2 . The inversion bP is a symmetry operator also in this case,
since bPψn(x) = ψn(−x) = (±1)ψn(x) , (47)

which of course also applies for x = L. Obviously there are two kinds of eigen-
functions of the Hamilton operator bH, namely those belonging to the eigenvalue
+1 of bP and the other ones belonging to the eigenvalue −1 of bP . The ”sin”-
solutions belong to the eigenvalue −1 of bP , the ”cos”-solutions to the eigenvalue
+1. For n > 0 the eigenvalues are pairwise degenerated, i.e., for each eigenvalue
En there are two solutions.
The norm of the wavefunctions can be obtained in a similar manner as in

the case of the particle in the box. It is 1/
√
L . In the following table the

results for the particle in the box and for the cyclic boundary conditions are
summarized. It should be noted that in both cases the Hamilton operator is the
same and that only the boundary conditions are responsible for the different
energy spectra.

model box cyclic

Hamilton operator bH − ~2
2m

d2

dx2 + V (x) − ~2
2m

d2

dx2 + V (x)
boundary condition ψ(|x| ≥ a) = 0 ψ(x) = ψ(x+ L)
potential energy V (x) = 0; |x| < a V (x) = 0;∀x

V (x) =∞; |x| ≥ a

energy En
~2π2
8ma2n

2 ~2π2
2mL2 (2n)

2

quantum numbers n 1, 2, 3, 4, ... 0,±1,±2,±3, ...
wave functions 1√

a
cos(nπ2a x); n: odd

1√
L
; n = 0

1√
a
sin(nπ2a x); n: even

2√
L
cos( 2πnL x); ∀n > 0

2√
L
sin(2πnL x); ∀n > 0

degeneracy one− fold two− fold
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3.4 Separation of variables

If for a particular system the Hamilton operator is given as a sum
of operators, whereby each of this operators depends only on one
variable, then the wavefunction is a product of eigenfunctions of these
operators, which in turn depend only on one variable, and the energy
eigenvalue of the system is the sum of the eigenvalues belonging to
the eigenfunctions of the product.bH(x1, x2, . . . , xn)ψ(x1, x2, . . . , xn) = Eψ(x1, x2, . . . , xn) , (48)

bH(x1, x2, . . . , xn) = bh1(x1) + bh2(xx) + . . .+ bhn(xn) = nX
i=1

bhi(xi) , (49)

bhi(xi)φi(xi) = �iφi(xi) , (50)

ψ(x1, x2, . . . , xn) = φ1(x1)φ2(x2) · · ·φn(xn) =
nY
i=1

φi(xi) , (51)

E = �1 + �2 + ...+ �n =
nX
i=1

�i . (52)

The eigenvalue problem in (48)nbh1(x1) + bh2(xx) + ...+ bhn(xn)oψ(x1, x2, ..xn) = (53)

= {�1 + �2 + ...+ �n}ψ(x1, x2, ..xn) ,

is then a system of n independent eigenvalue equations

bh1(x1)φ1(x1) = �1φ1(x1) ,bh2(x2)φ2(x2) = �2φ2(x2) ,
...bhn(xn)φn(xn) = �nφn(xn) .

(54)

The eigenvalues �i, i = 1, .., n, are usually called Lagrange parame-
ters.

3.5 Particle in a three-dimensional box

In order to exemplify the above important theorem in the following the problem
of a particle in a three-dimensional box with infinite barriers shall be considered.
The Schrödinger equation for this case is given by

− ~
2

2m
∇2ψ(r) = − ~

2

2m

∙
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

¸
ψ(r) = Eψ(r) , (55)
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where r =(x, y, z). If one uses the following ansatz for the wavefunction ψ(r),

ψ(r) = ψ(x, y, z) = X(x)Y (y)Z(z) , (56)

the Schrödinger equation can be rewritten as

Y (y)Z(z)
d2

dx2
X(x) +X(x)Z(z)

d2

dy2
Y (x) +X(x)Y (y)

d2

dz2
Z(z) = (57)

−2mE

~2
X(x)Y (y)Z(z) .

Dividing now both sides by X(x)Y (y)Z(z) one gets

1

X(x)

d2

dx2
X(x) +

1

Y (y)

d2

dy2
Y (y) +

1

Z(z)

d2

dx2
Z(z) = −2mE

~2
. (58)

Now one clearly can see that this last equation can be viewed as a sum of three
equations

1

X(x)

d2

dx2
X(x) = −k2x , (59)

1

Y (y)

d2

dy2
Y (y) = −k2y , (60)

1

Z(z)

d2

dx2
Z(z) = −k2z , (61)

with

k2 = k2x + k2y + k2z =
2mE

~2
. (62)

The solutions for the differential equations (59) - (61) are already well-known.
By choosing for example the following boundary conditions

= 0 , |x| < a, |y| < b, |z| < c
V (x, y, z) = {

=∞ , |x| ≥ a, |y| ≥ b, |z| ≥ c
, (63)

i.e.,
X(x) = 0 , |x| ≥ a ,
Y (y) = 0 , |y| ≥ b ,
Z(z) = 0 , |z| ≥ c ,

(64)

these solutions are given by

1√
a
cos(nxπ2a x) , nx : odd

X(x) = {
1√
a
sin(nxπ2a x) , nx : even

, kx =
nxπ

2a
, etc. (65)
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The wavefunction is therefore a combination of ”cos”- and ”sin”-functions, de-
pending whether the quantum numbers nx, ny and nz are even or odd. For
example for only odd quantum numbers the wavefunction is given by

ψnx,ny,nz(x, y, z) =
1√
abc

cos(
nxπ

2a
x) cos(

nyπ

2b
y) cos(

nzπ

2c
z) . (66)

The energy of the system depends now clearly on three quantum numbers and
is the sum of the eigenvalues of the individual eigenvalue equations

E = Enx,ny,nz =
~2

2m
k2 =

~2

2m

¡
k2x + k2y + k2z

¢
= (67)

=
π2~2

8m

(
n2x
a2
+

n2y
b2
+

n2z
c2

)
.

Consider finally that the box is a cube, i.e., a = b = c , then the energy E,

Enx,ny,nz =
π2~2

8ma2
©
n2x + n2y + n2z

ª
, (68)

quite clearly is invariant under permutations of the quantum numbers, but not
the wavefunctions! For example it is easy to check that

E2,1,1 = E1,2,1 = E1,1,2 ,

but in general
ψ2,1,1 6= ψ1,2,1 6= ψ1,1,2 .

If only a = b 6= c, then these degeneracies of the energies are (partially) lifted.
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4 The hydrogen atom
The hydrogen atom not only is historically the most important system in quan-
tum mechanics, but also the concepts connected with this system still are the
most influential ones in the language of physicists and chemists. Perhaps even
more important than the hydrogen atom itself is the outcome of the discus-
sion of angular momentum operators for the predominantly atomistic picture of
matter currently used in all natural sciences. It is therefore quite appropriate
to reserve a what at the beginning might seem like a lengthy discussion to these
two topics. Since the context of the angular momentum operators with the hy-
drogen atom needs to be stressed right from the beginning, the conceptual flow
in this chapter is somewhat crooked: it starts with the hydrogen atom, diverts
to angular momentum operators and then comes back to the hydrogen atom.

4.1 The Schrödinger equation for the hydrogen atom

4.1.1 Separation of the motion of the nucleus

The Hamilton operator for the motion of a hydrogen atom or more generally for
the motion of a single electron around a (charged) nucleus in motion, is given
by bH =

p2n
2mn

+
p2e
2me

− Ze2

|re − rn|
, (1)

namely by the kinetic energy of the nucleus (first term), the kinetic energy
of the electron (second term) and the Coulomb energy (third term), resulting
from the Coulomb interaction between the electron and the nucleus. In (1) pn
is the momentum of a nucleus of mass mn and charge Ze at position rn, pe the
momentum of an electron with mass me and charge −e at position re, where e
is the elementary charge ( -1.602 ·10−19As). Z is the so-called atomic number
of this nucleus (number of positrons). For the hydrogen atom Z = 1. The
Hamilton operator in (1) applies also for example to He+, Li++, etc. , so-called
hydrogen-like atoms.
The motion of the nucleus can be separated by placing the origin of the

coordinate system in the center of mass (see Fig. 4), i.e. by using the following
transformation

re = R+ r
mn

M
, (2)

rn = R− r
me

M
, (3)

M = mn +me , (4)

where R is now the position vector of the center of gravity and r the position
vector of the reduced mass with respect to this center . Abbreviating the reduced
mass by μ,

μ =
mnme

M
, (5)
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Figure 4: Coordinate systems for the hydrogen atom

the Hamilton operator in (1) can be reformulated as

bH = − ~
2

2M
∇2R −

~2

2μ
∇2r −

Ze2

r
, (6)

∇R =

µ
∂

∂Rx
,

∂

∂Ry
,

∂

∂Rz

¶
, (7)

∇r =

µ
∂

∂x
,
∂

dy
,
∂

∂z

¶
, (8)

where the first term is the kinetic energy of the motion of the center of gravity
and the second one the kinetic energy of a particle with mass μ moving around
the center of gravity. The stationary Schrödinger equation corresponding to the
Hamilton operator in (6), which now is the sum of two independent operators
(see the section on separation of variables in the last chapter), is therefore simply
given by bHΨ(r,R) = ETΨ(r,R) , (9)

Ψ(r,R) = ψ(r)χ(R) , (10)

ET = E + � , (11)

where E and � are the energy parameters (Lagrange parameters) in following
the two eigenvalue equationsµ

− ~
2

2μ
∇2r −

Ze2

r

¶
ψ(r) =Eψ(r) , (12)
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µ
− ~

2

2M
∇2R
¶
χ(R) = �χ(R) . (13)

The first of these equations describes the motion of a particle in a central field
(the value of the Coulomb energy depends only on the distance r = |r| from the
origin), whereas the second is nothing but the Schrödinger equation for a ”free
particle” of mass M = me +mn, i.e., the second equation corresponds to the
Galilei motion, which was discussed in detail in the previous chapter. One can
restrict therefore the following discussion to (12), namely to the Schrödinger
equation for a central field (note: ∇r ≡ ∇)

∇2ψ(r) + 2μ

~2
(E − V (r))ψ(r) =0 , (14)

V (r) = −Ze
2

r
, (15)

where V (r) is usually called the potential. Since V (r) only depends on the
distance r = |r| , V (r) is called a spherically symmetric potential. It should
be noted that this description applies only to hydrogen-like atoms or one-particle
systems in a central field.

4.2 Polar coordinates, separation with respect to indepen-
dent variables

From Figure 4-1 and as indicated there it seems almost imperative to use spher-
ical (polar) coordinates instead of Cartesian coordinates,

x = r sin θ cosφ , (16)

y = r sin θ sinφ , (17)

z = r cos θ . (18)

In terms of the above polar coordinates the Laplace operator is given by 1

∇2 = 1

r2
∂

∂r

½
r2

∂

∂r

¾
+

1

r2 sin θ

∂

∂θ

½
sin θ

∂

∂θ

¾
+

1

r2 sin 2θ

∂2

∂φ2
=

=
1

r2
∂

∂r

½
r2

∂

∂r

¾
+
1

r2
bL2 , (19)

from which one immediately can see that this operator is a sum of two operators,
namely one that depends only on the independent variable r and the other one
on θ and φ . So once again one can separate two motions: a ”radial” motion
and an ”angular” motion. Consequently the wavefunction ψ(r) is a product of
two functions, one in the independent variable r and the other one in θ and φ ,

ψ(r) = R(r)Y (θ, φ) . (20)

1Since it is not really relevant for the present purposes, no attempt is made to derive the
Laplace operator in spherical coordinates. Interested readers should consult for example the
book by Jackson (see bibliography).

34



The Schrödinger equation is therefore of the following form

Y (θ, φ)

½
− 1
r2

∂

∂r
r2

∂

∂r
R(r)

¾
+R(r)

½
− 1
r2
bL2Y (θ, φ)¾

+
2μ

~2
(−E + V (r))R(r)Y (θ, φ) = 0 , (21)

which multiplied with −r2/R(r)Y (θ, φ) leads to the corresponding equations for
the ”radial” and the ”angular” motion,

1

r2
d

dr
r2

d

dr
R(r) +

2μ

~2
(E − V (r))R(r) =

c

r2
R(r) , (22)

bL2Y (θ, φ) = −cY (θ, φ) , (23)

where (23) is an eigenvalue equation of the type discussed now already several
times and c is the so-called separation constant (Lagrange parameter). As will
turn out in the next section (23) is of the form of the eigenvalue equation for
the square of the angular momentum operator. However, before proceeding to
this section, it is worthwhile to repeat what was done ”en route”. Up to now
all derivations served solely the aim to separate as many independent motions
as possible, namely (1) to separate the motion of the nucleus from that of the
electron and (2) to separate according to the independent variables r, θ and φ
, respectively.

4.3 Angular momentum operators

Classically the angular momentum of a particle is defined by the following vector
product

L = (Lx, Ly, Lz) = r× p , (24)

r = (x, y, z) ,p = (px, py, pz) . (25)

By using the determinant of the following matrix, where ex ,ey and ez denote
the unit vectors of L,¯̄̄̄

¯̄ ex ey ez
x y z
px py pz

¯̄̄̄
¯̄ = −

¯̄̄̄
¯̄ ey ex ez
y x z
py px pz

¯̄̄̄
¯̄ etc. , (26)

the components of L can easily be read off

Lx = ypz − zpy , (27)

Ly = zpx − xpz , (28)

Lz = xpy − ypx . (29)

The quantum mechanical anlage, bLx , bLy and bLz , follow directly from the
correspondence principle (see chapter 2):

r→ br ≡ r = (x, y, z) , (30)
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p→ bp = −i~µ ∂

∂x
,
∂

∂y
,
∂

∂z

¶
≡ (bpx, bpy, bpz) , (31)

bLx = i~
µ
z
∂

dy
− y

∂

∂z

¶
, (32)

bLy = i~
µ
x
∂

dz
− z

∂

∂x

¶
, (33)

bLz = i~
µ
y
∂

dx
− x

∂

∂y

¶
. (34)

Using now the Heisenberg uncertainty relation2 in terms of commutators for the
components of r and p ,

[x, bpy]− = [x, bpz]− = [y, bpz]− = [y, bpx]− =
= [z, bpx]− = [z, bpy]− = 0 , (35)

[bpx, bpy]− = [bpx, bpz]− = [bpy, bpz]− = 0 , (36)

[x, bpx]− = [y, bpy]− = [z, bpz]− = i~ , (37)

it is rather easy to derive similar commutator relations for the components of

the angular momentum operator bL = (bLx, bLy, bLz) . For example for hbLx, bLyi
−

one can work out in detail thathbLx, bLyi
−
= (ybpz − zbpy) (zbpx − xbpz)− (zbpx − xbpz) (ybpz − zbpy) =

= [ybpz, zbpx]− − [zbpy, zbpx]− − [ybpz, xbpz]− + [zbpy, xbpz]− =
= ybpx [bpz, z]− + pyx [z, bpz]− = −i~ybpx + i~xbpy = i~bLz . (38)

For the three components of bL one gets then the following system of commuta-
tors hbLx, bLyi

−
= i~bLz , (39)hbLz, bLxi

−
= i~bLy , (40)hbLy, bLzi

−
= i~bLx . (41)

In analogy to classical mechanics the square of bL is simply given bybL2 = bL2x + bL2y + bL2z , (42)

for which by the way the following commutator relations applyhbL2, bL2xi− = hbL2, bL2yi− = hbL2, bL2zi− = 0 , (43)

hbL2, bLxi
−
=
hbL2, bLyi

−
=
hbL2, bLzi

−
= 0 , (44)

as is very illustrative to derive in detail along the lines of (38).
2 see also chapter 1
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4.4 Polar coordinates again and yet even more commuta-
tors

Going now back to (16) - (18) it seems reasonable to assume that polar coor-
dinates once again will be of help. In terms of the partial derivatives in polar
coordinates as given for example for ∂

∂x by

∂

∂x
= sin θ cosφ

∂

∂r
+
1

r
cos θ cosφ

∂

∂θ
− 1

r

sinφ

sin θ

∂

∂φ
, (45)

bL2 and its components are of the following form
bL2 = −~2 ∙ 1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin 2θ

∂2

∂φ2

¸
, (46)

bLx = i~(sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ
) , (47)

bLy = −i~(cosφ ∂

∂θ
− cot θ sinφ ∂

∂φ
) , (48)

bLz = −i~ ∂

∂φ
. (49)

If one compares now the expression for the square of the angular momentum
operator in (45) with the expression which was obtained when the ”radial”
motion was separated from the ”angular” motion (see in particular (46)) then
one discovers that bL2 is proportional to the operator for the ”angular”
motion bL2 = −~2 bL2 , (50)

which in turn implies that instead of (23) it is sufficient to discuss the eigenvalue
equation for bL2, bL2Y (θ, φ) = ~2cY (θ, φ) . (51)

The form of the z-component of the angular momentum operator in (49)
looks already quite easy, those for the x- and y-component (48) - ( 49) are less
satisfying. However, by forming the following sums

bL+ = bLx + ibLy = ~ exp(iφ)µ ∂

∂θ
+ i cot θ

∂

∂φ

¶
, (52)

bL− = bLx − ibLy = −~ exp(−iφ)µ ∂

∂θ
− i cot θ

∂

∂φ

¶
, (53)

one can derive two very useful commutator relations, namelyhbL+, bL−i
−
= 2~bLz , (54)hbL+, bLzi

−
= −bLz ³bLx + ibLy´+ ³bLx + ibLy´ bLz = −~bL+ . (55)
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Furthermore the following sum of products of bL+ and bL− ,
bL+bL− + bL−bL+ = hbL+, bL−i

+
, (56)

the so-called anticommutator of bL+ and bL− , hbL+, bL−i
+
, has the property

that hbL+, bL−i
+
= 2

³bL2x + bL2y´ . (57)

Finally combining equations (55) to (57) one gets the amusing relations:

bL2 = bL2x + bL2y + bL2z = 1

2

hbL+, bL−i
+
+ bL2z , (58)

bL2x + bL2y = bL−bL+ + ~bLz = bL+bL− − ~bLz . (59)

4.5 Eigenvalues of bL2 and bLz

Now its about time to make use of all the relations for the angular momentum
operators discussed up to now. Since bL2 commutes with all components
of bL , they have to have the same eigenfunctions. Using bLz for example,
because its corresponding expression in polar coordinates is the most easy one,
this implies that the eigenfunctions in the eigenvalue equation for bL2 (see (51))
can be labelled by the eigenvalues m in the eigenvalue equation for bLz ,bL2Y m(θ, φ)=c~2Y m(θ, φ) , (60)

bLzY m(θ, φ) = ~mY m(θ, φ) . (61)

By using the label m for Y m(θ, φ) it is indicated that these functions are those
eigenfunctions Y (θ, φ) of bL2 which belong to them-th eigenvalue of bLz. Since bLz
does not commute with bLx or bLy, the functions Y m(θ, φ) are not eigenfunctions
of bLx and bLy . They are, however, eigenfunctions of bL+ and bL− . In order to
proof this rather important fact the following manipulations are carried out in
detail. Multiplying (61) from the left with bL+ , one gets

bL+ ³bLzY m(θ, φ)
´
=
³bL+bLz´Y m(θ, φ) = ; (lhs)

= bL+ (~mY m(θ, φ)) = ~m
³bL+Y m(θ, φ)

´
; (rhs) . (62)

Reworking the lhs of this equation one can make use of (55), namely

~bL+ = bLzbLx − bLxbLz + ibLz bLy − ibLybLz , (63)

and the fact that bLz bL+ = bLz bLx + ibLzbLy . (64)
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Subtracting now the first of the last two equations from the second yields
exactly what is needed for the lhs of (62)

bLz bL+ − ~bL+ = bL+bLz , (65)³bL+bLz´Y m(θ, φ) =
³bLz bL+ − ~bL+´Y m(θ, φ) =

= bLz ³bL+Y m(θ, φ)
´
− ~

³bL+Y m(θ, φ)
´
= ; (lhs)

= ~m
³bL+Y m(θ, φ)

´
; (rhs) . (66)

Thus one ends up with the remarkable result that

bLz ³bL+Y m(θ, φ)
´
= ~(m+ 1)

³bL+Y m(θ, φ)
´

, (67)

namely that bL+Y m(θ, φ) is an eigenfunction of bLz , however, corre-
sponding to the eigenvalue m+ 1. Since bLz and bL2 commute (see (43))bL+Y m(θ, φ) has to be also an eigenfunction of bL2

bL2 ³bL+Y m(θ, φ)
´
= ~2c

³bL+Y m(θ, φ)
´

. (68)

The operator bL+ therefore has the property that acting on an eigenfunction ofbL2 an eigenfunction of bLz is created corresponding to an eigenvalue increased
by one. Because of this property bL+ sometimes is called a creation operator
or step-up operator. In a similar way one can show that

bLz ³bL−Y m(θ, φ)
´
= ~(m− 1)

³bL−Y m(θ, φ)
´

, (69)

which means that bL− acts like an annihilation operator or step-down op-
erator, since an eigenfunction of bLz for an eigenvalue (m− 1) is generated.
In particular bL+ can be applied consecutively several times, say r times

bLz ³bLr+Y m(θ, φ)
´
= bLz

⎛⎜⎝[bL+ · · · bL+| {z }
r−times

]Y m(θ, φ)

⎞⎟⎠ =

= ~(m+ r)
³bLr+Y m(θ, φ)

´
, (70)

bL2 ³bLr+Y m(θ, φ)
´
= ~2c

³bLr+Y m(θ, φ)
´

. (71)

The number of times bL+ can be applied, however, is restricted for the following
reasons. Since bLx, bLy, bLz and bL2 are Hermitian operators (real eigenvalues !)
the expectations values of bL2x and bL2y have to be positive, i.e.

< bL2x > ≥ 0 , < bL2y > ≥ 0 . (72)
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On the other hand the sum of bL2x and bL2y has a well-defined eigenvalue³bL2x + bL2y´Y m(θ, φ) =
³bL2 − bL2z´Y m(θ, φ) =

= ~2(c−m2)Y m(θ, φ) , (73)

which in turn can only imply that

c−m2 ≥ 0 or c ≥ m2 . (74)

For a given separation constant c therefore there has to be a minimal eigenvalue
−l2~ and a maximal eigenvalue l1~ of bLz with l1, l2 > 0 such thatbL+Y l1(θ, φ) = 0 , (75)

bL−Y −l2(θ, φ) = 0 . (76)

Obviously between −l2 and l1 there has to be a positive integer number of
eigenstates such that

bLn+Y −l2(θ, φ) = NY l1(θ, φ) , (77)

i.e., where n = l1−(−l2) = l1+ l2 and N is some normalization constant. Using
now (59) to evaluate the eigenvalues of bL2 corresponding to the eigenfunctions
Y l1(θ, φ) and Y −l2(θ, φ) ,

bL2Y l1(θ, φ) =
³bL−bL+ + ~bLz + bL2z´Y l1(θ, φ) =

= bL−bL+Y l1(θ, φ)| {z }
=0

+ ~bLzY l1(θ, φ) + bL2zY l1(θ, φ) =

= ~2(l1 + l21)Y
l1(θ, φ) ,

(78)

bL2Y −l2(θ, φ) = ³bL+bL− − ~bLz + bL2z´Y −l2(θ, φ) =
= bL+bL−Y −l2(θ, φ)| {z }

=0

− ~bLzY −l2(θ, φ) + bL2zY −l2(θ, φ) =
= ~2(l2 + l22)Y

−l2(θ, φ) ,

(79)

one can see that these eigenvalues are given by

~2c = ~2(l1 + l21) = ~2(l2 + l22) . (80)

Since l1 and l2 were chosen to be positive, this only can be the case if l1 = l2 ≡ l.
The separation constant c in equations (22) and (23) is therefore uniquely deter-
mined by the integer number l, c = l(l + 1), which implies that the eigenvalues
of bLz vary from −l to +l , namely m = −l,−l+ 1,−l+ 2, . . . , l− 2, l− 1, l . In
order to classify those functions Y m(θ, φ) that belong to the eigenvalue l(l+ 1)
of bL2 they are augmented by the index l .
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Without having actually solved any differential equations, the algebra of
angular momentum operators allowed to arrive at the following most important
eigenvalue equations,

bL2Y m
l (θ, φ) = ~2l(l + 1)Y m

l (θ, φ) (81)

bLzY m
l (θ, φ) = ~mY m

l (θ, φ) (82)

with
m = −l,−l + 1, ..., l − 1, l ; l ≥ 0 (83)

4.6 Eigenfunctions of bL2 and bLz

In order to obtain now the eigenfunctions Y m
l (θ, φ) one can again make use of

the properties of bL+ and bL− (75) - (76), namely that in terms of the polar
coordinates for these two operators (52) - (53)

bL+Y l
l (θ, φ) = ~ exp(iφ)| {z }

6= 0

µ
∂

∂θ
+ i cot θ

∂

∂φ

¶
Y l
l (θ, φ) = 0 . (84)

Since as indicated the prefactor is not vanishing, one is left with the following
differential equation: µ

∂

∂θ
+ i cot θ

∂

∂φ

¶
Y l
l (θ, φ) = 0 , (85)

which once more is nothing but a sum of two operators, this time in the inde-
pendent variables θ and φ, and therefore Y l

l (θ, φ) is a product of functions in θ
and φ, respectively

Y l
l (θ, φ) = P (θ)Φ(φ) . (86)

Using this ansatz in (85) one has to face yet another a separation constant, say
k,

1

cot θP (θ)

∂

∂θ
P (θ) = − i

Φ(φ)

∂

∂φ
Φ(φ) ≡ k , (87)

appearing in the corresponding differential equations with respect to θ and φ,

∂

∂θ
P (θ) = k cot θP (θ) , (88)

∂

∂φ
Φ(φ) = ikΦ(φ) . (89)

The solutions of these two equations are now almost obvious, namely

P (θ) = (sin θ)k , (90)

Φ(φ) = exp(ikφ) . (91)
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The function Y l
l (θ, φ) is therefore given by

Y l
l (θ, φ) = cll(sin θ)

k exp(ikφ) , (92)

where cll is a normalization constant yet to be determined. In order to evaluate
the separation constant k one can calculate the eigenvalues of bLz and bL2, re-
spectively, to which the eigenfunction Y l

l (θ, φ) belongs. For example for bLz one
gets bLzY l

l (θ, φ) = −i~
∂

∂φ
Y l
l (θ, φ) = −i~

∂

∂φ
(sin θ)k exp(ikφ) =

= ~kY l
l (θ, φ) ≡ ~lY l

l (θ, φ) , (93)

i.e., one can easily show - and the same result can be obtained with bL2 - that
k = l. For the highest eigenvalue of bLz the corresponding eigenfunction is
therefore given by

Y l
l (θ, φ) = cll(sin θ)

l exp(ilφ) . (94)

According to the philosophy up to now, the eigenfunctions corresponding to
eigenvalues of bLz less than l can be generated by consecutive application of bL−.
Applying bL− once, one gets

Y l−1
l (θ, φ) =

cl−1l

~cll
bL−Y l

l (θ, φ) =

= −cl−1l exp(−iφ)( ∂
∂θ
− i cot θ

∂

∂φ
)(sin θ)l exp(ilφ) =

= −cl−1l exp[i(l − 1)φ]( ∂
∂θ
+ l cot θ)(sin θ)l . (95)

Furthermore using the identity:

∂

∂θ
+ l cot θ =

1

(sin θ)l
∂

∂θ
(sin θ)l (96)

Y l−1
l (θ, φ) is readily found

Y l−1
l (θ, φ) = −cl−1l exp (i(l − 1)φ) 1

(sin θ)l
∂

∂θ
(sin θ)2l . (97)

Applying now bL− s-times, one gets the following function

Y l−s
l (θ, φ) =

µ
1

~

¶sÃ
cl−sl

cll

! bLs−Y l
l (θ, φ) =

= (−1)scl−sl exp (i(l − s)φ)
1

(sin θ)l
(
∂

∂θ
)s(sin θ)2l , (98)
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which by using the actual eigenvalue of bLz , m = l − s, can be written as

Y m
l (θ, φ) = (−1)mcml Pm

l (cosθ) exp(imφ) . (99)

The functions Pm
l (cos θ) are the so-called associated Legendre polynomials

Pm
l (cos θ) =

(−1)l
2ll!

(sin θ)m
µ

d

d cos θ

¶l−m
(sin θ)2l , (100)

P−ml (cos θ) = (−1)mPm
l (cos θ) , (101)

which for small values of l are of very simple form as shown below:

l m Pm
l (cos θ)

0 0 1
1 0 cos θ
1 1 sin θ
2 0 1

2(3 cos
2θ − 1)

2 1 3 sin θ cos θ
2 2 3 sin 2θ

Finally the normalization constants cml can also be obtained in a closed form
(which again can be checked by using the relations with bL+ and bL−)

cml =
1

2ll!

r
2l + 1

4π

s
(l −m)!

(l +m)!
. (102)

The normalized eigenfunctions of bLz and bL2 are therefore of the following final
form (the so-called Condon-Shortley convention, see also the bibliography)

Y m
l (θ, φ) =

(−1)l+m
2ll!

r
2l + 1

4π

s
(l −m)!

(l +m)!
exp(imφ) ×

× (sin θ)
m

µ
d

d cos θ

¶l+m
(1− cos 2θ)l =

= (−1)m
r
1

2π
Pm
l (cos θ) exp(imφ) , (103)

(Y m
l (θ, φ))

∗
= (−1)mY −ml (θ, φ) . (104)

They carry a very famous name. They are called spherical harmonics. For
the first few values of l and m their analytical forms are listed below:
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l m Y m
l (θ, φ)

0 0 1√
4π

1 0
q

3
4π cos θ

1 ±1 ∓
q

3
8π sin θ exp(±iφ)

2 0
q

5
16π (3 cos

2θ − 1)

2 ±1 ∓
q

15
8π sin θ cos θ exp(±iφ)

2 ±2
q

15
32π sin

2θ exp(±2iφ)

In order to summarize the sections on the eigenvalues and eigenfunctions ofbLz and bL2 in the boxes below are the most important properties:
bLz Y m

l (θ, φ) = ~mY m
l (θ, φ) (105)

bL2Y m
l (θ, φ) = ~2l(l + 1)Y m

l (θ, φ) (106)

R
Y m
l (θ, φ)

∗Y m0

l0 (θ, φ)dΩ = δll0δmm0 (107)

−l ≤ m ≤ l , l = 0, 1, 2, ... (108)

0 < θ ≤ π , 0 ≤ φ ≤ 2π , dΩ = sin θdθdφ . (109)

It should be noted that (107) states nothing but the fact that (normalized)
eigenfunctions of bL2 and bLz are orthogonal!
4.7 Back to the hydrogen atom

After this rather lengthy excursion to the world of angular momentum operators,
the remaining thing to do is to tackle the equation for the ”radial motion” (22),
which is rewritten below, knowing of course that the separation constant c is
given in terms of the eigenvalues of bL2,

d2R(r)

dr2
+
2

r

dR(r)

dr
+

½
2μE

~2
+
2μZe2

~2r
− l(l + 1)

r2

¾
R(r) = 0 , (110)

where the central field V (r) = −Ze2/r.
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4.7.1 Analytical solutions

Suppose that for E < 0 a parameter λ is introduced via the following relation

E = −μZ
2e4

2~2λ2
, (111)

such that a substitution of the form

x =
λ~2

2μZe2
r , (112)

reduces (110) to a differential equation very well-known in mathematics since
quite some time:

d2R(x)

dx2
+
2

x

dR(x)

dx
+

½
−1
4
+

λ

x
− l(l + 1)

x2

¾
R(x) = 0 . (113)

If λ = n , where n is a positive integer number, then the solutions of this
differential equation are of the following form

Rn,l(x) = L2l+1n−l−1(x)x
l exp(−x/2) , (114)

whereby physically acceptable solutions (continuous and finite in the interval
0 ≤ x ≤ ∞) are only obtained for the condition that

λ ≡ n = 1, 2, . . . ,∞ , l = 0, 1, 2, . . . , (n− 1) (115)

The so-called associated Laguerre polynomials Lkp(x), k = 2l+1, p = n−l−1,
are of the following general form

Lkp(x) = (−1)k
dk

dxk
L0p+k(x) , (116)

L0p(x) = exp(x)
dp

dxp
(exp(−x)xp) , k, p = 0, 1, 2, . . . ,∞ (117)

and are polynomials of degree p having p zeroes in the interval 0 ≤ x ≤ ∞:

Lkp(x) =

pX
s=0

(−1)s ((p+ k)!)
2

(p− s)!(k + s)!s!
xs (118)

Although this last equation looks a bit disgusting, for the first few values of n
and l these polynomials are of very simple form:

n l L2l+1n−l−1(x) n l L2l+1n−l−1(x)

1 0 −1 2 0 −4 + 2x
2 1 −6 3 0 −18 + 18x− 3x2
3 2 −120 3 1 −96 + 24x
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Resubstituting now λ = n (115) into the expression for the energy E (111)
one gets

En = −
μZ2e4

2~2n2
= −Z

2

n2
EH , (119)

where EH is the so-called groundstate energy of a hydrogen atom. The result
in (119) is by the way identical to that of the so-called Bohr model and as can
be seen does not depend on l and m. Replacing μ by me (mass of the electron),
EH = mee

4/2~2 =13.6053 eV = 1 rydberg (1 ry).
The normalization integral Nn,l of the functions Rn,l(x) , 0 ≤ x ≤ ∞ , can

also be obtained as a closed expression

Nn,l =

∞Z
0

exp(−x)x2l
£
L2l+1n−l−1(x)

¤2
x2dx =

2n [(n+ l)!]3

(n− l − 1)! . (120)

The radial solutions Rn,l(r) are therefore of the following form

Rn,l(r) =

Ã
(n− l − 1)!
2n ((n+ l)!)3

!1/2µ
Z

na0

¶ 3
2

exp(−Zr/na0)rlL2l+1n−l−1

µ
2Z

na0
r

¶
,

(121)
where a0 = ~2/e2me has the dimension of a length and is a universal constant
(a0 = 0.5902.10−8 cm). Since a0 coincides with the radius of the first Bohr or-
bital, it is called Bohr radius and serves as unit of length in quantum mechanics
(atomic units).
Abbreviating Zr/a0 by a , (Z/a0)3/2 by A and using real spherical har-

monics as defined by the linear combinations of eigenfunctions of bLz belonging
to the pair of eigenvalues ±m,

Y c,m
l (θ, φ) =

1√
2

¡
Y m
l (θ, φ) + Y −ml (θ, φ)

¢
, (122)

Y s,m
l (θ, φ) =

i√
2

¡
Y m
l (θ, φ) − Y −ml (θ, φ)

¢
, (123)

where the suffix ”s” stands for ”sine” and ”c” for ”cosine” , the hydrogen atomic
wavefunctions are listed for the first few values of n and l in the following table

ψ1,00 = 1√
π
A exp(−a)

ψ2,00 = 1
4
√
2π
A(2− a) exp(−a/2)

ψ2,10 = 1
4
√
π
Aa exp(−a/2) cos θ

ψc2,11 = 1
4
√
2π
A exp(−a/2) sin θ cosφ

ψs2,11 = 1
4
√
2π
Aa exp(−a/2) sin θ sinφ

ψ3,00 = 1
81
√
3π
A(27− 18a+ 2a2) exp(−a/3)

ψ3,10 =
√
2

81
√
π
A(6− a)a exp(−a/3) cos θ
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ψc3,11 =
√
2

81
√
π
A(6− a)a exp(−a/3) sin θ cosφ

ψs3,11 =
√
2

81
√
π
A(6− a)a exp(−a/3) sin θ sinφ

ψ3,20 = 1
81
√
6π
Aa2 exp(−a/3)(3 cos θ2 − 1)

ψc3,21 =
√
2

81
√
π
Aa2 exp(−a/3) sin θ cos θ cosφ

ψs3,21 =
√
2

81
√
π
Aa2 exp(−a/3) sin θ cos θ sinφ

ψc3,22 = 1
81
√
2π
Aa2 exp(−a/3) sin 2θ cos 2φ

ψs3,22 = 1
81
√
2π
Aa2 exp(−a/3) sin 2θ sin 2φ

4.8 The one-electron states of an atom

Finally now one can summarize the most important results of this chapter. The
relevant part of the Hamilton operator is defined by

bH = H(r) = − ~2
2μ∇

2 − Ze2

r (124)

and has the following constants of motionh bH, bL2i
−
=
h bH, bLzi

−
= 0 (125)

The energy eigenvalues En and eigenfunctions ψn,lm(r) of a ”single
electron” atom are given by

En = −12
Z2e2

a0
1
n2 , a0 =

~2
e2me

(126)

ψn,lm(r) = ψn,lm(r, θ, φ) = Rn,l(r)Y
m
l (θ, φ) (127)R

ψn,lm(r)
∗ψn0,l0m0(r)dτ = δnn0δll0δmm0 (128)

dτ = r2dr sin θdθdφ = r2drdΩ ,

where δnn0 refers to the orthogonality of the eigenfunctions with respect to
different energy eigenvalues, δll0 with respect to different eigenvalues of bL2 and
δmm0 with respect to different eigenvalues of bLz .
Each state is therefore characterized by three quantum numbers, namely

by

n the ”principal” quantum number, n = 1, 2, 3 ... ,∞
l the ”angular” momentum quantum number,

l = 0, 1, 2, ... , n− 1
m the ”magnetic” quantum number, −l ≤ m ≤ l .
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For the angular momentum quantum number l most frequently the following
common names, originally derived from spectroscopy are used

l 0 1 2 3 4
name s p d f g

where ”s” stands for ”sharp”, ”p” for ”principal”, ”d” for ”diffuse” and ”f”
for ”fundamental”. Since for a given quantum number n and l the energy
eigenvalues are degenerated with respect to bLz (m does not appear as such
or implicitly in the equation for the radial motion, the atomic energy levels
of a single electron atom can be labelled by the well-known pairs of quantum
numbers,

n, l 1, 0 2, 0 3, 1 3, 0 3, 1 3, 2 4, 0 4, 1 4, 2 4, 3
name 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f

well-known of course from their use in the periodic table of elements.

4.9 Atomic orbitals

In analogy to the Bohr model the one electron eigenfunctions (eigenfunctions of
a single electron atom) are usually called atomic orbitals. Let ψn,lm(r) be a

particular atomic orbital, then
¯̄
ψn,lm(r)

¯̄2
dτ is the probability to find an nl-like

electron in the interval [r, r + dr] within the directions [θ, θ + dθ] and [φ, φ+ dφ]

, and
¯̄
ψn,lm(r)

¯̄2
is the corresponding probability density. Its radial distribution

function D(r) is obtained by integrating over the angular dependence

Dn,l(r)dr = R2n,l(r)r
2dr

2πZ
0

πZ
0

Y m
l (θ, φ)

∗Y m
l (θ, φ) sin θdθdφ =

= R2n,l(r)r
2dr . (129)

From the table of the hydrogen atom wavefunctions one can see that they all
contain an exponential factor of the form exp(−r) multiplied with a polynomial
in r. It is therefore quite interesting to see what happens if r tends to zero.

4.9.1 s-orbitals

For 1s-orbitals it is easy to see that

lim
r→0

|ψ1s(r)|
2
= N lim

r→0
exp(−2r/a0) > 0 , (130)

while
lim
r→0

D1s(r) = N lim
r→0

¡
r2 exp(−2r/a0)

¢
= 0 , (131)

where N is the normalization constant. For r → 0 the 1s-like probability density
is finite, only the radial distribution goes to zero (see also Figure 5). Since for
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Figure 5: 1s-like probability density and radial distribution

r → ∞ both the probability density as well as the radial distribution function
Dn,l(r) = (rRn,l(r))

2 vanish, this implies that

lim
r→0

(rRn,l(r)) = lim
r→0

Rn,l(r) = 0 (132)

lim
r→∞

¯̄
ψn,l(r)

¯̄2
= lim

r→∞
Dn,l(r) = 0 . (133)

This important property as stated in the last two equations, applies as easily can
be checked for all the radial solutions Rn,l(r). The function Rn,l(r) is said to be
a regular solution, i.e., is regular at the origin. These two equations are
nothing but the (radial) boundary conditions for the single electron atom.
For 2s-orbitals the probability density is given by

|ψ2s(r)|
2 = N(2− r/a0)

2 exp(−r/a0) . (134)

As can be seen in Figure 6, the radial distribution function D2s(r) has an ad-
ditional zero location, usually called a node. In general - as can be worked
out quite easily from the analytical shape of the Laguerre polynomials - the
number of nodes for l = 0, i.e., the number of zero locations excluding the ones
for r→ 0 and r→∞ is given by (n− 1).

4.9.2 p-orbitals

For l > 0, the eigenfunctions ψn,l(r) have an angular dependent part, namely
the corresponding spherical harmonic. Using real spherical harmonics (122,123)
the three 2p-like eigenfunctions are of the following form
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Figure 6: 2s-like probability density and radial distribution

ψ2,10(r) ≡ ψ2pz(r) = f(r) cos θ , (135)

ψ2,1−1(r) ≡ ψ2py(r) = f(r) sin θ sinφ , (136)

ψ2,11(r) ≡ ψ2px(r) = f(r) sin θ cosφ , (137)

where
f(r) =

1

4π
a
−5/2
0 r exp(−r/2a0) . (138)

Suppose for the sake of simplicity that for ∀r , f(r) is a constant. The pz-orbital
is then

ψpz ∼ cos θ =
z

r
, (139)

i.e., for
θ = 0→ z

r
= 1 ,

θ = π/2→ z

r
= 0 ,

θ = π → z

r
= −1 .

For a given value of r , say 1, the vector r ”precesses” around the z-axis,
whereby the projection of r onto the z-axis is cos θ (see Figure 4-4 ). The cut
of this rotational figure with the yz-plane is also shown in Figure 4-4. Such a
plot usually is called a contour diagram. Under the same approximations the
probability density

¯̄
ψpz

¯̄2
is given by¯̄

ψpz
¯̄2 ∼ cos 2θ , (140)
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Figure 7: pz-orbital

which of course yields a different rotational figure and cut in the yz-plane (see
Figure 7). In the same way as for the pz-orbital, cuts of the corresponding
rotational figures for the px-orbital and the py-orbital can be generated in the
xy-plane. Before commenting on these figures, the d-orbitals shall be inspected.

4.9.3 d-orbitals

There are altogether 5 d-orbitals, which in terms of real spherical harmonics are
of the following form (constant f(r)):

d1 = dxy ∼ xy ,

d2 = dx2−y2 ∼ (x2 − y2) ,

d3 = dz2 ∼ (3z2 − 1) ,

d4 = dxz ∼ xz ,

d5 = dyz ∼ yz , (141)

and whose contour diagrams are shown in Figure 9.
Figures 7 and 9 show very famous ”presentations” of p- and d-orbitals. Since

these ”presentations” are used in so many respects and different contexts, it is
absolutely necessary to comment on their relevance: these plots are contour
diagrams of real spherical harmonics, they only represent the angular de-
pendence of single electron atomic wavefunctions, they are icons of wave-
functions and have nothing in common with probability densities. It should
be recalled that the wavefunctions themselves have no physical significance, only
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Figure 8: Contour diagram of the probability density of a pz orbital

the probability densities. Extreme care has to be taken when using these icons:
it is very easy to end up in a Micky Mouse view of reality!

4.10 Atomic selection rules

Suppose that the expectation value of the components of the electric dipole bd
has to be calculated, bd = er , r = (x, y, z) , (142)

where e is the elementary charge. Expressing the components of bd in terms of
polar coordinates, bdx = e |r| sin θ cosφ ,bdy = e |r| sin θ sinφ ,bdz = e |r| cos θ ,

their expectations values in a single electron atom are given by

< bdx > = e

Z
ψn,lm(r)

∗ |r| sin θ cosφψn0,l0m0(r)dτ , (143)

< bdy > = e

Z
ψn,lm(r)

∗ |r| sin θ sinφψn0,l0m0(r)dτ , (144)

< bdz > = e

Z
ψn,lm(r)

∗ |r| cos θψn0,l0m0(r)dτ , (145)

dτ = r2dr sin θdθdφ = r2drdΩ .
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Figure 9: d-orbitals

It is easy to see that these expectation values contain a radial integral and an
integral over the directions. For example for the z-component one gets

< bdz > = e

∙Z
Rn,l(r)Rn0,l0(r)r

3dr

¸ ∙Z
Y l
m(θ, φ)

∗ cos θY l0

m0(θ, φ)dΩ

¸
.

(146)
Quite clearly this expectation value is only different from zero if and only ifZ

Y l
m(θ, φ)

∗ cos θY l0

m0(θ, φ)dΩ =

Z
Y l
m(θ, φ)

∗Y 1
0 (θ, φ)Y

l0

m0(θ, φ)dΩ 6= 0 , (147)

which is only the case - as can be checked very easily for the first few values of
l and l0 - if3

∆l = l − l0 = ±1 , ∆m = m−m0 = 0,±1 . (148)

Forming now the expectation value of the square of the electric dipole,

< bd2 > = < bd2x > + < bd2y > + < bd2z > (149)

3The so-called triangular condition is yet another very useful property of spherical har-
monics. For a summary see for example appendix C of Messiah.
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then this quantity once again is only not vanishing for the conditions stated in
(148). These conditions are usually referred to as the atomic (dipole) selec-
tion rules, which viewed historically were one of the first staggering successes
of quantum theory.
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Figure 10: Coordinate system in the He atom

5 Perturbation theory, the He-atom
For systems with three or more interacting particles there are no analytical
solutions for the Schrödinger equation. One has to use therefore methods of
approximation. In principle, two different kinds of methods are at hand, namely
the perturbation theory and the variational method, which is the subject of the
next chapter. Both methods will be illustrated using the He atom as an example.
Consider the situation in the He atom (see Figure 10) at a given position

of the nucleus (center of gravity). The motion of the nucleus can be assumed
to be separated out just like in the case of the hydrogen atom. Besides the
kinetic energy terms for the two electrons (bT1, bT2), there are two different types
of Coulomb interactions, namely the interactions between the electrons and the
nucleus (bV1, bV2) and the interaction between the two electrons (cW12):

bH = bT1 + bT2 + bV1 + bV2 +cW12 =

= − ~
2

2μ
∇21 −

~2

2μ
∇22 −

Ze2

r1
− Ze2

r2
+

e2

r12
. (1)

The Schrödinger equation for the He atom,

bHψ(r1, r2) = Eψ(r1, r2) , (2)

can therefore be rewritten in form, where the Hamilton operator consists of
operators that depend only on one variable and a remainder

bH ≡ bH(r1, r2) = bh1(r1) + bh2(r2) +cW12(r1, r2) , (3)
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bhi(ri) = − ~2
2μ
∇2i −

Ze2

ri
; i = 1, 2 , (4)

namely as a sum of one-particle operators and a two-particle operator.

5.1 Zero order approximation

The easiest way of solving the Schrödinger equation for the He atom is of course
neglecting the Coulomb interaction between the two electrons, since then one
has to deal only with two independent motions:³bh1(r1) + bh2(r2)´ψ(r1, r2) = Eψ(r1, r2) , (5)³bh1(r1) + bh2(r2)´φ1(r1)φ2(r2) = (E1 +E2)φ1(r1)φ2(r2) , (6)

bhi(ri)φi(ri) = µ− ~22μ∇2i − Ze2

ri

¶
φi(ri) = Eiφi(ri) . (7)

Furthermore, each of these motions is in principle the same as was solved for
the hydrogen atom:

Ei = −
Z2μe4

2~2
1

n2i
=

Z2EH

n2i
, (8)

where EH is the groundstate energy of the hydrogen atom (EH ∼-13.605 eV; eV
= electron Volts). The groundstate energy for the He atom (Z=2) corresponds
therefore to the single electron atomic (principal) quantum numbers n1 = n2 = 1
and is simply given by

E = E1 +E2 = 4EH(
1

n21
+
1

n22
) = 8EH ∼ −108.8 eV . (9)

Experimentally the groundstate energy of the He atom is −78.98 eV , which as
compared to the result in the last equation shows that the interaction between
the two electrons cannot be neglected.

5.2 First order perturbation theory

Suppose that
(1) the Hamilton operator of a given system can be written as a sum of a

Hamilton operator corresponding to a known and solvable problem ( bH0) and a
remainder ( bH1), bH = bH0 + bH1 , (10)

such that for the expectation values of bH0 and bH1, h bH0i and h bH1i ,

h bH1i ¿ h bH0i , (11)

(2) the solutions of the Schrödinger equation corresponding to bH0 are defined
by bH0ψ

(0)
i = E

(0)
i ψ

(0)
i , (12)
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Z
ψ
(0)∗
i ψ

(0)
j dτ = δij , (13)

(3) the solutions and the energy eigenvalues of bH can be approximated by

ψi = ψ
(0)
i + ψ

(1)
i , (14)

Ei = E
(0)
i +E

(1)
i . (15)bH0 usually is called the unperturbed Hamilton operator and bH1 the per-

turbation. Using now the ansatz in (14) and (15) in the Schrödinger equation
corresponding to bH and neglecting all cross terms in first order, i.e., all those
terms having only the superscript 1 ,bHψi = EiψibH0ψ

(0)
i| {z }

=E
(0)
i ψ

(0)
i

+ bH0ψ
(1)
i + bH1ψ

(0)
i + bH1ψ

(1)
i| {z }

=E
(1)
i ψ

(1)
i

=

= E
(0)
i ψ

(0)
i +E

(0)
i ψ

(1)
i +E

(1)
i ψ

(0)
i + E

(1)
i ψ

(1)
i , (16)

one gets by means of (14)

bH0ψ
(1)
i + bH1ψ

(0)
i = E

(0)
i ψ

(1)
i +E

(1)
i ψ

(0)
i . (17)

The approximation bH1ψ
(1)
i − E

(1)
i ψ

(1)
i = 0 is called first order perturbation

theory.
Since the set of eigenfunctions {ψ(0)i } is a complete set of eigenfunctions ( bH0

is a Hermitian operator!), the perturbed wavefunctions ψ(1)i can be written
as the following linear combination

ψ
(1)
i =

∞X
n=1

cniψ
(0)
n , (18)

which in turn can be used in the previous equation

∞X
n=1

cni bH0ψ
(0)
n| {z }

=E
(0)
n ψ

(0)
n

+ bH1ψ
(0)
i = E

(0)
i

∞X
n=1

cniψ
(0)
n +E

(1)
i ψ

(0)
i . (19)

By collecting now all terms with the unperturbed energies on one side, one
obtains ∞X

n=1

cni(E
(0)
n −E

(0)
i )ψ(0)n = (E

(1)
i − bH1)ψ

(0)
i . (20)

Multiplying now with ψ
(0)∗
k from the left and integrating over dτ yields

∞X
n=1

cni(E
(0)
n −E

(0)
i )

Z
ψ
(0)∗
k ψ(0)n dτ| {z }
=δkn

=
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= E
(1)
i

Z
ψ
(0)∗
k ψ

(0)
i dτ| {z }

=δki

−
Z

ψ
(0)∗
k

bH1ψ
(0)
i dτ . (21)

If one assumes that the unperturbed system is not degenerated, i.e.
E
(0)
1 < E

(0)
2 < E

(0)
3 .... , such that (E(0)n − E

(0)
i ) never can be zero, then the

last equation, rewritten below

∞X
n=1

cni(E
(0)
n −E

(0)
i )δkn = E

(1)
i δki −

Z
ψ
(0)∗
k

bH1ψ
(0)
i dτ , (22)

results immediately in an expression for the perturbed energies E(1)i as well as
for the expansion coefficients cni

i = k → E
(1)
i =

R
ψ
(0)∗
i

bH1ψ
(0)
i dτ (23)

i 6= k → cki(E
(0)
k −E

(0)
i ) = −

R
ψ
(0)∗
k

bH1ψ
(0)
i dτ (24)

Using these two expressions the energies of the system under consideration can
be calculated

Ei = E
(0)
i +

Z
ψ
(0)∗
i

bH1ψ
(0)
i dτ , (25)

and the corresponding wavefunctions are defined by

ψi = ψ
(0)
i +

∞X
n6=i

(R
ψ(0)∗n

bH1ψ
(0)
i dτ

(E
(0)
i −E

(0)
n )

)
ψ(0)n . (26)

This implies that for the diagonal case (23)one gets the energies and in the off-
diagonal case (24) the coefficients for the wavefunctions. From (26) it is easy
to see that for the case that the unperturbed system has a partially degenerated
eigenvalue spectrum, in any application of perturbation theory the degeneracies
have to be taken out.

5.3 Application to the He atom

Going now back to the situation in the He atom, namely to (3)

bH ≡ bH(r1, r2) = bh1(r1) + bh2(r2)| {z }
=H0

+cW12(r1, r2)| {z }
=H1

, (27)

within a first order perturbation theory the groundstate energy is given by

E0 = E
(0)
0 (1) +E

(0)
0 (2)| {z }

E
(0)
0

+E
(1)
0 =
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= 8EH +

Z
ψ0

(0)(r1, r2)
∗
µ
e2

r12

¶
ψ0

(0)(r1, r2)dτ , (28)

where the unperturbed wavefunction is a product of two 1s-like hydrogen wave-
functions,

ψ0
(0)(r1, r2) = φ1(1s)φ2(1s) = N exp(−2r1/a0) exp(−2r2/a0) , (29)

N is a normalization constant and the integration volume dτ is given by

dτ = r21 sin θ1dr1dθ1dφ1r
2
2 sin θ2dr2dθ2dφ2 , (30)

and E
(0)
0 (i), i = 1, 2, is given by (8)

E
(0)
0 (i) = −Z

2μe4

2~2
1

n2i
= 4EH , (31)

since ni = 1.
Performing the integral in (28) one gets

E
(1)
0 =

5

4

Ze2

2a0
≡ 5
4

meZe
4

2~2
, (32)

whereme is the actual mass of the electron (and not the reduced mass!). Putting
now the results for the He atom in a table, one can immediately see at one
glimpse that the perturbation after all is not small and that obviously the de-
viation to the experiment suffers severely from this fact.

Groundstate energy of the He atom [eV]

zero order first order experimental
E
(0)
0 E

(0)
0 +E

(1)
0

−108.24 −74.42 −78.62
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6 The variational method

6.1 The Ritz theorem

Let bH be the Hamilton operator of given system and φ some compat-
ible function that meets the boundary conditions. The expectation
value of bH, �, is always larger than the exact ground state energy E0

� =

R
φ∗ bHφdτR
φ∗φdτ

≥ E0 . (1)

The function φ is usually called a trial function.
Suppose the exact eigenvalue equation is given by

bHψi = Eiψi ,

Z
ψ∗iψjdτ = δij . (2)

Since the set of functions ψi is complete the trial function φ can be expanded
in this set

φ =
X
n

anψn , φ∗ =
X
n

a∗nψ
∗
n . (3)

In terms of this expansion the expectation value � is given by

� =

P
m

P
n
a∗man

R
ψ∗m bHψndτP

m

P
n
a∗man

R
ψ∗mψndτ

=

P
m

P
n
a∗manEnδnmP

m

P
n
a∗manδnm

=

=

P
n
a∗nanEnP
n
a∗nan

. (4)

If one now substracts E0 on both sides, i.e., shifts the energy scale by E0, one
gets

�−E0 =

P
n
a∗nan(En −E0)P

n
a∗nan

. (5)

Now one can see that since En is the energy of an ”excited state”, En−E0 ≥ 0
and since φ has to be normalizable,

P
n
a∗nan ≥ 0. This implies that

�−E0 =

P
n
a∗nan(En −E0)P

n
a∗nan

≥ 0 . (6)

Of course in general the exact eigenfunctions are not known (otherwise there
would be hardly the need for a method of approximation). Therefore the trial
function φ is chosen to be dependent on parameters a, b, c, . . . such that
� is a function of these parameters, � ≡ �(a, b, c, . . .) . The minimum of
� corresponds then to the condition

∂�(a, b, c, . . .)

∂a
=

∂�(a, b, c, . . .)

∂b
=

∂�(a, b, c, . . .)

∂c
= ..... = 0 (7)
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6.2 The He-atom

In order to illustrate the variational method once again the He atom is con-
sidered. In the previous chapter it was shown that within the zero order ap-
proximation of perturbation theory the wavefunction for the He atom is of the
following form (see also the previous chapter)

ψ
(0)
0 (r1, r2) = φ1(1s)φ2(1s) =

Z3

πa30
exp(−Z(r1 + r2)/a0) .

Since π and a0 are constants the only available parameter left is the atomic
number. Suppose therefore that the atomic number is treated as an adjustable
parameter ξ for the trial function φ(r1, r2) ,

φ(r1, r2) =
ξ3

πa30
exp(−ξ(r1 + r2)/a0) . (8)

The expectation value of the Hamilton operator for the He atom is then given
by

� =

Z
φ∗(r1, r2) bHφ(r1, r2)dτ =

=

Z
φ∗(r1, r2)bh1φ(r1, r2)dτ + Z φ∗(r1, r2)bh2φ(r1, r2)dτ

+

Z
φ∗(r1, r2)

e

r12
φ(r1, r2)dτ , (9)

namely in terms of integrals for the one-electron operators bhi and the two-
electron operator e/r12. In order to make use of the fact that the integrals
corresponding to the one-electron operators are of course known for ξ = Z, the
Hamilton operator is rewritten in the following way (addition of zero!)

bH = − ~
2

2μ
∇21 −

ξe2

r1| {z }
1

− ~
2

2μ
∇22 −

ξe2

r2| {z }
2

+

+ (ξ − Z){e
2

r1
+

e2

r2| {z }}
3

+
e2

r12|{z}
4

. (10)

With this little trick the expectation value �(ξ) can be written as

�(ξ) =

Z
φ∗1(1s)(−

~2

2μ
∇21 −

ξe2

r1| {z }
1

)φ1(1s)dτ1 +

+

Z
φ∗2(1s)(−

~2

2μ
∇22 −

ξe2

r2| {z }
2

)φ2(1s)dτ2 +
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+

Z
φ∗(r1, r2)(ξ − Z){e

2

r1
+

e2

r2
}| {z }

3

φ(r1, r2)dτ1dτ2 +

+

Z
φ∗(r1, r2)

e2

r12|{z}
4

φ(r1, r2)dτ1dτ2 . (11)

Integrals of type 1 and 2 correspond now to the single electron atom with atomic
number ξ, Z

φ∗i (1s)(−
~2

2μ
∇2i −

ξe2

ri| {z }
1,2

)φi(1s)dτ i = −ξ2EH , (12)

where EH is the groundstate energy of the hydrogen atom. For the two remain-
ing integrals one getsZ

φ∗(r1, r2)(ξ − Z){e
2

r1
+

e2

r2
}| {z }

3

φ(r1, r2)dτ1dτ2 = 4ξ(ξ − Z)EH , (13)

Z
φ∗(r1, r2)

e2

r12|{z}
4

φ(r1, r2)dτ1dτ2 =
5

4
ξEH . (14)

The expectation value �(ξ) is therefore given by the following expression

�(ξ) =

½
−2ξ2 + 4ξ(ξ − Z) +

5

4
ξ

¾
EH . (15)

The minimum of �(ξ) with respect to ξ is given by the condition

d�(ξ)

dξ
= 0 = (4ξ − 4Z + 5

4
) → ξ = Z − 5

16
. (16)

Using now the optimal value of ξ in (15) the minimum value of � is given by

� = −2(Z − 5

16
)2EH = −76.9 eV . (17)

In the table below the results for the He atom are summarized. As one can see
this simple variational approach yields a result much closer to the experimental
value than the first order perturbation theory. One also can see that � > E0.

First order Variation method Experimental
perturbation theory with one parameter
−74.42 eV −76.9 eV −78.62 eV
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6.3 The variational method for a linear combination of
functions

The most frequently used application of the variational method in physics and
chemistry is based on the expansion of trial functions as linear combinations of
functions. Suppose χi, i = 1, ..., n, is a set of linear independent, not necessarily
orthogonal functions from which a trial function φ can be constructed in the
following way

φ = c1χ1 + c2χ2 + c3χ3 + · · ·+ cnχn =
nX
i=1

ciχi , (18)

where the coefficients ci are real and have to be determined minimizing the
expectation value of the energy, �

� =

nP
i,k=1

cick
R
χ∗i
bHχkdτP

i,k=1

cick
R
χ∗iχkdτ

=

nP
i,k=1

cickHikP
i,k=1

cickSik
, (19)

nX
i,k=1

cickHik = �
nX

i,k=1

cickSik . (20)

Since � has to be a minimum this implies that

∂�

∂cj
= 0 , j = 1, ..., n . (21)

Taking the derivative of (20) with respect to a particular coefficient, say cj , one
gets

∂

∂cj

⎧⎨⎩�
X
i,k

cickSik

⎫⎬⎭ =
∂�

∂cj|{z}
=0

nX
i,k=1

cickSik + �
∂

∂cj

nX
i,k=1

cickSik =

=
∂

∂cj

nX
i,k=1

cickHik . (22)

In order to take the derivative of the mixed products of coefficients, the best
way to handle the problem is to inspect special cases:

2cj j = i = k

∂
∂cj

nP
i,k=1

cick = { ck j = i, j 6= k

ci j = k, j 6= i
0 j 6= i, j 6= k

. (23)
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Because of the double sum one gets therefore

2�
nX
i=1

ciSij = 2
nX
i=1

ciHij . (24)

This procedure has to be repeated for each coefficient cj , j = 1, . . . , n , i.e., one
gets a system n equations

nX
i=1

ci(Hij − �Sij) = 0 , j = 1, . . . , n , (25)

which can be written in matrix form as

(H − �S)c = 0 ,⎛⎜⎜⎜⎝
H11 − �S11 H12 − �S12 ... H1n − �S1n
H21 − �S21 H22 − �S22 ... H2n − �S2n

...
... ...

...
Hn1 − �Sn1 Hn2 − �Sn2 ... Hnn − �Snn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

c1
c2
...
cn

⎞⎟⎟⎟⎠ = 0 . (26)

This system of equations has a non-trivial solution if and only if the determinant
of the matrix (H − �S) vanishes

det (H − �S) = 0 . (27)

The determinant has a very prominent name. It is called the secular determi-
nant. By developing the determinant one gets a polynomial in the unknown �,
the n (number of basis functions χi ) roots of which are then the approximations
for the groundstate energy (E0), the energy of the first excited state (E1), of
the second excited state (E2) and so on, E0 ≤ E1 ≤ E2 ... . If the set of basis
functions is an orthonormal set of functions1Z

χ∗iχjdτ = δij , i, j = 1, ...n , (28)

then the secular matrix
(H − �1) c = 0 , (29)⎛⎜⎜⎜⎝

H11 − �S11 H12 ... H1n

H21 H22 − � ... H2n

...
...

. . .
...

Hn1 Hn2 ... Hnn − �

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

c1
c2
...
cn

⎞⎟⎟⎟⎠ = 0 , (30)

is in particular easy to solve, since the problem is reduced to finding the eigen-
values and eigenvectors of an n×n matrix. In this case there exists a in general
unitary matrix U

U†U = UU† = 1 , U†ij = U∗ji , (31)

1 It should be noted that a set of basis functions can always be transformed into a set of
orthonormal basis functions
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such that by multiplying (29) from the left with U
˜
,

U†Hc = U†HU| {z } U†

λ

c = �U†c , (32)

where λ
˜
is a diagonal matrix

λ =

⎛⎜⎜⎜⎝
λ1 0 0
0 λ2 0

0 0
. . .

λn

⎞⎟⎟⎟⎠ . (33)

It should be noted that U†c is nothing but a basis transformation, which
leaves the determinant unchanged!
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Figure 11: Spin induced splitting of atomic line spectra

7 The electronic spin, permutational symmetry
and the Pauli principle

If one records the emission spectrum of an atom in the absence and in the
presence of an external magnetic field one finds for example for a transition
from a 2p-level to a 1s-level different patterns. In the absence of the field only
one line is recorded, whereas in the presence of this field three lines can be
observed (see Figure 11). This is totally in accordance with the very meaning of
the term magnetic quantum number, namely that the degeneracy with respect
to the eigenvalues of bLz is lifted. Increasing the resolution, however, one finds
that two of these lines are in fact double lines.
This doubling of lines implies that the particle (electron) must have an addi-

tional property, which up to now was not included in its formal description. This
property is the (electronic) spin (German: ”Eigendrehimpuls”) of the electron.
The reason for this formal deficiency is that the correspondence principle was
only applied to problems of classical mechanics (classical Hamilton functions),
which clearly does not include Einsteins theory of relativity. Strictly speaking
a formal description of the spin can only be based on a theory of a relativistic
motion of particles1. Without the use of a such relativistic theory the properties
of the electronic spin can only be stated in terms of postulates, and admittingly
remain slightly vague.

1 see for example chapter 17
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7.1 Spin postulates

7.1.1 Postulate 1:

The components of the spin momentum operator bS commute in the same formal
way as the components of the angular momentum operator bL, namely

[bSx, bSy]− = i~bSz , (7)

[bSy, bSz]− = i~bSx , (8)

[bSz, bSx]− = i~bSy , (9)

and the square of bS is given bybS2 = bS2x + bS2y + bS2z . (10)

7.1.2 Postulate 2:

For an electron there are only two eigenfunctions of bS2 and bSz, namely α and
β, corresponding to the following eigenvalue equations

bS2α = 1

2
(
1

2
+ 1)~2α , (11)

bS2β = 1

2
(
1

2
+ 1)~2β , (12)

bSzα = 1

2
~α , (13)

bSzβ = −1
2
~β . (14)

In analogy to the case of the angular momentum operators these eigenvalue
equations are usually written as

bS2α = s(s+ 1)~2α , bS2β = s(s+ 1)~2β , s =
1

2
, (15)

bSzα = ms~α , bSzβ = ms~β , ms = ±
1

2
. (16)

The functions α and β are so-called spinors,

α =

µ
1
0

¶
, (17)

β =

µ
0
1

¶
. (18)

Traditionally the elements in these 2-vectors are labelled (in a somewhat con-
fusing manner) by σ = 1

2 and σ = −12 , such that α and β can also be viewed as
the following orthonormalized functions, usually called spin functions

α(σ) = { 1 ;σ = 1
2

0 ;σ = −12
, (19)
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β(σ) = { 0 ;σ = 1
2

1 ;σ = −12
, (20)

X
σ=± 1

2

α(σ)†α(σ) = ( 1 0 )

µ
1
0

¶
= 1 , (21)

X
σ=± 1

2

β(σ)†β(σ) = ( 0 1 )

µ
0
1

¶
= 1 , (22)

X
σ=± 1

2

α(σ)†β(σ) = ( 1 0 )

µ
0
1

¶
= 0 , (23)

X
σ=± 1

2

β(σ)†α(σ) = ( 0 1 )

µ
1
0

¶
= 0 . (24)

7.2 Atomic spin orbitals

In a non-relativistic description the operators bSx, bSy, bSz and bS2 only act on the
spin functions, i.e. for the Hamilton operator of the single electron atom ( the
hydrogen atom for example) the following commutator relations apply trivially,

[ bH, bS2]− = [ bH, bSz]− = [ bH, bL2]− = [ bH, bLz]− = 0 , (25)

[bL2, bS2]− = [bLz, bSz]− = 0 . (26)

Since the eigenvalue of bS2, s(s+1)~2 is the same for all electrons, namely 3~2/4
only the eigenvalue bSz,ms~, ms = ± 1

2 , can be used for a further characterization
(”symmetry”) of an energy eigenvalue in the atomic single electron problem.
The corresponding eigenfunctions can therefore be characterized by the four
quantum numbers:

n principal quantum number
l angular momentum quantum number
m magnetic quantum number
ms spin quantum number

The eigenfunctions are products of atomic orbitals and spin functions

Ψn,lm,ms
(r, σ) =

½
ψn,lm(r)α(σ)
ψn,lm(r)β(σ)

=

=

½
Rn,l(r)Y

m
l (θ, φ)α(σ)

Rn,l(r)Y
m
l (θ, φ)β(σ)

, (27)

bSzψn,lm(r)α(σ) = ψn,lm(r)bSzα(σ) = 1

2
~ψn,lm(r)α(σ) , (28)

bSzψn,lm(r)β(σ) = ψn,lm(r)bSzβ(σ) = −12~ψn,lm(r)β(σ) . (29)
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The atomic spinorbitals Ψn,lm,ms(r, σ) are orthonormalized wavefunctionsX
σ=± 1

2

Z
Ψ∗n,lm,ms

(r, σ)Ψn,lm,ms
(r, σ)dτ = 1 . (30)

7.3 The Pauli principle - version 1

The Pauli principle is a principle, independent of the Schrödinger equation.
In the context of a single electron theory of atoms it can be stated as follows:

Two electrons in an atom never can have the same set of (atomic)
quantum numbers.

For the energy eigenvalues of the He atom this implies that the two electrons
must have different quantum numbers. Denoting the atomic orbital of electron
1 by φ(1) and that of electron 2 by φ(2) and using the numbering for the
electrons also as argument for the spin functions, the ground state wavefunction
ψGS(1, 2) ≡ ψGS(r1, r2) of the He atom , where r1 and r2 denote the coordinates
of the two electrons, obviously refers to the case that both, φ(1) and φ(2) are
1s-orbitals, formally written as 1s(1) and 1s(2). The two electrons must differ
therefore in their spin functions:

ψGS(1, 2) = φ(1)φ(2)α(1)β(2) = 1s(1)1s(2)α(1)β(2) . (31)

For the first excited state of the He atom, however, in principle two possibilities
of assigning atomic orbitals to the spin-independent part of the wavefunction
φES(1, 2) exist

φES(1, 2) =

½
1s(1)2s(2)
2s(1)1s(2)

, (32)

which would imply that the two electrons are distinguishable! Since this can not
be the case - just as the Hamilton operator can not dependent on the choice of
the coordinate system (principle of coordinate invariance), one forms normalized
linear combinations of the above two possibilities. If bP denotes an operator that
permutes the indices of the electrons, one can see easily that two cases arise.
The first one, denoted by an index s,

φsES(1, 2) =
1√
2
(1s(1)2s(2) + 1s(2)2s(1)) , (33)

is symmetric with respect to a permutation of the indices for the electrons,

bPφsES(1, 2) = φsES(2, 1) =
1√
2
(1s(2)2s(1) + 1s(1)2s(2)) =

= φsES(1, 2) , (34)
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i.e. does not change the sign of the spin-independent part of the wavefunction,
when permuting the numbering of the electrons. The second one, however,

φasES(1, 2) =
1√
2
(1s(1)2s(2) − 1s(2)2s(1)) , (35)

is antisymmetric with respect to such a permutation.

bPφasES(1, 2) = φasES(2, 1) =
1√
2
(1s(2)2s(1) − 1s(1)2s(2)) =

= −φasES(1, 2) . (36)

Concomitantly the two electrons can not be distinguished with respect to their
spin. Again the product of the corresponding spinfunctions has to be checked
with respect to a permutation of indices and also with respect to the eigenvalue
of bSz. For example: bPα(1)α(2) = α(2)α(1) ≡ α(1)α(2) , (37)

bSzα(1)α(2) = α(2)bSzα(1) + α(1)bSzα(2) =
= ~ (ms(1)α(1)α(2) +ms(2)α(1)α(2)) = ~ (ms(1) +ms(2))α(1)α(2) =

= ~Msα(1)α(2) . (38)

For the various products of the two spin functions one can construct a little
table and note the occurring permutational symmetry, using as before ”s” for
symmetric and ”as” for antisymmetric, respectively:

product symmetry Ms

α(1)α(2) s 1
β(1)β(2) s −1

1√
2
(α(1)α(2) + β(1)β(2)) s 0

1√
2
(α(1)α(2)− β(1)β(2)) as 0

As one can see from this table, three out of four product functions are
symmetric and only one is antisymmetric.
In the same way asMs was obtained, also the total spin can be determined.

For example,

bS2α(1)α(2) = ~2 (s(1)(s(1) + 1)α(1)α(2) + s(2)(s(2) + 1)α(1)α(2)) =

= ~2S(S + 1)α(1)α(2) . (39)

70



Thus, if N is the total number of electrons then the total spin S and the total
spin quantum number Ms are given by:

S =
NX
i=1

s(i) , Ms =
NX
i=1

ms(i) . (40)

Combining finally the spin-independent parts (orbital parts) of the wave-
function with the products of the spinfunctions, one has to remember that the
product of two symmetric functions is symmetric, while the product of a sym-
metric function with an antisymmetric function results in an antisymmetric
function. Symbolically written the following short-hand rule applies:

symmetric ⊗ symmetric = symmetric (41)

symmetric ⊗ antisymmetric = antisymmetric (42)

antisymmetric ⊗ antisymmetric = symmetric (43)

For example

ψ =
1√
2
(1s(1)2s(2) + 1s(2)2s(1))α(1)α(2) ,

is symmetric with respect to a permutation of the indices for the two electrons,
while

ψ =
1

2
(1s(1)2s(2) + 1s(2)2s(1)) (α(1)β(2)− α(2)β(1)) ,

is antisymmetric.

7.4 The Pauli principle - version 2

The wavefunction of a system of electrons has to be antisymmetric
with respect to a simultaneous permutation of the coordinates and of
the spins of two electrons.

The wavefunction of a system of Fermions has to be antisymmetric
with respect to permutational symmetry, that of Bosons symmetric,
whereby Fermions are particles with half-integer spins (12 ,

3
2 ,

5
2 , ...) like

electrons, protons, neutrons etc. and Bosons particles with integer
spin (0, 1, 2, ...) like photons, α−particles (He nuclei) etc.

For the above example of the wavefunction for the excited state of a He
atom, one gets therefore the following three (triplet) antisymmetric wavefunc-
tions that have antisymmetric orbital parts and symmetric spin parts and which
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in the absence of an external magnetic field belong all to one degenerated energy
eigenvalue

ψTriplet =
1√
2
((1s(1)2s(2)− 1s(2)2s(1))

⎧⎨⎩
α(1)α(2)
1√
2
(α(1)β(2) + α(2)β(1))

β(1)β(2)

(44)

and one (singulet) antisymmetric wavefunction that is symmetric in its orbital
part and antisymmetric in the spin part

ψSingulet =
1

2
((1s(1)2s(2) + 1s(2)2s(1)) (α(1)β(2)− α(2)β(1)) . (45)

In general the number of spin functions that in the absence of a magnetic field
belong to one and the same energy eigenvalue is given by (2S +1) the so-called
multiplicity. The multiplicity and the total spin quantum numberMs are then
used to characterize a particular (antisymmetric) wavefunction of a in general
n-electron system

ψ2S+1Ms
(1, 2, 3, .., n) (46)
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Figure 13: Spin induced splitting of atomic line spectra

8 The electronic spin, permutational symmetry
and the Pauli principle

If one records the emission spectrum of an atom in the absence and in the
presence of an external magnetic field one finds for example for a transition
from a 2p-level to a 1s-level different patterns. In the absence of the field only
one line is recorded, whereas in the presence of this field three lines can be
observed (see Figure 13). This is totally in accordance with the very meaning of
the term magnetic quantum number, namely that the degeneracy with respect
to the eigenvalues of bLz is lifted. Increasing the resolution, however, one finds
that two of these lines are in fact double lines.
This doubling of lines implies that the particle (electron) must have an addi-

tional property, which up to now was not included in its formal description. This
property is the (electronic) spin (German: ”Eigendrehimpuls”) of the electron.
The reason for this formal deficiency is that the correspondence principle was
only applied to problems of classical mechanics (classical Hamilton functions),
which clearly does not include Einsteins theory of relativity. Strictly speaking
a formal description of the spin can only be based on a theory of a relativistic
motion of particles1. Without the use of a such relativistic theory the properties
of the electronic spin can only be stated in terms of postulates, and admittingly
remain slightly vague.

1 see for example chapter 17
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8.1 Spin postulates

8.1.1 Postulate 1:

The components of the spin momentum operator bS commute in the same formal
way as the components of the angular momentum operator bL, namely

[bSx, bSy]− = i~bSz , (7)

[bSy, bSz]− = i~bSx , (8)

[bSz, bSx]− = i~bSy , (9)

and the square of bS is given bybS2 = bS2x + bS2y + bS2z . (10)

8.1.2 Postulate 2:

For an electron there are only two eigenfunctions of bS2 and bSz, namely α and
β, corresponding to the following eigenvalue equations

bS2α = 1

2
(
1

2
+ 1)~2α , (11)

bS2β = 1

2
(
1

2
+ 1)~2β , (12)

bSzα = 1

2
~α , (13)

bSzβ = −1
2
~β . (14)

In analogy to the case of the angular momentum operators these eigenvalue
equations are usually written as

bS2α = s(s+ 1)~2α , bS2β = s(s+ 1)~2β , s =
1

2
, (15)

bSzα = ms~α , bSzβ = ms~β , ms = ±
1

2
. (16)

The functions α and β are so-called spinors,

α =

µ
1
0

¶
, (17)

β =

µ
0
1

¶
. (18)

Traditionally the elements in these 2-vectors are labelled (in a somewhat con-
fusing manner) by σ = 1

2 and σ = −12 , such that α and β can also be viewed as
the following orthonormalized functions, usually called spin functions

α(σ) = { 1 ;σ = 1
2

0 ;σ = −12
, (19)
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β(σ) = { 0 ;σ = 1
2

1 ;σ = −12
, (20)

X
σ=± 1

2

α(σ)†α(σ) = ( 1 0 )

µ
1
0

¶
= 1 , (21)

X
σ=± 1

2

β(σ)†β(σ) = ( 0 1 )

µ
0
1

¶
= 1 , (22)

X
σ=± 1

2

α(σ)†β(σ) = ( 1 0 )

µ
0
1

¶
= 0 , (23)

X
σ=± 1

2

β(σ)†α(σ) = ( 0 1 )

µ
1
0

¶
= 0 . (24)

8.2 Atomic spin orbitals

In a non-relativistic description the operators bSx, bSy, bSz and bS2 only act on the
spin functions, i.e. for the Hamilton operator of the single electron atom ( the
hydrogen atom for example) the following commutator relations apply trivially,

[ bH, bS2]− = [ bH, bSz]− = [ bH, bL2]− = [ bH, bLz]− = 0 , (25)

[bL2, bS2]− = [bLz, bSz]− = 0 . (26)

Since the eigenvalue of bS2, s(s+1)~2 is the same for all electrons, namely 3~2/4
only the eigenvalue bSz,ms~, ms = ± 1

2 , can be used for a further characterization
(”symmetry”) of an energy eigenvalue in the atomic single electron problem.
The corresponding eigenfunctions can therefore be characterized by the four
quantum numbers:

n principal quantum number
l angular momentum quantum number
m magnetic quantum number
ms spin quantum number

The eigenfunctions are products of atomic orbitals and spin functions

Ψn,lm,ms
(r, σ) =

½
ψn,lm(r)α(σ)
ψn,lm(r)β(σ)

=

=

½
Rn,l(r)Y

m
l (θ, φ)α(σ)

Rn,l(r)Y
m
l (θ, φ)β(σ)

, (27)

bSzψn,lm(r)α(σ) = ψn,lm(r)bSzα(σ) = 1

2
~ψn,lm(r)α(σ) , (28)

bSzψn,lm(r)β(σ) = ψn,lm(r)bSzβ(σ) = −12~ψn,lm(r)β(σ) . (29)
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The atomic spinorbitals Ψn,lm,ms(r, σ) are orthonormalized wavefunctionsX
σ=± 1

2

Z
Ψ∗n,lm,ms

(r, σ)Ψn,lm,ms
(r, σ)dτ = 1 . (30)

8.3 The Pauli principle - version 1

The Pauli principle is a principle, independent of the Schrödinger equation.
In the context of a single electron theory of atoms it can be stated as follows:

Two electrons in an atom never can have the same set of (atomic)
quantum numbers.

For the energy eigenvalues of the He atom this implies that the two electrons
must have different quantum numbers. Denoting the atomic orbital of electron
1 by φ(1) and that of electron 2 by φ(2) and using the numbering for the
electrons also as argument for the spin functions, the ground state wavefunction
ψGS(1, 2) ≡ ψGS(r1, r2) of the He atom , where r1 and r2 denote the coordinates
of the two electrons, obviously refers to the case that both, φ(1) and φ(2) are
1s-orbitals, formally written as 1s(1) and 1s(2). The two electrons must differ
therefore in their spin functions:

ψGS(1, 2) = φ(1)φ(2)α(1)β(2) = 1s(1)1s(2)α(1)β(2) . (31)

For the first excited state of the He atom, however, in principle two possibilities
of assigning atomic orbitals to the spin-independent part of the wavefunction
φES(1, 2) exist

φES(1, 2) =

½
1s(1)2s(2)
2s(1)1s(2)

, (32)

which would imply that the two electrons are distinguishable! Since this can not
be the case - just as the Hamilton operator can not dependent on the choice of
the coordinate system (principle of coordinate invariance), one forms normalized
linear combinations of the above two possibilities. If bP denotes an operator that
permutes the indices of the electrons, one can see easily that two cases arise.
The first one, denoted by an index s,

φsES(1, 2) =
1√
2
(1s(1)2s(2) + 1s(2)2s(1)) , (33)

is symmetric with respect to a permutation of the indices for the electrons,

bPφsES(1, 2) = φsES(2, 1) =
1√
2
(1s(2)2s(1) + 1s(1)2s(2)) =

= φsES(1, 2) , (34)
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i.e. does not change the sign of the spin-independent part of the wavefunction,
when permuting the numbering of the electrons. The second one, however,

φasES(1, 2) =
1√
2
(1s(1)2s(2) − 1s(2)2s(1)) , (35)

is antisymmetric with respect to such a permutation.

bPφasES(1, 2) = φasES(2, 1) =
1√
2
(1s(2)2s(1) − 1s(1)2s(2)) =

= −φasES(1, 2) . (36)

Concomitantly the two electrons can not be distinguished with respect to their
spin. Again the product of the corresponding spinfunctions has to be checked
with respect to a permutation of indices and also with respect to the eigenvalue
of bSz. For example: bPα(1)α(2) = α(2)α(1) ≡ α(1)α(2) , (37)

bSzα(1)α(2) = α(2)bSzα(1) + α(1)bSzα(2) =
= ~ (ms(1)α(1)α(2) +ms(2)α(1)α(2)) = ~ (ms(1) +ms(2))α(1)α(2) =

= ~Msα(1)α(2) . (38)

For the various products of the two spin functions one can construct a little
table and note the occurring permutational symmetry, using as before ”s” for
symmetric and ”as” for antisymmetric, respectively:

product symmetry Ms

α(1)α(2) s 1
β(1)β(2) s −1

1√
2
(α(1)α(2) + β(1)β(2)) s 0

1√
2
(α(1)α(2)− β(1)β(2)) as 0

As one can see from this table, three out of four product functions are
symmetric and only one is antisymmetric.
In the same way asMs was obtained, also the total spin can be determined.

For example,

bS2α(1)α(2) = ~2 (s(1)(s(1) + 1)α(1)α(2) + s(2)(s(2) + 1)α(1)α(2)) =

= ~2S(S + 1)α(1)α(2) . (39)
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Thus, if N is the total number of electrons then the total spin S and the total
spin quantum number Ms are given by:

S =
NX
i=1

s(i) , Ms =
NX
i=1

ms(i) . (40)

Combining finally the spin-independent parts (orbital parts) of the wave-
function with the products of the spinfunctions, one has to remember that the
product of two symmetric functions is symmetric, while the product of a sym-
metric function with an antisymmetric function results in an antisymmetric
function. Symbolically written the following short-hand rule applies:

symmetric ⊗ symmetric = symmetric (41)

symmetric ⊗ antisymmetric = antisymmetric (42)

antisymmetric ⊗ antisymmetric = symmetric (43)

For example

ψ =
1√
2
(1s(1)2s(2) + 1s(2)2s(1))α(1)α(2) ,

is symmetric with respect to a permutation of the indices for the two electrons,
while

ψ =
1

2
(1s(1)2s(2) + 1s(2)2s(1)) (α(1)β(2)− α(2)β(1)) ,

is antisymmetric.

8.4 The Pauli principle - version 2

The wavefunction of a system of electrons has to be antisymmetric
with respect to a simultaneous permutation of the coordinates and of
the spins of two electrons.

The wavefunction of a system of Fermions has to be antisymmetric
with respect to permutational symmetry, that of Bosons symmetric,
whereby Fermions are particles with half-integer spins (12 ,

3
2 ,

5
2 , ...) like

electrons, protons, neutrons etc. and Bosons particles with integer
spin (0, 1, 2, ...) like photons, α−particles (He nuclei) etc.

For the above example of the wavefunction for the excited state of a He
atom, one gets therefore the following three (triplet) antisymmetric wavefunc-
tions that have antisymmetric orbital parts and symmetric spin parts and which
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in the absence of an external magnetic field belong all to one degenerated energy
eigenvalue

ψTriplet =
1√
2
((1s(1)2s(2)− 1s(2)2s(1))

⎧⎨⎩
α(1)α(2)
1√
2
(α(1)β(2) + α(2)β(1))

β(1)β(2)

(44)

and one (singulet) antisymmetric wavefunction that is symmetric in its orbital
part and antisymmetric in the spin part

ψSingulet =
1

2
((1s(1)2s(2) + 1s(2)2s(1)) (α(1)β(2)− α(2)β(1)) . (45)

In general the number of spin functions that in the absence of a magnetic field
belong to one and the same energy eigenvalue is given by (2S +1) the so-called
multiplicity. The multiplicity and the total spin quantum numberMs are then
used to characterize a particular (antisymmetric) wavefunction of a in general
n-electron system

ψ2S+1Ms
(1, 2, 3, .., n) (46)
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9 Determinantal wavefunctions, permutational
symmetry and the H2 molecule

The H2 molecule - the simplest molecule, but H
+
2 - poses already a four-body

problem. For given (fixed) positions of the nuclei the Hamilton operator for the
H2 molecule can be read off from Figure 15. In atomic units (~ = m = e = 1)
this Hamilton operator is given by

bH = −1
2
∇21 −

1

2
∇22 −

1

rA1
− 1

rA2
− 1

rB1
− 1

rB2
+

1

r12
+
1

R
, (1)

where 1/R describes the repulsion of the nuclei and 1/r12 the interaction be-
tween the two electrons. By rewriting this Hamilton operator in the following
way,

bH =

½
−1
2
∇21 −

1

rA1
− 1

rB1

¾
| {z }

hI

+

½
−1
2
∇22 −

1

rA2
− 1

rB2

¾
| {z }

hII

+
1

r12
+
1

R
, (2)

one can see that the Hamilton operator is of the formbH = bH0 + bV , (3)

where bH0 = bhI + bhII , (4)

and bV =
1

r12
, (5)

if one considers 1/R as a constant contribution to the energy (Born-Oppen-
heimer approximation). Quite clearly bhI as well as bhII refers to the Hamilton
operator of the H+2 molecule. Considering first the H2 problem in terms of first
order perturbation theory, the unperturbed wave function is given by

ψ0(1, 2) = φI(1)φII(2) , (6)

namely as the product of the wave functions for the two independent ”H+2 -
motions”.
By means of the wave function for the H+2 molecule (see chapter 7),

φ =
χA + χB√
2 + 2S

, χα =
1√
π
exp(−rα) , α = A,B , (7)

where χα is hydrogen 1s-atomic wavefunction centered in nucleus α and S is the
overlap integral, the ground state energy for the H2 molecule is easily obtained
within first order perturbation theory using (6)

E(R) = 2EH+
2
(R) +

ZZ
ψ0(1, 2)∗

1

r12
ψ0(1, 2)dτ1dτ2 . (8)
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Figure 15: Coordinate system for the H2 molecule

The result of this calculation is compared in the table below with the corre-
sponding experimental results

experimental perturbation theory
total energy -31.93 eV -29.88 eV

dissociation energy -4.75 eV -2.67 eV
equilibrium separation 0.74 Å 0.85 Å

Again one can that obviously the perturbation is not small enough to yield
a result close to experiment, which in turn implies that in the end the vari-
ational method has to be applied in order to get reasonably good agreement
with experiment. In general this performed by using suitably chosen variational
parameters for the spin-orbitals and minimizing the expectation value of the
Hamilton operator. This in fact is the essence of the following section.

9.1 Slater determinants

According to the Pauli principle the unperturbed wave function has to be
antisymmetric, i.e., by neglecting as before any interaction between the angu-
lar momentum and the spin of the electrons (non-relativistic description), the
unperturbed wave function is given as the following product of spin-orbitals

ψ0(1, 2) = A{φ(1)α(1)φ(2)β(2)} , (9)
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where φ(1) and φ(2) refer to the orbital parts of the wave function for electron
one and two, respectively, and α(1) and β(2) are their spin functions. The
operator A is the so-called antisymmetrizer, that takes care of the proper
permutational symmetry1 for the indices of the electrons. As was shown by
Slater the condition of antisymmetric behavior for the total wave function is
always fulfilled if written as a determinant

ψ0(1, 2) = A{φ(1)α(1)φ(2)β(2)} =

= N

¯̄̄̄
φ(1)α(1) φ(1)β(1)
φ(2)α(2) φ(2)β(2)

¯̄̄̄
=

= N {φ(1)α(1)φ(2)β(2)− φ(1)β(1)φ(2)α(2)} , (10)

where N is the normalization constant.
In general for an electronic system of 2n electrons the corresponding 2n

spin-orbitals can be arranged in the following Slater determinant,

ψ(1, 2, .., n) = (11)¯̄̄̄
¯̄̄̄
¯̄̄̄

φ1(1)α(1) φ1(1)β(1) · · · φn(1)α(1) φn(1)β(1)
φ1(2)α(2) φ1(2)β(2) · · · φn(2)α(2) φn(2)β(2)

...
... · · ·

...
...

...
... · · ·

...
...

φ1(2n)α(2n) · · · · · · φn(2n)α(2n) φn(2n)β(2n)

¯̄̄̄
¯̄̄̄
¯̄̄̄ .

There are n electronic coordinates for the 2n electrons. Schematically the Slater
determinants have 2n rows for the 2n electrons and n columns for the n orbitals,
whereby each column consists of two columns, an α column and a β column,

electron 1
orbital 1

α β · · · · · ·
orbital n

α β

electron 2 α β · · · · · · α β
...

...
...

...
electron 2n α β · · · · · · α β

(12)

i.e., the arrangement is as follows

n orbitals = 2n spin-orbitals −→ −→
↓

2n electrons
↓

(13)

1 see also chapters 14, 15 and 18 for further discussions
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9.2 The Hartree-Fock method
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9.3 Two-atomic molecules
N atom N2 molecule N atom

2px, 2py −− −− 2px, 2py
1π4g −− ↓↑↓↑ −−

2pz −− 3σ2g −−− ↓↑ −−− −− 2pz

2σ2u −−− ↓↑ −−−
2s2 −− −− 2s2

2σ2g −−− ↓↑ −−−

1σ2u −−− ↓↑ −−−
1s2 −− −− 1s2

1σ2g −−− ↓↑ −−−

N atom : 1s22s22p3

N2 molecule : 1σ2g1σ
2
u2σ

2
g2σ

2
g3σ

2
g1π

4
g

O − atom O2 molecule O − atom
1π2u −−− ↓↑ −−−

2px, 2py −− −− 2px, 2py
1π4g −− ↓↑↓↑ −−

2pz −− 3σ2g −−− ↓↑ −−− −− 2pz

2σ2u −−− ↓↑ −−−
2s2 −− −− 2s2

2σ2g −−− ↓↑ −−−

1σ2u −−− ↓↑ −−−
1s2 −− −− 1s2

1σ2g −−− ↓↑ −−−

O atom : 1s22s22p4

O2 molecule : 1σ2g1σ
2
u2σ

2
g2σ

2
g3σ

2
g1π

4
g1π

2
u
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C − atom CO molecule O − atom
−− 2px, 2py

1π4 −− ↓↑↓↑ −−

2pz −− 5σ2 −−− ↓↑ −−− −− 2pz

4σ2 −−− ↓↑ −−−
2s2 −− −− 2s2

3σ2 −−− ↓↑ −−−

2σ2 −−− ↓↑ −−−
1s2 −− −− 1s2

1σ2 −−− ↓↑ −−−

C atom : 1s22s22p2 O atom : 1s22s22p4

CO molecule : 1σ22σ23σ24σ25σ21π4

References
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10 First order time dependent perturbation the-
ory and the basic principles of spectroscopy

10.1 An overdue change of notation - the Dirac notation

Let bH(r) be the Hamilton operator in the following eigenvalue equation:
bH(r)ψi(r) = Eiψi(r) , i = 1, . . . , n , (1)

where ψi(r) is the eigenfunction to the i-th eigenvalue Ei. Suppose now that
ψi(r) is rewritten in the following way

ψi(r) ≡ hr | ψii , (2)

ψ∗i (r) ≡ hψi | ri , (3)

such that the normalization integrals and orthogonality relations can be formu-
lated using the below notationZ

ψ∗i (r)ψi(r)dr ≡
Z
hψi | rihr | ψiidr =

= hψi |
Z
| rihr |dr| {z }
=1

| ψii ≡ hψi | ψii ≡ hi | ii = 1 , (4)

Z
ψ∗i (r)ψj(r)dr ≡

Z
hψi | rihr | ψjidr =

≡ hψi | ψji ≡ hi | ji = δij . (5)

From the completeness relation for Hermitian operators follows then that

nX
i=1

Z
hr | ψiihψi | ridr =

Z
hr |

Ã
nX
i=1

| ψiihψi |
!

| {z }
=I

| ridr = 1 , (6)

where bI is the identity operator
nX
i=1

| ψiihψi |=
nX
i=1

| iihi |= bI . (7)

This last equation is sometimes also called the ”resolution of the identity”. The
notation, introduced in (1) - (7) is the famous Dirac notation. Since brackets
are used to abbreviate occurring integrals, states such as hψi | ri, hψi |, hi | are
frequently called ”bras” (”bra”-states) and hr | ψii, | ψii, | ii as ”kets” (”ket”-
states). Quite clearly the Dirac notation simplifies considerably the notation in
quantum mechanics.
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10.2 Transition probabilities

Suppose bH0 is the time-independent Hamilton operator in the following eigen-
value equation

bH0 | ni = E0n | ni ≡ En | ni , (8)X
n

| ni hn | = 1 ; hm | ni = δmn , (9)

and V (t) is a time-dependent perturbation of the following form,

bV (t) = { cW (t) ; 0 ≤ t ≤ τ
0 ; otherwise

, (10)

such that the total Hamilton operator bH(t) is time-dependent
bH(t) = bH0 + bV (t) , −∞ < t <∞ . (11)

The time-dependent Schrödinger equation

i~
∂

∂t
ψ(t) =

³ bH0 + bV (t)´ψ(t) , (12)

has now of course no longer stationary states, however, ψ(t) can be expanded
in the eigenfunctions of bH0,

| ψi = ψ(t) =
X
n

an(t) | ni exp(−iEnt/~) =
X
n

an(t)ψn(t) . (13)

This expansion is usually called the superposition principle, since multi-
plying from the left with hm | yields directly an interpretation of | ψi as an
”ensemble” of states

ψn(t) =| ni exp(−iEnt/~) (14)

with the statistical weight an(t) :

hm | ψi =
X
n

an(t)hm | ni| {z }
=δmn

exp(−iEnt/~) = am(t) exp(−iEmt/~) , (15)

a∗m(t)am(t) =| am(t) |2= hψ | mi hm | ψi , (16)X
m

| am(t) |2=
X
m

hψ | mi hm | ψi =

= hψ |
X
m

| mi hm | ψi = hψ | ψi = 1 . (17)
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By using now this ensemble in the time-dependent Schrödinger equation one
gets X

n

½
| ni∂an(t)

∂t
+ an(t) | ni

∂

∂t

¾
exp(−iEnt/~) =

=
1

i~
X
n

³ bH0 + bV (t)´ an(t) | ni exp(−iEnt/~) . (18)

This equation can be rearranged thus that one can read off the parts referring
to the eigenvalue equation for bH0

X
n

(
| ni∂an(t)

∂t
+ an(t) | ni

∂

∂t
−
bH0

i~
an(t) | ni

)
exp(−iEnt/~) =

=
1

i~
X
n

an(t)bV (t) | ni exp(−iEnt/~) , (19)

i.e., one getsX
n

| ni∂an(t)
∂t

exp(−iEnt/~) =
1

i~
X
n

an(t)bV (t) | ni exp(−iEnt/~) . (20)

Multiplying now from the left with ψ∗m(t) = hm | exp(iEmt/~) yields an expres-
sion for the time-evolution of the expansion coefficientsX

n

hm | ni| {z }
=δmn

∂an(t)

∂t
exp (i(Em −En)t/~) =

∂am(t)

∂t
=

=
1

i~
X
n

an(t) hm | bV (t) | ni exp (i(Em −En)t/~) . (21)

In order to solve this system of partial differential equations for the expansion
coefficients, the following assumptions (boundary conditions) shall be made:
(1) the perturbation bV (t) is sufficiently small, such that

∂am(t)

∂t
≈ 1

i~
X
n

an(0) hm | bV (t) | ni exp (i(Em −En)t/~) , (22)

(2) there is a well-defined initial state at t = 0

an(0) = {
1 ;n = i
0 ;n 6= i

, (23)

(3) for not too large time intervals τ

am(τ) =
i

~

τZ
0

hm | bV (t) | ni exp (i(Em −En)t/~) dt , (24)

88



whereby no explicit integration constant appears, since ai(0) = 1 and an(0) =
0 , ∀n 6= i .
If one finally uses | ii for the initial and | fi for the final state and

abbreviates the difference of eigenvalues in the following way

ωfi = (Ef −Ei)/~ , (25)

one can see that the probability Wfi for the system, which was at t = 0 in
state | ii , to be after the time-lap τ in state | fi is given by

Wfi ≡| af (τ) |2=
1

~2

¯̄̄̄
¯̄
τZ
0

hf | bV (t) | ii exp(iωfit)dt
¯̄̄̄
¯̄
2

. (26)

10.3 Constant perturbation

The most easiest case of a time-dependent perturbation is of course a constant

V (t) = { W ; 0 ≤ t ≤ τ
0 ; otherwise

. (27)

For the matrix element in (26), namely for the time-integral, one obtains

τZ
0

hf |W | ii exp(iωfit)dt = hf |W | ii
τZ
0

exp(iωfit)dt =

=
hf |W | ii

iωfi
(exp(iωfiτ)− 1) , (28)

from which very easily the transition probability Wif can be calculated,

Wif =
1

~2
hf |W | ii hi |W | fi

ω2fi
(exp(−iωfiτ)− 1) (exp(iωfiτ)− 1) =

=
1

~2
|hf |W | ii|2

ω2fi

⎧⎪⎨⎪⎩2− exp(−iωfiτ)− exp(iωfiτ)| {z }
=−2 cos(ωfiτ)

⎫⎪⎬⎪⎭ =

=
2

~2
|hf |W | ii|2 1

ω2fi
[1− cos(ωfiτ)]| {z }
=F (Ef−Ei)

. (29)

The function F (Ei − Ef ), obviously the key quantity for the transition proba-
bility, can be rewritten in the following way (see (25) )

F (Ef −Ei) =
1− cos

³
Ef−Ei

~ τ
´

(
Ef−Ei

~ )2
= ~τ

1− cos
³
Ef−Ei

~ τ
´

(Ef −Ei)2τ/~
. (30)
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If one abbreviates for a moment τ/~ by κ , then in the limit of κ → 0 the
fraction in the last equation leads to a very famous function, the so-calledDirac
δ-function ,

lim
κ→0

1− cos (κ(Ef −Ei))

κ(Ef −Ei)2
= πδ(Ef −Ei) . (31)

The Dirac δ-function has for example the following useful properties

δ(x) = δ(−x) , δ(ax) =
1

|a|δ(x) , xδ(x) = 0 , (32)

f(x)δ(x− a) = f(a)δ(x− a) , (33)Z
f(x− y)δ(y − a)dy = f(x− a) . (34)

In terms of the Dirac δ-function the transition probability in (29) is therefore
given by

Wif = (2π/~) |hf |W | ii|2 τδ(Ef −Ei) (35)

Finally, in order to get rid of τ , which frequently is also called the characteristic
time, one can define a transition probability per characteristic time (unit time),
the so-called transition rate

Pif = (2π/~) |hf |W | ii|2 δ(Ef −Ei) (36)

This last equation is very frequently termed Fermi golden rule.

10.4 Periodic perturbation

If one considers now a periodic perturbation of the following kind

bV (t) = { W± exp(±iωt) ; 0 ≤ t ≤ τ
0 ; otherwise

, (37)

then the matrix element is simply given by the integral,

τZ
0

hf |W± | ii exp (i(ωfi ± ω)t) dt ,

from which exactly in the same manner as before the transition probability per
unit time is obtained,

P±if = (2π/~) |hf |W± | ii|2 δ(Ef −Ei ± ω) (38)

whereby usually the Dirac δ-function δ(Ef −Ei ± ω) is called energy conser-
vation.
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10.5 Classical interaction with the electro-magnetic field

Finally the classical interaction of matter with the electro-magnetic field shall
be considered. The interaction of a particle of mass μ and charge e is given
(non-relativistically) by

W (t) = − e

μc
(A · p) + e2

2μc2
|A|2 , (39)

where A is the vector potential as related to the electric field via the Maxwell
equation,

E = −1
c

∂A

∂t
,

p is the momentum and c is the speed of light. Because of c the second term
in (39) is by orders of magnitudes smaller than the first term. The interaction
operator can therefore be assumed to be of the following form

W (t) = − e

μc
(A · p) . (40)

Furthermore the vector potential can be viewed as a plane wave in ”space” and
”time”, i.e., can be written as

A = A0u {exp(−ik · r) exp(iωt) + exp(ik · r) exp(−iωt)} , (41)

where u is the polarization vector, k is the wave vector, which determines
the direction of propagation, ω is the frequency andA0 is the amplitude of the
vector potential, which usually is chosen in a standardized manner. According
to the last equation the perturbation operator is of the same form as already
discussed in the previous section:

W (t) =W exp(iωt) +W † exp(−iωt) , (42)

W = − e

μc
A0(u · p) exp(−ik · r) , ”emission” , (43)

W † = − e

μc
A0(u · p) exp(ik · r) , ”absorption” . (44)

The term ”emission” refers to the case that the system ”looses” energy and
similarly ”absorption” means ”gaining” of energy with respect to the so-called
energy conservation (see 38).
Considering now only the case of ”emission” , the transition probability

per unit time is given by the general case of a periodic perturbation, namely as

Pfi = (2π/~) |hf |W | ii|2 δ(Ef −Ei + ~ω) . (45)

The only remaining part to be evaluated is now the matrix element itself,

hf |W | ii = − e

μc
A0 hf | (u · p) exp(−ik · r) | ii . (46)
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Using the well-known power series for the exponential function,

exp(−ik · r) = 1− i(k · r) + 1

2!
(−ik · r)2 + .... ,

and keeping only the first term, one ends up with the so-called dipole approx-
imation (exp(−ik · r) ≈ 1),

hf |W | ii ≈ − e

μc
A0 hf | (u · p) | ii . (47)

However, since u is a classical vector, one just as well can form the scalar product
of this vector with the matrix element of the momentum vector p

hf |W | ii ≈ − e

μc
A0 (u · hf | p) | ii) . (48)

Finally one can make use of the fact that the commutator of the unperturbed
Hamilton operator bH0 and r is given by1h bH0, r

i
−
=

i~
μ
p , (49)

from which immediately follows that

i~
μ
hf | p |ii =hf | bH0| {z } r

=Ef hf|

| ii− hf | r bH0 | ii| {z }
=Ei|ii

=

= (Ef −Ei)hf | r | ii . (50)

For the matrix element in (48) this last identity therefore yields

hf |W | ii ≈ − 1
ic
A0
(Ef −Ei)

~

⎛⎜⎝u · hf | er | ii| {z }
dfi

⎞⎟⎠ =

= − 1
ic
A0ωfi(u · dfi) , (51)

where dif is nothing but the matrix element for the electric dipole. Finally now
reading off in Figure 16 the set-up for the vectors u and d with respect to the
direction of propagation of light (k) and recalling that the polarization vector
is a unit vector, one can see immediately that

(u · dfi) = |dfi| sin θ . (52)

If therefore the electric dipole vector is perpendicular to k (sin θ = 1, ”unpolarized
light”), then by omitting the constant (2π/c2~)A20 in front, the transition prob-
ability per unit time is given by

Pfi = ω2fi |dfi|
2
δ(Ef −Ei + ~ω) (53)

1 see also chapter 2
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Figure 16: Propagation of light

The Dirac δ-function governs the ”energy conservation”, whereas the square
of the electric dipole matrix element governs the selection rules, such as for
example discussed in chapter 4 in the case of the one electron atom. In principle
this last equation determines the shape of the intensity in quite a few famous
spectroscopical techniques, such as for example photoemission spectroscopy
or x-ray emission- or absorption spectroscopy, which are widely used in all
kinds of contexts.
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