Short introduction to
guantum mechanics

A lecture course for students in
physics & chemistry

Part |

Peter Weinberger



Contents

1 Introduction 5
2 The postulates of quantum mechanics 8
2.1 Postulate 1 . . . . . . . . e 8
2.2 Postulate 2 . . . . . .. e 8
2.3 Linear operators: . . . . . . . . ... e 9
2.4 Hermatian operators: . . . . . . . . . . . e 9
2.5 Correspondence principle . . . . . . . . .. ... ... ... .. 10
2.6 Postulate 8 . . . . . .. 10
2.7 Schrodinger equation . . . . .. ... 11
2.8 Postulate 4 . . . . . .. e 12
2.9 ConSeqUenCES . . . . . vt e e 13
2.9.1 Norm of a one-dimensional wavefunction . . . . . . . . .. 13

2.10 Properties of a Hermitian operator . . . . . . .. ... ... ... 14
2.10.1 Eigenvalues. . . . . . . . ... L o 14
2.10.2 Orthogonality relations . . . . . ... ... ... ... .. 15
2.10.3 Completeness relation . . . . .. . ... ..., 16

2.11 Products of operators, commutators and constants of motion . . 17
2.12 Coordinate transformations, invariance transformations . . . . . 18
2.13 Compatible and complementary variables . . . .. ... .. ... 20
3 The importance of boundary conditions 22
3.1 Free particles - matter waves . . . . . . ... ... ... 22
3.2 Particleinabox . . ... ... ... ... .. . 23
3.3 Cpyclic boundary conditions . . . . ... ... ... ........ 26
3.4 Separation of variables . . . . . .. ... oL 0oL 29
3.5 Particle in a three-dimensional box . . . . . ... ... ... ... 29
4 The hydrogen atom 32
4.1 The Schrodinger equation for the hydrogen atom . . . . .. ... 32
4.1.1 Separation of the motion of the nucleus . . . ... .. .. 32

4.2 Polar coordinates, separation with respect to independent variables 34
4.3 Angular momentum operators . . . . . . . ... ... L. .. 35
4.4 Polar coordinates again and yet even more commutators . . . . . 37
4.5 Eigenvalues of L2 and L, ... ..o 38
4.6 Eigenfunctionsof L2and L, . . . . . . . . . .. .. ... ..... 41
4.7 Back to the hydrogen atom . . . . .. .. ... .. ... ..... 44
4.7.1 Analytical solutions . . . . ... ... ... L. 45

4.8 The one-electron states of an atom . . . . . ... ... ... ... 47
4.9 Atomicorbitals . . . . . ... ... 48
49.1 s-orbitals . ... .. ... 48
4.9.2 p-orbitals . . .. ..o 49
49.3 d-orbitals . . ... ... ... 51

4.10 Atomic selection rules . . . . ... ..o 52



5 Perturbation theory, the He-atom 55

5.1 Zero order approximation . . . . .. ... .. ... 56
5.2 First order perturbation theory . . . . . ... ... ... ... .. 56
5.3 Application to the Heatom . . . . .. ... ... .. ....... 58
6 The variational method 60
6.1 The Ritz theorem . . . . . . . ... .. ... ... . ........ 60
6.2 The He-atom . . . . .. ... ... ... .. ... ... ..... 61
6.3 The variational method for a linear combination of functions . . 63
7 The Hj molecular ion and the concept of chemical binding 66
7.1 Application of the variational method to the Hf molecule . . . . 67

8 The electronic spin, permutational symmetry and the Pauli

principle 72
8.1 Spin postulates . . . . .. ... 73

8.1.1 Postulate 1: . . . . .. ... o 73

8.1.2 Postulate 2: . . . . .. ... oo 73
8.2 Atomic spin orbitals . . . . ... ... 74
8.3 The Pauli principle - version 1 . . . . . . ... .. ... ... .. 75
8.4 The Pauli principle - version 2 . . . . .. ... ... 7

9 Determinantal wavefunctions, permutational symmetry and

the H> molecule 79
9.1 Slater determinants . . . . . . . . ... ... 80
9.2 The Hartree-Fock method . . . . . .. .. ... ... ... ... 82
9.3 Two-atomic molecules . . . . . .. .. ... ... L. 83

10 First order time dependent perturbation theory and the basic

principles of spectroscopy 85
10.1 An overdue change of notation - the Dirac notation . . . . . . . . 85
10.2 Transition probabilities . . . . . . .. ... ... ... ... 86
10.3 Constant perturbation . . . . . ... .. ... ... ........ 88
10.4 Periodic perturbation . . . .. ... .. ... 0oL 89
10.5 Classical interaction with the electro-magnetic field . . . . . . . . 90

List of Figures

1 Translation of a parabola . . . . .. .. ... ... ... ..... 19
2 Particleinabox . . ... ... ... L oo 23
3 Wavefunctions for a particleinabox . . ... ... ... .... 25
4 Coordinate systems for the hydrogen atom . . . . . . . ... ... 33
5 1s-like probability density and radial distribution . . . . . . . .. 49
6 2s-like probability density and radial distribution . . . . . . . .. 50
7 perorbital ... 51
8 Contour diagram of the probability density of a p, orbital . . . . 52



10
11
12
13
14
15
16

d-orbitals . . . . . ... 53

Coordinate system in the He atom . . . . ... ... .. ... .. 55
Coordinates in the Hj molecule . . . . ... .. ... ....... 66
Potential curves for the Hj molecularion . ... ... ...... 70
Wavefunctions and their squares for the Hj molecular ion . . . . 71
Spin induced splitting of atomic line spectra . . . . . . .. .. .. 72
Coordinate system for the Ho molecule . . . . . .. ... ... .. 80
Propagation of light . . . . . ... .. ... ... ......... 92



1 Introduction

”Physics (al-’ilm-al-tabi’i) investigates bodies that exist by nature, not human
will, such as the various species of minerals, plants, and animals. Physics in-
vestigates all these and whatever exists in them, I mean, all their accidents,
properties, and causes, as well as all that in which they exist by necessity, like
time, space, and motion”

”Guide to the Perplexed”, Moses Maimonides (1138-1204)

Physical phenomena are related to the number of particles participating in
the corresponding processes. Just as well of course one could say that physical
phenomena are a question of dimensions or of the scale under consideration.

Measurements of macroscopical properties are determined by macroscopical
dimensions, those of microscopical properties by the dimensions in the micro-
COSMoS:

MACROCOSMOS MICROCOSMOS
# of particles ~ 1023 ~ 10", n<5H
length [em] 1078 [em)]
mass lg] 1077 [g]
time [s] 10710 [4]

Macroscopical properties can be related to microscopical properties by means
of statistical methods, they never can never be used to interpret microscopical
quantities, since statistically averaged quantities do not permit to single out a
"single event” (”single case”).

MACROCOSMOS MICROCOSMOS
Classical Mechanics Quantum Mechanics
T !

. Statistical -
Mechanics

CLASSICAL MECHANICS:

"The coordinates of space’ (z,y, z) and momentum (p,, py,p.) of a
body in motion can be determined simultaneously exact.”

UBy space the so-called configuration space is meant, ie.e, the set of (cartesian) position
coordinates of an object.



”The energy E of a body in motion is always a continuous function
of its space and momentum coordinates.”

”The laws of classical mechanics are equations of motion for ”clas-
sical particles”:

Apy Az = ApyAy = Ap, Az =0 (0)
where
Az =+/(z?) —(z)> ,  Apa=v({3) —)> . (1)

i.e., where Az is the statistical fluctuation of the measured value of
x around the averaged value of z, (), etc.

QUANTUM MECHANICS

”Space and momentum coordinates of a body in motion can not be
determined simultaneously exact.”

”The energy of a body in motion is not a continuous function of its
space and momentum coordinates.”

The uncertainty for a simultaneous measurement of space and mo-
mentum coordinates or of the energy and time is a universal con-
stant, namely Planck’s constant:

h= 6.62517.1073* Js

The laws of quantum mechanics are equations of motion for ”non-
classical particles”:

Ap, Az > h, Ap,Ay>h, Ap.Az>h, (2)
AEAt=>h,  h=h/2r . (3)

The uncertainty relations in (2) and (3) are usually called Heisenberg
Uncertainty Principle.
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2 The postulates of quantum mechanics

2.1 Postulate 1

”The states of a physical system are completely described by in gen-
eral complex functions ¥(q, g2,q3, ..., gn; t).”

A physical (microscopical) system can be an atom, a molecule or a solid
1. By completely is implied that the function ¥(q,q2, s, ..., n;t) contains all
information obtainable by experiments. The ¢;, ¢ = 1,..,n, are called char-
acteristic variables such as space coordinates, t is the time dependence. The
functions ¥ are called state functions or wavefunctions. These functions
have to satisfy the following conditions:

(1) The wavefunctions have to be continuous functions of their independent
variables.

(2) They have to have continuous derivatives with respect to their indepen-
dent variables.

(3) They have to be square integrable, i.e., the integral

N:/-~/\P*(QMQ%QZ%~--7Qn;t)\11(q17QZaQ3v~--7Qn;t)dq1dq2-~d%z (1)

has to exist and has to be finite. N is called the norm of the wavefunction
and dr = dq1dgs..dg,, the volume element.
(4) They are only unique with respect to a complex phase factor

U = em\ll, (\I//)* _ e—ia\lj* , (2)
since
N = /(\If/)*\I//dT = /e_mem\Il*\IldT = /\I/*\Ide . (3)
Nt

=1

2.2 Postulate 2

”To each dynamical variable (observable) a linear (Hermitian) oper-
ator can be assigned, which acts on the state function U.”

An operator is a formal description (operation) by which from one function
another one is generated. Let O be such an operation then

ov =0 (4)

LA careful reader will immediately guess that in the end still Democrit’s view of matter is
the underlying principle.



In other words O is an operation by which ¥ is mapped onto ¥’.

The differential operator d% is defined for functions, for which the
independent variable is x such as for the following function f(z)

f(2) = exp (gz) , (5)
%f(a:) — (_%233) exp <—%x2> = —zexp (—%ﬁ) . (6)

As one can see from this example % maps the function exp (—%:ﬁ)
onto the function —x exp (—%xQ).

2.3 Linear operators:

Consider two operators 61 and 62 . They are called linear if and only if

O;(V+®) =0,V +0,®, i=12 |,
(61+62)\P=61\P+62\P ,

Oi(c¥) =cO¥ | i=1,2, c€ 2,

where Z is the field of complex numbers.

2.4 Hermitian operators:

An operator O is called Hermitian? if and only if Ois a
(real) linear operator and

/@j@ ®;dr :/@i(é ®;)*dr E/@iaqf;dT : (10)
~—— —— :
:¢k :‘177;

ie.,

/@f@de —/<I)i<1>2d7' =0 . (11)

2For a more formal definition see chapter 14



2.5 Correspondence principle

The operators that describe physical observables can be obtained from the
corresponding quantities in classical mechanics using the following assignment
for the three basic quantities space, momentum and energy ( h = h/27 ):

classical observable QM — operator

space xz, q T, q
r=(2,y,2) r=(z,y,2)
momentum Py De = —iﬁ% = —ihV,
pP= (pwapyapz) ﬁ = (ﬁxaﬁyaﬁz) = —thV
energy E E= ih%

With the help of these three basic ”correspondences” most other operators
can be composed:

classical observable QM — operator
potential V =V(r) V=V()
energy
. . _ 2 _ =3 52 o K2 _
kinetic T==%= T_;_FT__%[V'V}_
_1(2 2 .2 _h*
energy = 5= (p7 +p, +07) =—5—

energy H(p,r)=T(p)+V(r) H=T+V=
=L AL V()

H(p,r) is the (classical) Hamilton function, H is therefore consequently
called the Hamilton operator. The correspondence principle is sometimes also
called Bohr’s principle. The operator A = V-V = V? carries a famous name.
It is the Laplace operator, V is sometimes also called Nabla operator.

2.6 Postulate 3

”If the state function VU;(q1,¢2,q3,..-,qn;t) is an eigenfunction of an
operator O that corresponds to the observable {2 then the measured

10



value of () assumes exactly one particular value \;:

,O\\Ili(qlu 42,43, 7qn7t) = )\i\lli(qlﬂ 42,43, 7q7l7t) . (12)

~

U,(q1,92,G3, ---, Gn; t) is then called eigenfunction of the operator O corre-
sponding to the eigenvalue J;.

Suppose the operator O is given by ddT; and ¥; by cos(4¢),

d2
e (cos(4¢)) = —16 cos(46) . (13)

The function cos(4¢) is therefore an eigenfunction of ddT; correspond-
ing to the eigenvalue -16. Quite clearly also sin(4¢) is an eigenfunc-
tion of ddT; to the eigenvalue -16, and so is any linear combination
of cos(4¢) and sin(4¢), acos(4¢) + Bsin(4¢) , o, 5 € Z.

2.7 Schrédinger equation

For a physical system for which the classical Hamilton function is not explic-
itly time-dependent an eigenvalue equation applies for the Hamilton operator
H, the so-called stationary or time-independent Schrédinger equation,

where the U, (q) are the eigenfunctions and the E,, the possible energy (eigen-)
values of H. If the Hamilton function is explicitly time-dependent then the state
function describes the time evolution of the system. Using the correspondence
principle in order to identify H with the energy operator E one gets the so-
called time-dependent Schrédinger equation:

HU(q,t) = HU(q,t) = ih%lll(q, t) (15)

The time-dependent Schrodinger equation applies in general also to the case
of a time-independent classical Hamilton function. In this particular case the
wave function ¥(q,t) can be separated with respect to space and time using the
following product of functions:

U(q,t) =, (a)F(t) . (16)

With the above ansatz in the time-dependent Schrédinger equation, one gets:

11



HU(q,t) = H{y,(Q)F(t)} = {Hy, ()} F(t) =

= i, (@ (1)} = (@) (i F(1) a7)
Dividing by ,,(q)F(t),
Hyy,(q) _ il F(t)
U@ F()
it is evident that the left hand side (lhs) is only space dependent, whereas the

right hand side (rhs) is only time dependent. The equality implies that the lhs
and the rhs equals a constant, say FE,,

(18)

Hi,(q)

TCTRINE (19
ihZF(t)
% =L, (20)

FE,, being a so-called Lagrange parameter.
The first equation is nothing but the time-independent Schrédinger equation,
the second equation,

0
ihaF(t) =E,F(t), (21)
is easy to solve using as solution F(t) = exp (—iE,t/k) . If therefore the Hamil-

ton operator H is not explicitly time-dependent, the wavefunction ¥(q,t) is
given by

V(q,t) = V(q)exp (—iEnt/h) . (22)

2.8 Postulate 4

If the state function (q,t) is not an eigenfunction of the operator
9) corresponding to the observable (2, then the measured value of
can be any of the possible eigenvalues of O. The average over a series
of measurements, however, is identical to the so-called expectation
value of O :

~

~_ J¥*(q,)0¢(q,t)dqdt
0= = 4" (a,t)y(q, t)dadt

(23)

Once the state function is known, by means of this postulate for all well-
defined observables the corresponding expectation values can be obtained. In
particular also an interpretation of the state functions can be given. In a single

12



particle system the probability dW to find the particle at a particular time t in
the vicinity dr = dxdydz of the position r =(z,y, z) is given by

U (r,)W(r,t)dr  |¥(r, ) dr

aw = = . 24
SO, )0 (r,t)dr [ U(r,t)| dr (24)
In a many particle system the expression
2
dW = |‘I’(Q17CI27--7(1n,t)| dCl1dQ2dQn (25)

[ ¥, a2, - s )| dardas..da,
defines the probability to find at a given time t simultaneously particle 1 in
dqy = (dz1dy1dzy) , particle 2 in dqas = (dxedyadzs) etce.

In general p(qi,q2, .-, Qn, ) ,

aw

pdi,qz, -, An, t) = depdep.da, =
dqy,

_ |\Il(q1aq2,-'aqnat>|2
f~~f|‘I’(Q1aQ2a-->th)|2 dqldquqn

is called probability density or (less appropriate particle density or charge
density). As one can see from (24) and (25) only the square of the state function
is physically meaningful, the state function itself (see also (2)) has no meaning
at all.

(26)

2.9 Consequences
2.9.1 Norm of a one-dimensional wavefunction

Suppose the wavefunction ¥;(z) is defined within the interval [a,b]. The norm
of this wavefunction is then a positive number N:

/ U (2) Ui (2)dz = N . (27)

Suppose that ¥; is given by cosé and the interval by [0, 27] then

27
N = /00520d0 =
0

sinfcosf® 0|7

2 2

=7 . (28)

Is the norm of a wavefunction identically unity, then the wavefunction is
called normalized. An unnormalized wavefunction has to be normalized by
the square root of the norm. Suppose ¥;(x) is the unnormalized wavefunction
and ¥} (z) the corresponding normalized wavefunction,

13



then

b
::%/Wﬂ@%@ﬂle. (30)

2.10 Properties of a Hermitian operator
2.10.1 Eigenvalues

The eigenvalues of a Hermitian operator are always real
numbers and correspond therefore to real measured values
of the corresponding observable.

Suppose the eigenvalue equation of a Hermitian operator O is given by

~

(06,)" = Ny (32)
and that the eigenfunction ¢,, is square integrable
/%%M:N,N>O. (33)
Multiplying from the left (31) with ¢ and (32) with ¢,, , one gets
6106, = A1y, (34)
9n(06,)" = \.6,0, - (35)

Integrating now the above two equations over the volume element dr (see (33))
one gets

¢:00,dr = A\, [ ¢56,dT | (36)
/ /

[ ou@s,ar = [ 6,610 (37)

By taking the difference of these two equations

14



/ﬁé%w—-/¢ﬁﬁm:Nun—Am, (38)

=0

one easily can see that if the operator is indeed Hermitian the lhs is zero (see
(10)), this in turn implies for the rhs that either the norm of the eigenfunction
is zero, which was excluded, or that the eigenvalue A, is real.

2.10.2 Orthogonality relations

Suppose ¢; and ¢, are two functions defined over the same range corresponding
to the volume element dr. These two functions are called orthogonal, if and
only if

/¢;‘¢de = /¢;¢id7 =0. (39)

Eigenfunctions ¢,,7 = 1,2,..,00, of a Hermitian operator 0
that belong to different eigenvalues are orthogonal to each
other.

Let ¢, and ¢; be two functions belonging to different eigenvalues of O:

O0¢; = iy (40)

O¢j = /\j¢j : (41)

If one multiplies from the left the first equation with gb; and the second with ¢}
one simply gets:

$106; = ;. (42)
¢10¢; = \;j¢io; (43)

Integrating now both equations over dr and subtracting the first equation from
the second yields

$;0¢,dr — [ ¢;00,dr = (\j = Ni) [ ¢io;dr . (44)
/ / /

=0

Now it is easy to see that either A; = A; , which was excluded, or f or ¢;dr =0

Orthogonal and normalized (”orthonormalized”) eigenfunctions ¢; of a
Hermitian operator can therefore be characterized compactly by

15



[oiosr= [ o =si; (15)
where d;; is the so-called Kronecker symbol,
1 ,i=j

5i; = { . (46)
0 ,i#y

If not only one eigenfunction ¢; belongs to a particular eigenvalue \;, but
a set of functions ®;;,7 = 1,2..,m, then this eigenvalue is said to be m-fold
degenerated (see also Example 2). The set of eigenfunctions belonging to one
and the same eigenvalue forms a linear manifold.

2.10.3 Completeness relation

The set of eigenfunctions of a Hermitian operator is not
only a set of orthogonal functions, but is also complete?.

In order to illustrate this statement one can make use of the properties
of Postulate 4, namely of expectation values. Suppose one expands the state
function ¥(q) in terms of the normalized eigenfunctions ¢,,(q) of the operator
9 corresponding to the observable €2,

U(q) =Y cady(a@) (47)

V(@)=Y chbn@ ; cnem€Z (48)

00, (a) = Andp(q) - (49)

Forming now the expectation value of 9] , one gets:

<0>= /\I/*(q)a\ll(q)df _

=Y cien [ Gl 06, (@ir =3 cheahs [ Gl (adr =

n,m Ao, (a) n,m
=) Chneadnlnm = > Chendn = _lenl A0 =D Wakn . (50)

Quite clearly |c,|® is a real number and therefore W, is the probability that
Q) takes on the eigenvalue A, of the corresponding operator O . In particular

3For a more formal definition see chapter 14
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consider now that the operator O is the identity operator I , T ¥(q) = ¥(q) ,
and recall Postulate 1:

[ @@ =3 lal =1 . (51)

This last equation is nothing but the statement that the set of eigenfunctions
of a Hermitian operator is complete, formulated in terms of Postulate 4.

2.11 Products of operators, commutators and constants
of motion

Very often one has to deal with products of operators. The operator of the
kinetic energy for example can be viewed as such product, T' = ﬁﬁ p= ﬁ]’)ﬂ,
namely as a scalar product.

Let O and 52 be two operators acting in turn on the function ¢ ,

01050 = 01(0:0) = 01¢' =¢" | (52)
——
=o'
then in general
01026 # 0201 ¢ (6162 - 6261) $=[01,05]_ ¢ #£0 .  (53)
However, if [O1,0,]_ = 0 (zero operator), then these two operators are said

to commute . The expression [61,52]_ is called the commutator of the
operators O1 and Os.

If two operators commute then they share the same set of
eigenfunctions.

Suppose that the operators Aand B commute, [/Al, ]§]7 =0, and that they
belong to the following two eigenvalue problems:

~

Ay = onty (54)
Bo,; = 6,0,
Formally therefore one can write
(AB)g; = (BA)y; = B(Ad;) = Blaiy;) = ai(BY,) . (55)

17



However, since R L R
(AB)Y; = A(BY;) = ai(By;) (56)
quite obviously the functions E% are also eigenfunctions of the operator AlIE
one assumes for matter of simplicity that the functions v; are not degenerated
then R
By, =cy;, , c€eZ |, (57)
i.e., the action of Bon 1,; can only generate a (complex) multiple of 1;, which in
turn means that ¢, is also an eigenfunction of the operator B belonging to the

eigenvalue ¢! In particular if one of the operators in a vanishing commutator
is the Hamilton operator the other operator is called a constant of motion.

2.12 Coordinate transformations, invariance transforma-
tions

If the Hamilton operator H = H(r) is invariant under a
coordinate transformation P (f’_lf’ = PP~! =T, T identity
transformation), then the (function space) operator P of this
transformation commutes with H , ie. [H,P]_ = 0.

Suppose the coordinates of the function f(z) are transformed by P and 2
is the corresponding function space operator, then

Pf) = f'(x) = f(P7') = f@@) . (58)
Since equation (58) looks awfully abstract the following example shall be con-
sidered.

Let f(z) be a parabola and the coordinate transformation a trans-
lation T by a constant a :

Te=x+a, T 'z=2-a , (59)
T 'Te=TYz+a)=z+a—a=z=Iz=TT 'z . (60)
Consider now each step from Fig. I:

y=fla)=2> — [f)=@"-a?=y |, (61)

’
xr =xr+a

J@)=( —aP=(@+a-a?=a’=f(z) . (62)

18



X =x+a x'—-a

Figure 1: Translation of a parabola

Converting the figural aspects into an operator language, one gets:

Tr=f . Te=da |
') =T(Te) = f(x)
Substituting now = by T‘lq
f'@')=Tf(Te) =THTT 'q)=Tf(a) ,
fl)=fT"q)
and combing the rhs’s of (65) and (66), one indeed regains (58)
Tf(g) = f(T'q)
Suppose finally that the Hamilton operator is given by H(r) 4,
H(x)h(r) = B(r)
and R, RR~' = R-'R = I, leaves H(r) invariant, i.e.,
RH(r)=H(R 'r)=H(r) ,

~

then transforming equation (68) with R yields immediately that
R{H(r)u(r)} = {RH()HRY(r)} = B{RY(x)}
{H(R ') Ru(r)} = Hr){Re(r)} = E{RY(x)}

(69)

(70)
(71)

namely that the transformed functions ﬁw(r) are also eigenfunctions of

I;'(r) , le., [ﬁ[,ﬁ} =0, (see equations (56) and (57)).

4Note that a product of functions is transformed by transforming each of the factors.
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2.13 Compatible and complementary variables

Let 61 and 52 be two operators that correspond to the dynamical
variables 0y and Q. If ¢(q;t), 9 = (q1, g2, - - -, ¢») denotes the state
function then the root mean square of these operators is defined by

~ ~ ~ \2
A0 =1/ (0:=(00) . i=12 | (72)
and the following uncertainty relation holds true:
PO 1 N
AO1AO; > 5“ Os) |, (73)

where

Oy = —%[61,52}, . (74)

If 61 and 52 commute then the dynamical variables 2; and
()5 are called compatible variables, otherwise they are called
complementary variables.

As can be read off from the table summarizing the correspondence principle,
the momentum and position coordinates, px and g, are such complementary
variables, i.e.,

[qr,pe] - = ih . (75)

The Heisenberg uncertainty principle,
1
AgrApr = 5h (76)

is therefore a special case of (74).
It should be noted that the energy-time uncertainty principle® ,

AEAt > %h , (77)

does have a different meaning, since at any given time ¢ the energy E can
have a well-defined value. AF is the difference between two values for the
energy E, say Fy and Fy, measured at ¢t = t; and ¢t = to (At = ta3— t1). The
uncertainty relation for complementary variables states that at a given time
t, these variables cannot be measured simultaneously exact.

Ssee also chapter 1
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3 The importance of boundary conditions

In this chapter three very important concepts shall be discussed, namely bound-
ary conditions, symmetry operators and the separability of differential
equations. These concepts are introduced using simple quantum mechanical
models. The basis of all discussions is of course the time-independent or the
time-dependent Schrodinger equation.

3.1 Free particles - matter waves

A free particle is classically characterized by the fact that its motion is indepen-
dent of the coordinates of its potential energy (” Galilei motion”). As energy
zero one can choose therefore the potential energy to be zero. The Hamilton
operator for a ”one-dimensional” free motion is then simply given by

~ n? d?
H=—— 1
2m dx? (1)
and the corresponding time-dependent Schrodinger equation by
0 n? d?
ih— =——— t) . 2
B, 1) = —5 (1) )

If one uses the separation of space and time variables as discussed in the previous
chapter, namely,

V(1) = 6(x) exp(—iB/h) ®)
then the time-independent Schriodinger equation is of the following form
h? d?
9 d? () = E¢(z), —co<x < 400 . (4)

This is nothing but a second order linear differential equation with a constant

coefficient, the solution of which is immediately found using the ansatz ¢(z) =
exp(Likz) :

h? d?

- 2mda?

The time-dependent solution, obviously a periodic function in space and time,

2
exp(tikx) = 2h—k2 exp(+ikz) . (5)
m

Y(x,t) = exp(tikz) exp(—iEt/h) = exp(Like —iEt/h) = (6)

— exp (%(:I:pwx _ Et))

is called a "matter wave”. The energy F = E(k) can assume all possible
values in the interval (—oo,00). Although #(x,t) formally is a solution of the
Schrodinger equation, it is not an acceptable wavefunction, since its norm di-
verges for x tending to +oo ,

/ O (@, (s ) =
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Vix)=co V(x)=co

WV(x)=0

-a 1] a

Figure 2: Particle in a box

oo

= / exp <%(j:pxav - Et)> exp <—%(ipxx - Et)> dx (7)
3.2 Particle in a box

”Physically useful” solutions of a differential equation such as in (4) are only
obtained if boundary conditions for a particular problem are defined . For (4)
the following boundary condition shall be considered by confining the particle
to a ”one-dimensional box” with infinite barriers (see Fig. 2):

V(lz| = a)=0 , (8)
The differential equation is still the same, namely,

d? 2mE

wd)(%) + ?w(a:) =0 , 9)

which formally is of the form

2mE
The general solution of such a differential equation is given by

Y(x) = Aexp(ivCx) + Bexp(—iv/Cx) | (11)

i.e., ¥(z) is a superposition of two ”plane waves”, with opposite directions of
propagation and amplitudes A and B. Using now the boundary condition (8),

Y(—a)=0 — Aexp(—ivCa) 4+ Bexp(+ivCa) =0 (12)

Y(+a) =0 —  Aexp(+ivVCa) + Bexp(—iv/Ca) =0 (13)
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one gets

Y(—a) =0 — A=—Bexp(2iv/Ca) , (14)
Y(+a) =0 — A= —Bexp(—2ivCa) . (15)

If one divides the first condition by the second, one obtains

1= % = exp(4iv/Ca) = exp(2iv/Ca) exp(2iv/Ca) . (16)

The squareroot of this equation,
exp(2ivCa) = +1 (17)
directly leads to a ”quantization” of the energy, since
exp(ie) =1  only if the phase a=nw, mn:even |

exp(ic) = —1 only if the phase a=nw, mn:odd |,

ie.,
2mE
2vCa=nw , VC= 7;;2 , (18)
K22
E=E, = 2. on=1,2,... . 1
8ma2 b n b b ( 9)

Quite obviously the value n = 0 has to be excluded, since then ¢ (x) would be
identically zero for all values of = (Vz ; see also (11)and (12)) and consequently
its norm would be identically zero. Equation (19) clearly shows that the particle
in the box can have only discrete energies, i.e., the energy is quantized be-
cause of the chosen boundary conditions! n is therefore called a quantum
number.

Using now the result from (18), namely v/C' = nr/2a in the boundary con-
ditions

Y(—a)=0— A= —Bexp(inm) |, (20)
Y(+a)=0— A= —Bexp(—inm) |, (21)
one can immediately see that
A=-B; n:even (22)
A=DB; n:odd . (23)

The wavefunction, i.e., the general solution in (11) can now be formulated in
terms of the quantum number n

U () = Aexp(iVCa) + (~1)" exp(~iVCa)| . (24)
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Wi(x)
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e s

Figure 3: Wavefunctions for a particle in a box

However, since exp(+ia) = cosa tisina , one gets

2A4cos(v/Cx) , mn: odd |,
¥p(r) ={ (25)
24isin(v/Cz) , mn: even
As a final step the wavefunctions have to be normalized (see also example 3)

a

2 1
: 2 — 442 _
n:odd — 44 /[cos(\/cm)] dr=4d%, - A= (26)
a 9 7Z
. _ 4 A2 23 — _4A2 -
n: even — —4A /[sln(vi)} dzx 4A%a ,— A N AR (27)
ﬁcos(%m) , m:odd |
Pul@) ={ (28)

%sin(g—gm) , m: even

For the first few values of n the shape of the wavefunctions is shown in Figure
3.

Suppose now P is the inversion operator, Pz = —x, then
~ ﬁ cos(—5rx) = ﬁ cos($Xx) mn: odd
Py, () = { (29)
ﬁ sin(—4%x) = —ﬁ sin(3Xx) n: even
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Quite clearly these results can be summarized as follows
P, () = (=1)" e, (z) (30)
which only means that the wavefunction ¢, () is also an eigenfunction of P with

respect to the eigenvalue (—1)"*'and therefore that the commutator [I;' , ﬁ] =

0.
From Figure 3-1, the starting point of the present discussion, one can see
that the Hamilton operator is given by

n? d?

7 T P !
(1) =~ 25 + V(@) (31)
V(lz] <a)=0, V(z|>a)=00 . (32)

Since both the kinetic energy term —%% and V(z) are invariant under p ,
PH(z)=H(P 'z)=H(z) . (33)

Not only the Hamilton operator is invariant under the inversion, but also the
boundary conditions

Py, (a) = ¢,(—a) = ¢, (a) =0 . (34)

An operator that leaves the Hamilton operator and the boundary
conditions invariant is called a symmetry operator. Since then P
commutes with H, P is also a constant of motion.

3.3 Cyclic boundary conditions

In order to convince how important boundary conditions are for the quantization
of the energy, in the following the same Schrodinger equation as in (9)

d? 2mE
) (z) + = Y()=0 |,

and therefore the same general solution as in (11)

2mE
Y(x) = Aexp(ivVCx) + Bexp(—iv/Cz) , C= % 7
shall be considered, however, with different boundary conditions:
() =y@@+1L) , (35)
d
V) =d'@+L), ¥@) =@ (36)

Boundary conditions of this type are called cyclic or periodic boundary
conditions, since after a certain length L (”"period”) the wavefunction is con-
tinuously repeated. Using these boundary conditions in the general solution for
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the wavefunction, i.e. repeating the same procedure as before in the case of a
particle in a box, one gets

Aexp(ivCx) + Bexp(—ivCx) = (37)

= Aexp(iVC(z + L)) + Bexp(—ivVC(z + L))

By collecting the terms with A on one side and those with B on the other side
and taking out the phase exp(iv/Cz) one obtains

Aexp(ivCx) (1 - exp(i\/EL)) = (38)
—Bexp(—iVCxz) (1 - exp(—i\/EL)) .

However, since the number one on the rhs can be also be interpreted as
exp(—iv/CL) exp(iv/CL) the last equation can be formulated as

Aexp(iv/Cx) (1 - exp(i\/EL)) = (39)
Bexp(—ivCx) exp(—ivVCL) (1 - exp(i\/aL)) :

Extracting now the common factor (1 = exp(i\/aL)) one gets

(1 - exp(i\/aL)> X
X (A exp(ivVCz) — Bexp(—iv/Cx) exp(—i\/EL)) =0 (40)

Since for Vz the second factor on the lhs of this equation is not vanishing the
first factor has to be zero

1—exp(ivVCL) =0 , (41)
which only can be the case if
VCL =2mn . (42)

Resubstituting this result into C' = 2mFE/h? | the discrete values of the energy
are given by
h?m?
" 2mL?
Contrary to the particle in a box the quantum number n = 0 is allowed, since
then for Vo exp(iv/Cz) = 1 and the corresponding wavefunction is a constant

(2n)%, n=0,%£1,42,.... (43)

d
w(n:(]) ($> =A+B ’ %w(n:(]) ($> =0 ,V.’E ; (44>

and therefore normalizable.
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The wavefunctions themselves are easy to obtain, since

d2cos(\/_av) —Ccos(VCx) (45)

d — sm(\/_x) —~Csin(vVCz) (46)
where C' = 2mE/h? . The inversion Pisa symmetry operator also in this case,
since

Py, () = ¥, (—2) = (£1) ¥, (z) (47)

which of course also applies for z = L. Obviously there are two kinds of eigen-
functions of the Hamilton operator H namely those belonging to the mgenvalue
+1 of P and the other ones belonging to the elgenvalue —1 of P. The”
solutions belong to the eigenvalue —1 of p , the ”cos”-solutions to the elgenvalue
+1. For n > 0 the eigenvalues are pairwise degenerated, i.e., for each eigenvalue
FE,, there are two solutions.

The norm of the wavefunctions can be obtained in a similar manner as in
the case of the particle in the box. It is 1/\/f . In the following table the
results for the particle in the box and for the cyclic boundary conditions are
summarized. It should be noted that in both cases the Hamilton operator is the
same and that only the boundary conditions are responsible for the different
energy spectra.

model box cyclic
Hamilton operator H —%% + V() —%% +V(x)
boundary condition  ¥(|z| > a) =0 Y(x) =Yz + L)
potential energy V(z)=0; |z|<a V(z) = 0;Vx

V(z) =oc0;]z| > a

h2x?, 2 h27? 2
energy E, smaz 2mLZ (2n)
quantum numbers n  1,2,3,4,. 0,4+1,+£2,43, ...
wave functions \}— cos( o x) n: odd \/Lf; n=20

\}— sin($Zx); n: even \/QE cos(22z); Vn >0

\/23 sin(22%z); Vn >0

degeneracy one — fold two — fold
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3.4 Separation of variables

If for a particular system the Hamilton operator is given as a sum
of operators, whereby each of this operators depends only on one
variable, then the wavefunction is a product of eigenfunctions of these
operators, which in turn depend only on one variable, and the energy
eigenvalue of the system is the sum of the eigenvalues belonging to
the eigenfunctions of the product.

H(zy, 20, .. x)0(21, T, ... 1) = Bp(z1, 20, ..., 20) (48)
H(z1,m9, ... 20) = hi(z1) 4 ha(ze) + .. . 4 hn(20) = iﬁi(@) . (49)
hi(w) (@) = eii(:) 7 (50)
P12 ) = 64 (01)6a(32) - 6, () = f[l<z>i<xi> RS
E:61+62+..‘+6n=i6i . (52)

=

The eigenvalue problem in (48)
{Bi(@0) + ha(wa) + o+ () } (w1, 32, 20) = (53)

:{61+62+...+6n}w($1,$2,.‘.’l}n) s

is then a system of n independent eigenvalue equations

E1($1)¢1($1) = a¢(n),
halas)iales) = cavnlas), -

o~

ho(20) @, (2n) = €n¢n(xn)

The eigenvalues ¢;, i = 1,..,n, are usually called Lagrange parame-
ters.

3.5 Particle in a three-dimensional box

In order to exemplify the above important theorem in the following the problem
of a particle in a three-dimensional box with infinite barriers shall be considered.
The Schrodinger equation for this case is given by

n? [ o2 0? 0?

tom g |0 =Evr) . (55)

it = - [ 2
T 2m | 022 Oy

2m
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where r =(z,y, 2). If one uses the following ansatz for the wavefunction (r),

P(r) = ¢(z,y,2) = X(2)Y (y)2(2) (56)

the Schrodinger equation can be rewritten as

V)2 X () + X(0)2(:) Y () + X@Y )5 2() = (5)
~EX @)Y (4)2(2)
Dividing now both sides by X (2)Y (y)Z(z) one gets
1 d? 1 d? 1 d? 2mE
X(o) 42 (@erd—ygy(yﬂ'm@ (2)=——3 . (58

Now one clearly can see that this last equation can be viewed as a sum of three
equations

L& iy = g2 (59)
X () dx? AR
1 d? 9
md—ygy(y) =k, , (60)
1 &2
= _7(2) = —k2 1
Z(2) dx? (2) ke (61)
with -
B2 = k24 k2 4 k2 = ;’; (62)

The solutions for the differential equations (59) - (61) are already well-known.
By choosing for example the following boundary conditions

=0 , |z|<alyl<b]z]<c
V(‘T?y’z> = { ) (63)
=00 , |z[=aly[=b ]z = c
i.e.,
X(z)=0 , |z[>a ,
Y(y)=0 , ly[=0b , (64)
Z(z)=0 , |z|=c ,
these solutions are given by
%cos(%z) , ng : odd
Ny
X(z) ={ y ke = 2—7T, etc. (65)
ﬁsin(%fa—”x) , Ny i even a
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The wavefunction is therefore a combination of ”cos”- and ”sin”-functions, de-
pending whether the quantum numbers n,,n, and n, are even or odd. For
example for only odd quantum numbers the wavefunction is given by

1 z z
Uy iny . (@Y, 2) = mcos(%x) COS(%y) cos(%z) . (66)

The energy of the system depends now clearly on three quantum numbers and
is the sum of the eigenvalues of the individual eigenvalue equations

52 2 h2 2 2 2
B= Bnnym. = gmk” = g (Rt hy k) = (67)

_ mw2h? | n? ni n?
“Em @ B

Consider finally that the box is a cube, i.e., a = b = ¢, then the energy F,

m2h2

Enzanyynz = 8ma2

{n2+ ”;2; +n2} (68)

quite clearly is invariant under permutations of the quantum numbers, but not
the wavefunctions! For example it is easy to check that

Esi1h=Fi21=FEi12 ,

but in general
Vo1 F V121 # Y110
If only a = b # ¢, then these degeneracies of the energies are (partially) lifted.
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4 The hydrogen atom

The hydrogen atom not only is historically the most important system in quan-
tum mechanics, but also the concepts connected with this system still are the
most influential ones in the language of physicists and chemists. Perhaps even
more important than the hydrogen atom itself is the outcome of the discus-
sion of angular momentum operators for the predominantly atomistic picture of
matter currently used in all natural sciences. It is therefore quite appropriate
to reserve a what at the beginning might seem like a lengthy discussion to these
two topics. Since the context of the angular momentum operators with the hy-
drogen atom needs to be stressed right from the beginning, the conceptual flow
in this chapter is somewhat crooked: it starts with the hydrogen atom, diverts
to angular momentum operators and then comes back to the hydrogen atom.

4.1 The Schrédinger equation for the hydrogen atom
4.1.1 Separation of the motion of the nucleus

The Hamilton operator for the motion of a hydrogen atom or more generally for
the motion of a single electron around a (charged) nucleus in motion, is given
by
R 2 2 702
A=2Pn P 7€ (1)
2m,  2me  |re —ry|

namely by the kinetic energy of the nucleus (first term), the kinetic energy
of the electron (second term) and the Coulomb energy (third term), resulting
from the Coulomb interaction between the electron and the nucleus. In (1) p,
is the momentum of a nucleus of mass m,, and charge Ze at position r,, p. the
momentum of an electron with mass m,. and charge —e at position r., where e
is the elementary charge ( -1.602 -10719As). Z is the so-called atomic number
of this nucleus (number of positrons). For the hydrogen atom Z = 1. The
Hamilton operator in (1) applies also for example to He™, Li* ™, etc. , so-called
hydrogen-like atoms.

The motion of the nucleus can be separated by placing the origin of the
coordinate system in the center of mass (see Fig. 4), i.e. by using the following
transformation

e:R R s 2

r +rM (2)
Me

L=R-rle 3

’ M (3)

M=m,+m. |, (4)

where R is now the position vector of the center of gravity and r the position
vector of the reduced mass with respect to this center . Abbreviating the reduced

mass by i, S
n e

h=—r (5)
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Figure 4: Coordinate systems for the hydrogen atom

the Hamilton operator in (1) can be reformulated as

g_ g2 M 2 4
0 0o 0
Vo= (o amy 1) g
o 0 0
vr - <%;d_ya&> ) (8)

where the first term is the kinetic energy of the motion of the center of gravity
and the second one the kinetic energy of a particle with mass p moving around
the center of gravity. The stationary Schrodinger equation corresponding to the
Hamilton operator in (6), which now is the sum of two independent operators
(see the section on separation of variables in the last chapter), is therefore simply
given by

HU(r,R)= Er¥(r,R) |, (9)
¥(r,R) =¢(r)x(R) , (10)
ET =FE+e y (1].)

where E and € are the energy parameters (Lagrange parameters) in following
the two eigenvalue equations

(_ivr ——2) b(r) =E(r) (12)



<_h_2v§3> X(R) = ex(R) . (13)

The first of these equations describes the motion of a particle in a central field
(the value of the Coulomb energy depends only on the distance r = |r| from the
origin), whereas the second is nothing but the Schrodinger equation for a ”free
particle” of mass M = m. + m,, i.e., the second equation corresponds to the
Galilei motion, which was discussed in detail in the previous chapter. One can
restrict therefore the following discussion to (12), namely to the Schrodinger
equation for a central field (note: V, = V)

V() + 5 (B = V() 6) =0 (14)
V() = —ZTe , (15)

where V(r) is usually called the potential. Since V(r) only depends on the
distance r = |r| , V/(r) is called a spherically symmetric potential. It should
be noted that this description applies only to hydrogen-like atoms or one-particle
systems in a central field.

4.2 Polar coordinates, separation with respect to indepen-
dent variables

From Figure 4-1 and as indicated there it seems almost imperative to use spher-
ical (polar) coordinates instead of Cartesian coordinates,

x=rsinfcos¢ (16)
y=rsinfsing (17)
z=rcosf . (18)

In terms of the above polar coordinates the Laplace operator is given by !
10 0 1 0 0 1 02
v2 = —_—— 2 J——— 1 9_ [ —
r2 or {T 87"} tZsmo 00 {sm 09} T Teme d¢>

10 0 1
from which one immediately can see that this operator is a sum of two operators,
namely one that depends only on the independent variable r and the other one
on # and ¢ . So once again one can separate two motions: a "radial” motion
and an ”angular” motion. Consequently the wavefunction v (r) is a product of
two functions, one in the independent variable r and the other one in 6 and ¢ ,

P(r) = R(r)Y (0,¢) . (20)

ISince it is not really relevant for the present purposes, no attempt is made to derive the
Laplace operator in spherical coordinates. Interested readers should consult for example the
book by Jackson (see bibliography).
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The Schrodinger equation is therefore of the following form

V6.0 { -5 ae ki |+ R {5 26,0}

+%pE+VUHMMW¢@=0’ (21)

which multiplied with —r2/R(r)Y (6, ¢) leads to the corresponding equations for
the "radial” and the ”angular” motion,

L2 Ry 4 2 (B V) RO = SRO) (22)
L2Y(0,6) = —cY (0,0) (23)

where (23) is an eigenvalue equation of the type discussed now already several
times and c is the so-called separation constant (Lagrange parameter). As will
turn out in the next section (23) is of the form of the eigenvalue equation for
the square of the angular momentum operator. However, before proceeding to
this section, it is worthwhile to repeat what was done ”en route”. Up to now
all derivations served solely the aim to separate as many independent motions
as possible, namely (1) to separate the motion of the nucleus from that of the
electron and (2) to separate according to the independent variables r, § and ¢
, respectively.

4.3 Angular momentum operators

Classically the angular momentum of a particle is defined by the following vector
product

L:(L:CvLy)LZ):rXp I (24)

r=(z,y,2) ,P=(Da,Dy,Pz) - (25)

By using the determinant of the following matrix, where e, ,e, and e, denote
the unit vectors of L,

e, € e, e, e e,
r vy z |l=—|y z =z ete. (26)
Pz Dy D= Py Pz Dz

the components of L can easily be read off

L, =yp. — ZPy (27)
Ly, = zp, —xp. (28)
L. =xpy, —yps - (29)

The quantum mechanical anlage, Ex , Ly and EZ , follow directly from the
correspondence principle (see chapter 2):

ror=r=(z,y,2) , (30)
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b B =i (33 8% aﬁ) = (ebyBe) (1)
L, =ih < dﬁ - z%) , (33)
L. =ih (y% - x%) . (34)

Using now the Heisenberg uncertainty relation? in terms of commutators for the
components of r and p ,

[z,py]_ = [z, pz]_ =y, p:]_ = [y, pz]_ =
=[z,0a]_ = z:py]_ =0, (35)
[ﬁwﬁy]f = [ﬁxaﬁz]_ = [ﬁyvﬁz}f =0, (36)
[z.02]- =y, D)) =[2.0:]_ =ih (37)

of
the angular momentum operator L= (Zx, Ey, fz) . For example for [EI, Ey]

it is rather easy to derive similar commutator relations for the component

w

one can work out in detail that
|:L177 Ly] = (yﬁz - Zlb\y) (zﬁx - $ﬁz) - (Zﬁr - xﬁZ) (ylaz - Zﬁy) =
= [yﬁu Zﬁx}_ - [Zﬁyv Zﬁx]f - [yﬁzw’cﬁz}_ + [Zﬁyvxﬁz}, =
= yﬁx @\z, Z]_ +pyx [zvﬁz]_ = _Zhyﬁz + thﬁy = 7thz . (38)

For the three components of L one gets then the following system of commuta-
tors

[Em, Zy] =ihL. (39)
[EZ, ZI} =L, | (40)
[Ey, EZ} =L, (41)
In analogy to classical mechanics the square of Lis simply given by
L=12+L12+1? | (42)
for which by the way the following commutator relations apply
[i?,ig]f - [iazg} = [i?,zg]f -0 , (43)
[fﬁ,ix}_ - [fﬁ,iy}_ - [fﬁ,iz}_ 0| , (44)

as is very illustrative to derive in detail along the lines of (38).

2see also chapter 1
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4.4 Polar coordinates again and yet even more commuta-
tors

Going now back to (16) - (18) it seems reasonable to assume that polar coor-
dinates once again will be of help. In terms of the partial derivatives in polar
coordinates as given for example for % by

g o 1 0 1lsing 9
%—sm@cosqﬁarJrrcochosgbag TSn095 (45)
L2 and its components are of the following form
-~ 1 9 0 1 02
2 32 R T
L =1 52000 * sn0g7) (46)
L,= ih(sin ¢2 + cot 6 cos ¢2) (47)
T 00 a¢’
L, = —ih(cos (;52 — cot @ sin (;Si) (48)
v 00 a¢’
-~ 0
2 zha¢ (49)

If one compares now the expression for the square of the angular momentum

operator in (45) with the expression which was obtained when the ”radial”

motion was separated from the ”angular” motion (see in particular (46)) then

one discovers that L2 is proportional to the operator for the ”angular”

motion

L2 =-rL* | (50)

which in turn implies that instead of (23) it is sufficient to discuss the eigenvalue
equation for L2, R

L?Y (0,¢) = h°cY (0,¢) . (51)

The form of the z-component of the angular momentum operator in (49)

looks already quite easy, those for the x- and y-component (48) - ( 49) are less
satisfying. However, by forming the following sums

~ -~ ~ 0 0
Ly =1L,+iL, = hexp(i¢) (@ + i cot ea—d)) : (52)
L_=1L,— iL, = —hexp(—i¢) 9 eotol (53)
T T T M T TR a0 o6)
one can derive two very useful commutator relations, namely
[L, E,} —9hL. | (54)
[L, EZ} = 1. (ZI + z‘iy) + (EI + z’Ey) L.=—hL, . (55

37



Furthermore the following sum of products of Z+ and L_ ,
Z+f17 + ./[\/724, == |:f/+, ijl 5 (56)
+

the so-called anticommutator of E+ and L_ , [E+, Z,} , has the property
+
that

[L,fi} =2 (Eﬁ + Ej) : (57)

Finally combining equations (55) to (57) one gets the amusing relations:
E2ZZ§+Z§+Z§:%{Z+,E,L+Z§ , (58)
L2+I?=L_Ly+hl,=LyL_—hL. . (59)

4.5 Eigenvalues of L? and L,

Now its about time to make use of all the relations for the angular momentum
operators discussed up to now. Since L? commutes with all components
of L , they have to have the same eigenfunctions. Using L, for example,
because its corresponding expression in polar coordinates is the most easy one,
this implies that the eigenfunctions in the eigenvalue equation for L? (see (51))
can be labelled by the eigenvalues m in the eigenvalue equation for fz ,

L2Y"™(0, p)=ch®’Y™ (6, ¢) (60)

L.Y™(0,6) = hmY™(0,¢) . (61)

By using the label m for Y™ (0, ¢) it is indicated that these functions are those
eigenfunctions Y (6, ¢) of L2 which belong to the m-th eigenvalue of Zz Since Ez
does not commute with Em or Ey, the functions Y™ (0, ¢) are not eigenfunctions
of L, and Ey . They are, however, eigenfunctions of E+ and L_ . In order to

proof this rather important fact the following manipulations are carried out in
detail. Multiplying (61) from the left with L , one gets

Ly (Ly"(0,0)) = (L4L-) Y™(0,6) = 3 (ths)

=Ly (mmy™(0,6) =t (LyY™(0,0)) 3 (hs) . (62)
Reworking the lhs of this equation one can make use of (55), namely
WEo = Do — Fulo 4 ilaDy — il | (63)
and the fact that L L L
L.Ly=L,L,+iL.L, . (64)



Subtracting now the first of the last two equations from the second yields
exactly what is needed for the lhs of (62)

~

L.Ly —hL,=L,L. |, (65)
(Z+L2) Y"(0,0) = (L-Ly = b4 ) Y™(0,6) =
= L. (Lyy™(0,0)) = h (LY (0.9)) = :(ths)
= hm (LyY™(0,0)) i (rhs) . (66)
Thus one ends up with the remarkable result that
L. (Ley™(0.9) = hlm + 1) (Z:Y7(0.0)) . (67)

namely that E+Y"‘(0 @) is an eigenfunction of L. , however, corre-
sponding to the eigenvalue m + 1. Since L. and L? commute (see (43))
L.Y™(6,$) has to be also an eigenfunction of L>

L2 (EJ’”(&, ¢)) - K% (LYm(a, ¢)) . (68)

The operator E+ therefore has the property that acting on an eigenfunction of
L2 an eigenfunction of ZZ is created corresponding to an eigenvalue increased
by one. Because of this property L, sometimes is called a creation operator
or step-up operator. In a similar way one can show that

L. (L-Y™0,0)) = htm —1) (L-Y™(0,9)) (69)
which means that L_ acts like an annihilation operator or step-down op-

erator, since an eigenfunction of L. for an eigenvalue (m — 1) is generated.
In particular Ly can be applied consecutively several times, say r times

L. (LY™(0,6) = L. | (Lo LY™(0,0) | =

= fi(m +1) (Egymw, ¢)) , (70)
L’ (Egym(e, ¢)) = K2 (Zgym(e, ¢)) . (71)

The number of times L+ can be apphed however, is restricted for the following
reasons. Since Ly, Ly, L, and L? are Hermitian operators (real eigenvalues !)
the expectations values of Lg and LZ have to be positive, i.e.

<I2>>0 ,<L?>>0 . (72)

39



On the other hand the sum of Eg and 212; has a well-defined eigenvalue
(Z2+12)v™0,0) = (L2 - 12) Y"(0,0) =
=n*(c—m*)Y"™(0,9) , (73)
which in turn can only imply that
c—m?>>0 or c>m? . (74)

For a given separation constant c therefore there has to be a minimal eigenvalue
—Iloh and a maximal eigenvalue [1/ of L, with [y,ls > 0 such that

Lyyh(9,6)=0 , (75)

L_Y™2(0,¢)=0 . (76)

Obviously between —Il; and [; there has to be a positive integer number of
eigenstates such that

LY ~2(0,¢) = NY"(0,0) (77)

i.e., where n =y — (—l3) = l1 + 13 and N is some normalization constant. Using
now (59) to evaluate the eigenvalues of L? corresponding to the eigenfunctions

Y (6,¢) and Y 2(0, ) ,

L2vh (0, 6) = (E,E+ YD, + Ei) Yh(0,¢) =

L-L.Y"(8,¢)+ RL.Y"(0,) + L2Y"(0,9) =
N’

= hQ(ll _’_l%)Yh (67¢) )

=)

2y—2(9, ) = (LE, —hL.+ Eﬁ) Y2(8,¢) =

)

LL_Y2(0,¢) — RL.Y 2(0,¢) + L2Y 2(6, ¢) =
— (79)

SR+ B)YR(0,0) |

one can see that these eigenvalues are given by

Pe=nh (1, +13) = (. +13) . (80)

Since l; and Iy were chosen to be positive, this only can be the caseif [y =y = 1.
The separation constant ¢ in equations (22) and (23) is therefore uniquely deter-
mined by the integer number I, ¢ = (I + 1), which implies that the eigenvalues
offz vary from —[ to +I , namely m = —I, -l +1,—-(+2,...,01—-2,1—1,1 . In
order to classify those functions Y™ (6, ¢) that belong to the eigenvalue [(l + 1)
of L2 they are augmented by the index [ .
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Without having actually solved any differential equations, the algebra of
angular momentum operators allowed to arrive at the following most important
eigenvalue equations,

L2Y,™ (0, ¢) = R2I(L + 1)Y;™(0, 6) (81)
L.Y;™(0,6) = hm¥™ (6, ) (82)

with
|m=—1,~1+1,...1-1,1 ; 1>0] (83)

4.6 Eigenfunctions of L? and L,

In order to obtain now the eigenfunctions Y, (6, ¢) one can again make use of
the properties of L, and L_ (75) - (76), namely that in terms of the polar
coordinates for these two operators (52) - (53)

Zml(e,@—hexp(m)(a +zcot98—¢)w<e,¢>=o N
0

Since as indicated the prefactor is not vanishing, one is left with the following
differential equation:

)
(89+zcot98¢> Yi0,¢)=0 , (85)

which once more is nothing but a sum of two operators, this time in the inde-
pendent variables 6 and ¢, and therefore Yll(ﬂ, @) is a product of functions in
and ¢, respectively

Y/ (0,0) = P(0)2(¢) - (86)

Using this ansatz in (85) one has to face yet another a separation constant, say
k,

1 0 i 0

————Pl) = ————

cot OP(6) 06 (©) D(p) O

appearing in the corresponding differential equations with respect to 6 and ¢,

)=k , (87)

0
%P(Q) =kcotOP(0) (88)
9 4(6) = ika(9) (39)
¢ N '
The solutions of these two equations are now almost obvious, namely
P(0) = (sin9)* | (90)
D(6) = exp(ike) . (1)
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The function Y}l(e, @) is therefore given by
Y0, ¢) = ci(sin0)" exp(iko) (92)

where cf is a normalization constant yet to be determined. In order to evaluate
the separation constant k one can calculate the eigenvalues of L, and EQ, re-
spectively, to which the eigenfunction Y/(Q, @) belongs. For example for L, one
gets

L./10,6) = it 1i16.0) = —in (sind)* exp(iko) =
— WY (0,0) = WY(0,0) (93)

L.e., one can easily show - and the same result can be obtained with L2 - that
k = 1. For the highest eigenvalue of L, the corresponding eigenfunction is
therefore given by

Yi(0.¢) = cj(sin)’ exp(ilg) . (94)

According to the philosophy up to now, the eigenfunctions corresponding to
eigenvalues of L, less than [ can be generated by consecutive application of L_.
Applying L_ once, one gets

-1
Y1 0,0) = 21V (0,0) =
l hC% l

=t exp(fiqﬁ)(% —icot 9%)(sin 0)! exp(ilg) =
= —cexpli(l — 1)(;5](% + lcot B)(sinf)" . (95)
Furthermore using the identity:
% +lcotd = (sii@)l %(sin 0)! (96)
}/}171(9, @) is readily found
V0,6 =~ e - o) om0 (90)
(sinf)! 90

Applying now L_ s-times, one gets the following function

l—s 1\* Ci_s Ts vyl
v = () (L) e -
1

= (=1’ exp (i(l — $)9)

—)*(sinf)* | (98)




which by using the actual eigenvalue of ZZ , m=1— s, can be written as
Y/"(0,0) = (=1)"¢;" P" (cos 0) exp(im¢) . (99)
The functions P/™(cos §) are the so-called associated Legendre polynomials

1\l l—m
P{”(cos@):(y;) (sin )™ ( dc‘js 9> (sing)2 (100)

P ™(cosf) = (=1)"P™(cosl) (101)

which for small values of [ are of very simple form as shown below:

I m P™(cosb)

1

cos 6

sin 6
1(3cos?0 —1)
3sinf cos b
3sin 26

NN =O
= O = OO

Finally the normalization constants c;” can also be obtained in a closed form
(which again can be checked by using the relations with L and L_)

m_ L2041 [(I—m)!
TN T \Grmy (102)

The normalized eigenfunctions of L. and L? are therefore of the following final
form (the so-called Condon-Shortley convention, see also the bibliography)

—1)kHm —m)!
V(0.0 = ;l)u V 2l4;1 \ Eé—i—m;: exp(img)

d
dcosf

X (sing)™ ( >l+m (1 —cos?0) =

= (—l)m\/;le(cos 0) exp(imo) (103)
(Y"(0,¢))" = (=1)"Y,""(0,4) . (104)

They carry a very famous name. They are called spherical harmonics. For
the first few values of [ and m their analytical forms are listed below:
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Lom Y™(0,0)

00 =

1 0 %COSG

1 £1 F\/2 sinfexp(ig)

2 0 2—(3cos 20 — 1)

2 41 :F\/éjisin 0 cos 0 exp(Lio)
2 £2 /5 sin?fexp(+2ig)

_ In order to summarize the sections on the eigenvalues and eigenfunctions of
L, and L? in the boxes below are the most important properties:

L. Y;"(0,¢) = hmY;" (0, ¢) (105)

L2Y™(0, ¢) = h21(1 + 1)Y;" (6, ) (106)
JY™(0,8)* Y (0, $)dQ = 6116 (107)
|—l<m<l,1=012 .| (108)
0<f6<7m ,0<¢<2r ,dQ)=sinbdbdp . (109)

It should be noted that (107) states nothing but the fact that (normalized)
eigenfunctions of L2 and L. are orthogonal!

4.7 Back to the hydrogen atom

After this rather lengthy excursion to the world of angular momentum operators,
the remaining thing to do is to tackle the equation for the ”radial motion” (22),
which is rewritten below, knowing of course that the separation constant c is
given in terms of the eigenvalues of L2,

d*R(r)  2dR(r) 2uE  2uZe?  I(l+1)
dr? r o dr {h2 + R2r 72 }R(T)_O ’ (110)

where the central field V(r) = —Ze?/r.
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4.7.1 Analytical solutions

Suppose that for £ < 0 a parameter X is introduced via the following relation

uz?et
E=— el (111)
such that a substitution of the form
M2
r = WT ; (112)

reduces (110) to a differential equation very well-known in mathematics since
quite some time:

If A\ = n, where n is a positive integer number, then the solutions of this
differential equation are of the following form

Rna(z) = L0 (2)a exp(—2/2) (114)

whereby physically acceptable solutions (continuous and finite in the interval
0 <z < o) are only obtained for the condition that

‘)\Enzl,Z,...,oo , l:O7172,...7(n—1)| (115)

The so-called associated Laguerre polynomials L’; (x), k=20+1,p=n—1-1,
are of the following general form

dk
Ly(z) = (—1)kﬁLg+k($) : (116)
dP
Lg(:r) = exp(z)w (exp(—z)z?) , k,p=0,1,2,...,00 (117)

and are polynomials of degree p having p zeroes in the interval 0 < z < oo:

Ly(x) = ;)(_1)5 v —((ZS))T(:)BS)!S!Q”S (118)

Although this last equation looks a bit disgusting, for the first few values of n
and [ these polynomials are of very simple form:

nol Liljll—1($) nol Liljllq(ﬂf)

1 0 -1 2 0 —4 4 2x

2 1 —6 3 0 —18 4+ 18z — 32
3 2 —120 3 1 —96 + 24z
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Resubstituting now A = n (115) into the expression for the energy E (111)

one gets - )

Z<e Z
——gh2n2 - -=Ey (119)
where Fp is the so-called groundstate energy of a hydrogen atom. The result
in (119) is by the way identical to that of the so-called Bohr model and as can
be seen does not depend on ! and m. Replacing p by m,. (mass of the electron),
Eg = mee*/2h% =13.6053 eV = 1 rydberg (1 ry).

The normalization integral N,,; of the functions R, ;(z) , 0 <z < oo , can
also be obtained as a closed expression

E, =

® 3
Not = / exp(—a)a® [L21 (2)]° 2%de = % C (20
0

The radial solutions R, ;(r) are therefore of the following form

1/2 3
le(r) - <H> (niao) eXP(*ZT/nao)TlLTQLljzlq <s_aZOT> )
(121)

where ag = h?/e?m, has the dimension of a length and is a universal constant
(ap = 0.5902.10~® c¢m). Since aq coincides with the radius of the first Bohr or-
bital, it is called Bohr radius and serves as unit of length in quantum mechanics
(atomic units).

Abbreviating Zr/ag by a , (Z/ag)*/? by A and using real spherical har-
monics as defined by the linear combinations of eigenfunctions of L. belonging
to the pair of eigenvalues +m,

R
NG
_ b

ﬁ(iﬁmw) - Y7"(0.9) (123)

where the suffix ”s” stands for ”sine” and ”c¢” for ”cosine” , the hydrogen atomic
wavefunctions are listed for the first few values of n and [ in the following table

YO0, ) = —= (V" (0,0) + Y, "(0.9)) (122)

Y7 (0, ¢)

¢1,00 = ﬁA eXp(—a)

Va0 = 7 127FA(2 —a)exp(—a/2)

Yo10 = mAanp(—a/Z) cosf

Yo = 4\/1§Aexp(—a/2) sin 6 cos ¢

Y3 = 4\/I§Aa exp(—a/2) sin @ sin ¢

Y300 = 81\1/§A(27 — 18a + 2a?) exp(—a/3)
Y310 = %A(G —a)aexp(—a/3) cosf
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Y51 = 81/3;14(6 — a)aexp(—a/3)sin 6 cos ¢
P31 = si/\;—A( — a)aexp(—a/3)sinfsin ¢
V300 = SWACL exp(—a/3)(3cos % — 1)
V521 ;[Aaz exp(—a/3) sin 6 cos O cos ¢
Vs = 81\(—Aa exp(—a/3) sin @ cos O sin ¢
V500 = 81\/—14& exp(—a/3) sin 20 cos 2¢
P390 = o \/—ﬂAa exp(—a/3) sin 20 sin 2¢

4.8 The one-electron states of an atom

Finally now one can summarize the most important results of this chapter. The
relevant part of the Hamilton operator is defined by

2

H=H(r)=-Lv> - Z= (124)

r

and has the following constants of motion

[ﬁ,fﬁ} = [ﬁ ZZL =0 (125)

The energy eigenvalues E, and eigenfunctions v
electron” atom are given by

(r) of a ”single

n,lm

B, =—3%80 a0 = o (126)
¢n,lm(r) = djn,lm(rv 07 ¢) = Rn,l(r)}/}m(oﬁ ¢) (127)
fwn,lm(r)*wn’7l’m’ (I‘)dT = 5nn’5ll’5mm’ (128)

dr = r2drsin 0d0de = r?drdQ)

where dp, refers to the orthogonality of the eigenfunctions with respect to
different energy eigenvalues, d;» with respect to different eigenvalues of L2 and
Omm: With respect to different eigenvalues of L,

Each state is therefore characterized by three quantum numbers, namely
by

n the ”principal” quantum number, n =1,2,3 ... ;00

[ the ”angular” momentum quantum number,
1=0,1,2, ...,n—1

m the ”magnetic” quantum number, -] <m <1 .
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For the angular momentum quantum number [ most frequently the following
common names, originally derived from spectroscopy are used

where ”s” stands for "sharp”, ”p” for ”principal”, ”"d” for ”diffuse” and "f”

for "fundamental”. Since for a given quantum number n and [ the energy
eigenvalues are degenerated with respect to L, (m does not appear as such
or implicitly in the equation for the radial motion, the atomic energy levels
of a single electron atom can be labelled by the well-known pairs of quantum
numbers,

n,d 1,0 2,0 3,1 3,0 3,1 3,2 4,0 4,1 4,2 43
name 1ls 2s 2p 3s 3p 3d 4s 4p 4d 4Af

well-known of course from their use in the periodic table of elements.

4.9 Atomic orbitals
In analogy to the Bohr model the one electron eigenfunctions (eigenfunctions of
a single electron atom) are usually called atomic orbitals. Let ¢, ;,,(r) be a

particular atomic orbital, then |wn)lm(r) |2 dr is the probability to find an nl-like
electron in the interval [r,r 4+ dr| within the directions [0, 0 + df] and [¢p, ¢ + d¢]

, and Wn, 1 (1) |2 is the corresponding probability density. Its radial distribution
function D(r) is obtained by integrating over the angular dependence

27w

Dy i(r)dr = B2 y(r)rdr / / YI7(6, 6)" Y7 (0, 6) sin 0d9de —
0 0

= R2 ,(r)ridr . (129)

n,l

From the table of the hydrogen atom wavefunctions one can see that they all
contain an exponential factor of the form exp(—r) multiplied with a polynomial
in r. It is therefore quite interesting to see what happens if r tends to zero.

4.9.1 s-orbitals
For 1s-orbitals it is easy to see that
lir%|1/115(r)|2 = Nlim exp(~2r/ag) > 0 (130)

while
1ir%D1s(7“) = Nlim (r* exp(—2r/ag)) =0 (131)

where N is the normalization constant. For » — 0 the 1s-like probability density
is finite, only the radial distribution goes to zero (see also Figure 5). Since for
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Vg

Figure 5: 1s-like probability density and radial distribution

r — oo both the probability density as well as the radial distribution function
Dy, 1(r) = (rRy,,(r))? vanish, this implies that

lim (r Ry, 1(r)) = 1in%ﬁn,l(r) =0 (132)
lim |1, ,(r)|* = lim Dyy(r) =0 . (133)

This important property as stated in the last two equations, applies as easily can

be checked for all the radial solutions R, ;(r). The function En)l (r) is said to be

a regular solution, i.e., is regular at the origin. These two equations are

nothing but the (radial) boundary conditions for the single electron atom.
For 2s-orbitals the probability density is given by

[$5(r)|* = N(2 = r/ao)? exp(~r/ao) . (134)

As can be seen in Figure 6, the radial distribution function Das(r) has an ad-
ditional zero location, usually called a node. In general - as can be worked
out quite easily from the analytical shape of the Laguerre polynomials - the
number of nodes for [ = 0, i.e., the number of zero locations excluding the ones
for r — 0 and r — oo is given by (n — 1).

4.9.2 p-orbitals

For [ > 0, the eigenfunctions wml(r) have an angular dependent part, namely
the corresponding spherical harmonic. Using real spherical harmonics (122,123)
the three 2p-like eigenfunctions are of the following form
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v, D(r)

Figure 6: 2s-like probability density and radial distribution

¢2,1o(r) = 1#2;02 (r) = f(r)cosd (135)
¢2,1—1(T) = ¢2py (r) = f(r)sinfsing (136)
1/’2,11(7") = 1/}2[7,5 (r) = f(r)sinfcos¢ (137)
where U e
f(r) = =% rexp(—r/2ap) . (138)

Suppose for the sake of simplicity that for Vr , f(r) is a constant. The p,-orbital
is then

Y, ~cosf = ; , (139)
i.e., for
h=0—2=1 ,
r
z

9:7r—>E:—1.
T

For a given value of r , say 1, the vector r ”precesses” around the z-axis,
whereby the projection of r onto the z-axis is cos @ (see Figure 4-4). The cut
of this rotational figure with the yz-plane is also shown in Figure 4-4. Such a
plot usually is called a contour diagram. Under the same approximations the

is given by

probability density |¢pz |2

|¢pz ’2 ~cos?0 (140)
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Pz

Figure 7: p.-orbital

which of course yields a different rotational figure and cut in the yz-plane (see
Figure 7). In the same way as for the p,-orbital, cuts of the corresponding
rotational figures for the p,-orbital and the p,-orbital can be generated in the
xy-plane. Before commenting on these figures, the d-orbitals shall be inspected.

4.9.3 d-orbitals

There are altogether 5 d-orbitals, which in terms of real spherical harmonics are
of the following form (constant f(r)):

di = dmy ~Ty
dy = d:c2—y2 ~ ($2 - y2) )
ds =d,» ~ (322 -1)
d4 = dwz ~ Iz
ds =dy, ~yz (141)
and whose contour diagrams are shown in Figure 9.

Figures 7 and 9 show very famous ” presentations” of p- and d-orbitals. Since
these ”presentations” are used in so many respects and different contexts, it is
absolutely necessary to comment on their relevance: these plots are contour
diagrams of real spherical harmonics, they only represent the angular de-
pendence of single electron atomic wavefunctions, they are icons of wave-

functions and have nothing in common with probability densities. It should
be recalled that the wavefunctions themselves have no physical significance, only
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Figure 8: Contour diagram of the probability density of a p, orbital

the probability densities. Extreme care has to be taken when using these icons:
it is very easy to end up in a Micky Mouse view of reality!

4.10 Atomic selection rules

Suppose that the expectation value of the components of the electric dipole d
has to be calculated,

where e is the elementary charge. Expressing the components of d in terms of
polar coordinates,

dy = e|r|sinfcos ¢ ,
cTy =e|r|sinfsin¢ ,
d. =elr|cosf ,

their expectations values in a single electron atom are given by

<dy>=e / i ()" [E] 510008 iy o (2)dr (143)
< Ey > = e/wmlm(r)* |r| sin 0 sin @), 11,y (v)dT (144)
<d>=e / i ()" [E] 08 0 s (0)dT (145)

dr = r2drsin 0d0do = rdrd§
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Figure 9: d-orbitals

It is easy to see that these expectation values contain a radial integral and an
integral over the directions. For example for the z-component one gets

<d,>=¢e {/ Ry i(r)Rys yy (r)r?’dr} {/ YL (8, 8)* cosOYL, (0, ¢)dQ
(146)
Quite clearly this expectation value is only different from zero if and only if

/Y&(9,¢)*0059Y7Z/(97¢)d9 = /an((i¢)*Yol(97¢)Y£f(97¢)dQ#0 , (147)

which is only the case - as can be checked very easily for the first few values of
land I’ - if?

Al=1-1I'=4+1 , Am=m-m'=0,£1 . (148)
Forming now the expectation value of the square of the electric dipole,

<d@>=<E>+<d>+<d> (149)

3The so-called triangular condition is yet another very useful property of spherical har-
monics. For a summary see for example appendix C of Messiah.
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then this quantity once again is only not vanishing for the conditions stated in
(148). These conditions are usually referred to as the atomic (dipole) selec-
tion rules, which viewed historically were one of the first staggering successes
of quantum theory.
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Figure 10: Coordinate system in the He atom

5 Perturbation theory, the He-atom

For systems with three or more interacting particles there are no analytical
solutions for the Schrodinger equation. One has to use therefore methods of
approximation. In principle, two different kinds of methods are at hand, namely
the perturbation theory and the variational method, which is the subject of the
next chapter. Both methods will be illustrated using the He atom as an example.

Consider the situation in the He atom (see Figure 10) at a given position
of the nucleus (center of gravity). The motion of the nucleus can be assumed
to be separated out just like in the case of the hydrogen atom. Besides the
kinetic energy terms for the two electrons (17, 7»), there are two different types
of Coulomb interactions, namely the interactions between the electrons and the
nucleus (V7, V32) and the interaction between the two electrons (Wia):

ﬁ:ﬁ+f2+171+x72+W12=

h_, Rh:_, Ze* Ze*  €?

=——Vi——V; —— +— . 1
2 ! 2 2 T T2 T12 M)

The Schrodinger equation for the He atom,
Hip(r1,v5) = Ey(ri,ra) (2)

can therefore be rewritten in form, where the Hamilton operator consists of
operators that depend only on one variable and a remainder

]/‘j = f[(rl,rg) = /};1(1‘1) —|—/};2(I‘2) + /W\lg(rl, 1'2) s (3)
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N 2 VA 2
hz(rz) = —;i—MVQ — : ) 7= 1,2 s (4)

namely as a sum of one-particle operators and a two-particle operator.

5.1 Zero order approximation

The easiest way of solving the Schrédinger equation for the He atom is of course
neglecting the Coulomb interaction between the two electrons, since then one
has to deal only with two independent motions:

(ﬁl(rl) +E2(1’2)) Y(ri,ro) = E(ry,re) (5)
(A1) +Ta(r2) ) 61(r1)(x2) = (Br + B2}y (r1)6o(x2) o (6)
o) = (-5 - 22 ) o) = Bow) . (0

Furthermore, each of these motions is in principle the same as was solved for

the hydrogen atom:

Z%uet 1 B Z2Ey (8)
2p2 n?2  n?

i

Ei=-

where Ey is the groundstate energy of the hydrogen atom (Ey ~-13.605 eV; eV
= electron Volts). The groundstate energy for the He atom (Z=2) corresponds
therefore to the single electron atomic (principal) quantum numbers n; = ny = 1
and is simply given by

1 1
E=F+ FE, :4EH(—2+—2) =8Fy ~ —108.8 eV . (9)
ny  na

Experimentally the groundstate energy of the He atom is —78.98 eV, which as

compared to the result in the last equation shows that the interaction between
the two electrons cannot be neglected.

5.2 First order perturbation theory

Suppose that
(1) the Hamilton operator of a given system can be written as a sum of a
Hamilton operator corresponding to a known and solvable problem (fIO) and a
remainder (H),
E’ = ﬁ() + ﬁl , (10)

such that for the expectation values of Hy and Hy, (Ho) and (Hy) ,
(H\) < (Ho) (11)

(2) the solutions of the Schrédinger equation corresponding to Hy are defined
by
Hopi” = B9 (12)
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/ OO Odr =5, (13)

(3) the solutions and the energy eigenvalues of H can be approximated by
b= T (14)

E;=E" +EY . (15)

ﬁo usually is called the unperturbed Hamilton operator and ﬁl the per-
turbation. Using now the ansatz in (14) and (15) in the Schrodinger equation
corresponding to H and neglecting all cross terms in first order, i.e., all those
terms having only the superscript 1,

Hy; = By,
Hool" + How + Hipl” + Higy” =
N—— SN——
—E©y© —EMyp®
_EOU O ENO L ENY )
one gets by means of (14)
A" + By = EOypM + EDy® (17)

The approximation IA{ﬂ[JEl) — Egl)wgl) = 0 is called first order perturbation
theory.

Since the set of eigenfunctions {1/150)} is a complete set of eigenfunctions (Ig'o

is a Hermitian operator!), the perturbed wavefunctions 1/15»1) can be written
as the following linear combination

W =3 el (18)
n=1
which in turn can be used in the previous equation
3w Hp® + 0l = B0 e,ip@ + EOp® . (19)
n=1 — n=1
=By

By collecting now all terms with the unperturbed energies on one side, one
obtains

> cu(BY — B = (Y — B (20)
n=1
Multiplying now with 1/120)* from the left and integrating over dr yields

> (B~ EO) [l udar -
n=1

—_—
=0kn
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:E;”/wg)wg% —/w@’* HpVdr . (21)
N—

=0ki

If one assumes that the unperturbed system is not degenerated, i.e.
E(O) < Eéo) < E(O).... , such that ( © _ EZ-(O)) never can be zero, then the
labt equation, rewritten below

3" ni(BY — E)op, = BN oy — / O HyypOdr (22)
n=1
results immediately in an expression for the perturbed energies Ei(l) as well as
for the expansion coefficients c¢,;
i=k —E"Y = [¢"" Hy"d (23)
itk — c(BY — B9 = — [ By dr (24)

Using these two expressions the energies of the system under consideration can
be calculated

E =EY + / SO HpVdr (25)
and the corresponding wavefunctions are defined by

¢(0)*H ¢(0
¢@+Z{Lﬁ——j—w9. (20

0
n#i E’SL )

This implies that for the diagonal case (23)one gets the energies and in the off-
diagonal case (24) the coefficients for the wavefunctions. From (26) it is easy
to see that for the case that the unperturbed system has a partially degenerated
eigenvalue spectrum, in any application of perturbation theory the degeneracies
have to be taken out.

5.3 Application to the He atom

Going now back to the situation in the He atom, namely to (3)

I/‘j = ﬁ(l‘h ro) = /f;1 (1‘1) +/f;2<1‘2) + ng(rl, ra) (27)

:ﬁo =H

within a first order perturbation theory the groundstate energy is given by

Ey=E"(1) + E”(2) +E =

E
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2
_sm, + / 6o © (1, 1)" (—) 0O (k1 ra)dr (28)

where the unperturbed wavefunction is a product of two 1s-like hydrogen wave-
functions,

o' (x1,12) = 61 (15)dy(15) = N exp(—2r1/ao) exp(—2r2/ag) ,  (29)
N is a normalization constant and the integration volume dr is given by
dr = risin0ydridf1de,r3 sin Oadrodfaddy (30)

and E(go) (1),i = 1,2, is given by (8)

Z%uet 1
EQ (i) = - — = 4E 31
0 (1) ST Ho (31)

since n; = 1.
Performing the integral in (28) one gets
5Ze?  5meZet

(1) _o4e _ 9o
Eo " 42 4 2r2 (32)

where m, is the actual mass of the electron (and not the reduced mass!). Putting
now the results for the He atom in a table, one can immediately see at one
glimpse that the perturbation after all is not small and that obviously the de-
viation to the experiment suffers severely from this fact.

Groundstate energy of the He atom [eV]

zero order first order experimental
e  EY+EY
—108.24 —74.42 —178.62
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6 The variational method

6.1 The Ritz theorem

Let H be the Hamilton operator of given system and ¢ some compat-
ible function that meets the boundary conditions. The expectation
value of H, ¢, is always larger than the exact ground state energy Fj

[ ¢*Hopdr
e=——"7T-—2>FE, . 1
The function ¢ is usually called a trial function.
Suppose the exact eigenvalue equation is given by

Ao = By / Yipydr =8y (2)

Since the set of functions 1, is complete the trial function ¢ can be expanded

in this set
o= ant, | O =) apty, (3)
n n
In terms of this expansion the expectation value € is given by
Z Z arnan f w:nHwndT Z Z ajna7LEn57zm
€= m o n — m n _
Z Z ajnan f Z/an%/)ndT Z Z a:nananm
m n m n
Saran By,
. n
> anan
n
If one now substracts Fy on both sides, i.e., shifts the energy scale by Ey, one
gets
> anan(Ey, — Ey)
€ — E() ==
> ayan
n

Now one can see that since E,, is the energy of an ”excited state”, F,, — Ey > 0
and since ¢ has to be normalizable, > aa, > 0. This implies that
n

(4)

(5)

> anan(E, — Ey)
€—FEyg =" >0 . 6

S aran (6)

n
Of course in general the exact eigenfunctions are not known (otherwise there
would be hardly the need for a method of approximation). Therefore the trial
function ¢ is chosen to be dependent on parameters a,b, ¢, ... such that
€ is a function of these parameters, € = ¢(a,b,¢,...) . The minimum of
e corresponds then to the condition

Oe(a,b,c,...) Oe(a,b,c,...) Oe(a,b,c,...)
Oa N 0b B Oc
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6.2 The He-atom

In order to illustrate the variational method once again the He atom is con-
sidered. In the previous chapter it was shown that within the zero order ap-
proximation of perturbation theory the wavefunction for the He atom is of the
following form (see also the previous chapter)

3

U (11,52) = 6, (1)65(15) = o exp(~Z(ry +72) a0)
0

Since m and ag are constants the only available parameter left is the atomic
number. Suppose therefore that the atomic number is treated as an adjustable
parameter £ for the trial function ¢(rq,rs) ,

3

o(r1,12) = f— exp(—€(r +12)/ag) ®)

The expectation value of the Hamilton operator for the He atom is then given
by

€=/¢*(r17r2)ﬁ¢(r1,r2)d7'=
:/¢*(r17r2)ﬁ1¢(1‘1,1‘2)dT+/¢*(1‘1,1‘2)E2¢(1‘17r2)d7

+/¢*<r1,r2)%¢<r1,rg)d7 , 9)

namely in terms of integrals for the one-electron operators iAlZ and the two-
electron operator e/r12. In order to make use of the fact that the integrals
corresponding to the one-electron operators are of course known for £ = Z, the
Hamilton operator is rewritten in the following way (addition of zero!)

~ h? £e? h? £e?
H=-—V_->_ __Vvi_>_
20t 2%y +
! 2
e e? e?
—Z2{—+— — 10
FE-DEAT) + = (10)
—_——— ~—
3 4

With this little trick the expectation value €(€) can be written as

h2 2
(€)= [ 6105571~ £ )9 +
——— —

1

n2 2
+ [ 6309598 = 2 oy +
—— ——

2
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ez 2
+ —}o(ri,ro)dridrs +
1T

r

+/¢*<r1,r2><s—z>{

3
* 62

+/¢ (1‘171‘2)—T o(ri,ro)dridry . (11)
12

Integrals of type 1 and 2 correspond now to the single electron atom with atomic
number &,

&e?

T

2
/ qsrus)(—;i—uv?— )6,(1s)dr; = —EE (12)

1,2

where FEy is the groundstate energy of the hydrogen atom. For the two remain-
ing integrals one gets

2 2
/ & (r1,e)(E = 2){ =+ Yol m)dridry = 46E -~ DFn . (13)
3
/ N e? 5
¢*(r1,r) r—¢(r17r2)dT1dT2 = ZﬁEH . (14)
Iz

4

The expectation value €(&) is therefore given by the following expression

)
d6) = {26 +acte -2+ 5} Bu (15)
The minimum of €(§) with respect to £ is given by the condition
de(§) 5 5

—0=(4¢—4Z+2 —Z-— . 1
D —o-ug-1z+Y - e-z-% (16)

Using now the optimal value of £ in (15) the minimum value of ¢ is given by

5

e=—2(Z— 1—6)2EH =769 ¢V . (17)

In the table below the results for the He atom are summarized. As one can see
this simple variational approach yields a result much closer to the experimental
value than the first order perturbation theory. One also can see that € > Ej.

First order Variation method Experimental
perturbation theory with one parameter
—74.42 eV —76.9 eV —78.62 eV
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6.3 The variational method for a linear combination of
functions

The most frequently used application of the variational method in physics and
chemistry is based on the expansion of trial functions as linear combinations of
functions. Suppose x;, ¢ =1, ...,n, is a set of linear independent, not necessarily
orthogonal functions from which a trial function ¢ can be constructed in the
following way

¢ =cixy +caxg+eaxz + - FenXy = ZCin' ) (18)

where the coefficients ¢; are real and have to be determined minimizing the
expectation value of the energy, €

ick [ XG Hxdr cicpHyp,

€ =

n

> c >
= _ ik

> cicr [ X xpdT > cickSik

i1 i =1

Z cicbHi, = € Z cickSik (20)

i,k=1 i,k=1

)

Since € has to be a minimum this implies that

Oe
= =1,. . 21
o =0,j= (21)

Taking the derivative of (20) with respect to a particular coefficient, say ¢; , one
gets

zkl

eZcickSik = g— Z iClSik —i—éi Z cickSik =
ik i,k=1

o n
= 8_ Z CkHik . (22)
i,k=1

In order to take the derivative of the mixed products of coefficients, the best
way to handle the problem is to inspect special cases:

2, j=i=k

30 2 cc =1 ¢ J=uLj#Fk . (23)
7=t
¢ J=kj#i
0 JFL]FE
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Because of the double sum one gets therefore

QGZCiSz’j = 2ZCiHij . (24)
i=1 i=1

This procedure has to be repeated for each coefficient ¢;, j =1,...,n, i.e., one
gets a system n equations

cz(Hlj_eslj):Oa jzla"'an ; (25)
1

n

(3

which can be written in matrix form as

(H—eS)c=0 |,
Hy1—€eS11 Hig—€Si2 ... Hip— €S, Cc1
Hoy —€Sa1 Hap — €S2 ... Hap—€Sa Co
. . . . =0 . (26)
Hnl - 6Snl Hn2 - 65712 Hnn - 6S’n,n Cn

This system of equations has a non-trivial solution if and only if the determinant
of the matrix (H — €S) vanishes

det (H —eS) =0 . (27)

The determinant has a very prominent name. It is called the secular determi-
nant. By developing the determinant one gets a polynomial in the unknown e,
the n (number of basis functions x; ) roots of which are then the approximations
for the groundstate energy (FEy), the energy of the first excited state (E7), of

the second excited state (E2) and so on, Ey < Ey < FEy ... . If the set of basis
functions is an orthonormal set of functions!
/XijdT =0y, 6,j=1,.n (28)
then the secular matrix
(H-el)e =0 (29)
Hy —€eS1n Hys Hy, C1
H21 H22 — € Hgn Co
. . . . . =0 , (30)
Hnl Hng Hnn — € Cn

is in particular easy to solve, since the problem is reduced to finding the eigen-
values and eigenvectors of an n x n matrix. In this case there exists a in general
unitary matrix U

vu=uvur=1 ., ul=u; , (31)

11t should be noted that a set of basis functions can always be transformed into a set of
orthonormal basis functions
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such that by multiplying (29) from the left with U ,

——
A

U'He = UTHU U'e =eU'c (32)

where A is a diagonal matrix

A0 O
\ 0 X O (33)
A= . . 33
0 O K

It should be noted that U'c is nothing but a basis transformation, which
leaves the determinant unchanged!
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Figure 11: Spin induced splitting of atomic line spectra

7 The electronic spin, permutational symmetry
and the Pauli principle

If one records the emission spectrum of an atom in the absence and in the
presence of an external magnetic field one finds for example for a transition
from a 2p-level to a 1s-level different patterns. In the absence of the field only
one line is recorded, whereas in the presence of this field three lines can be
observed (see Figure 11). This is totally in accordance with the very meaning of
the term magnetic quantum number, namely that the degeneracy with respect
to the eigenvalues of L, is lifted. Increasing the resolution, however, one finds
that two of these lines are in fact double lines.

This doubling of lines implies that the particle (electron) must have an addi-
tional property, which up to now was not included in its formal description. This
property is the (electronic) spin (German: ”Eigendrehimpuls”) of the electron.
The reason for this formal deficiency is that the correspondence principle was
only applied to problems of classical mechanics (classical Hamilton functions),
which clearly does not include Einsteins theory of relativity. Strictly speaking
a formal description of the spin can only be based on a theory of a relativistic
motion of particles'. Without the use of a such relativistic theory the properties
of the electronic spin can only be stated in terms of postulates, and admittingly
remain slightly vague.

Isee for example chapter 17
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7.1 Spin postulates
7.1.1 DPostulate 1:

The components of the spin momentum operator S commute in the same formal
way as the components of the angular momentum operator L, namely

Sy, 8]~ =ihS. (7)
Sy, S:]- = ihS, | 8)
S.,8,]- =ihS, | (9)
and the square of Sis given by
S2=824+52+52 . (10)

7.1.2 Postulate 2:

For an electron there are only two eigenfunctions of 52 and §z, namely « and
B, corresponding to the following eigenvalue equations

a2 711 2
Sa—2(2+1)ha ) (11)
a2 11 2
SB=5(5+DR°B (12)
2°2
§za:%ha , (13)
iﬁz—;w . (14)

In analogy to the case of the angular momentum operators these eigenvalue
equations are usually written as

§2a:s(s+1)h2a , §2625(s+1)h26 , s:% , (15)

~ . 1
S.a=msha , S.B=mshB , m, :i§ . (16)

The functions a and 3 are so-called spinors,

a:(})) , (7)
i=(1) - (18)

Traditionally the elements in these 2-vectors are labelled (in a somewhat con-
1 such that o and S can also be viewed as

fusing manner) by o = 5 and 0 = _%’
the following orthonormalized functions, usually called spin functions

o1
70-_5

P 1 ) (19)
0 = 2

alo)=1{ ,
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so) =) 723, (20
U_i%a(a)Ta(U) —(10) ( . ) —1 (21)
X peree)=(o 1 (9)-1 (22)
oo =10 1(9)-=0 - 2
U_i%B(J)Ta(U) —(0 1 )( ; ) —0 . (24)

7.2 Atomic spin orbitals

In a non-relativistic description the operators §x, §y, §Z and S2 only act on the
spin functions, i.e. for the Hamilton operator of the single electron atom ( the
hydrogen atom for example) the following commutator relations apply trivially,

[H,8%_ =[H,S.)- =[HL*_ =[H L] =0 |, (25)
[1%,5%_=[L.,S.]- =0 . (26)

Since the eigenvalue of 52, s(s + 1)h? is the same for all electrons, namely 3h2 /4
only the eigenvalue §z, mgsh, ms = i%, can be used for a further characterization
("symmetry”) of an energy eigenvalue in the atomic single electron problem.
The corresponding eigenfunctions can therefore be characterized by the four
quantum numbers:

principal quantum number
angular momentum quantum number
magnetic quantum number

s spin quantum number

33 TS

The eigenfunctions are products of atomic orbitals and spin functions

U, im,m, (T, 0) = { wnylm(r)a(a) _

wn,lm (r)ﬁ(a)
_ [ Buat)Y(0,0)a(0)
={ Trtnim(n o) 27
St i (0)0(0) = Yy 1 (D8-0(0) = 50 4 (E)alo) . (29)
St i ()B(0) = 10 (1)5.5(0) = 3P 1 ()B(0) - (29)
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The atomic spinorbitals U,, ;,,, . (r, o) are orthonormalized wavefunctions

> / U2 i (0,0t (v, 0)dr =1 (30)

11
o=%3

7.3 The Pauli principle - version 1

The Pauli principle is a principle, independent of the Schrodinger equation.
In the context of a single electron theory of atoms it can be stated as follows:

Two electrons in an atom never can have the same set of (atomic)
quantum numbers.

For the energy eigenvalues of the He atom this implies that the two electrons
must have different quantum numbers. Denoting the atomic orbital of electron
1 by ¢(1) and that of electron 2 by ¢(2) and using the numbering for the
electrons also as argument for the spin functions, the ground state wavefunction
Yag(1,2) = ag(ry, ra) of the He atom , where ry and ro denote the coordinates
of the two electrons, obviously refers to the case that both, ¢(1) and ¢(2) are
1s-orbitals, formally written as 1s(1) and 1s(2). The two electrons must differ
therefore in their spin functions:

Yas(1,2) = 6(1)9(2)a(1)8(2) = 1s(1)1s(2)a(1)5(2) (31)

For the first excited state of the He atom, however, in principle two possibilities
of assigning atomic orbitals to the spin-independent part of the wavefunction
dps(l,2) exist

[ 1s(1)2s(2)

which would imply that the two electrons are distinguishable! Since this can not
be the case - just as the Hamilton operator can not dependent on the choice of
the coordinate system (principle of coordinate invariance), one forms normalized
linear combinations of the above two possibilities. If P denotes an operator that
permutes the indices of the electrons, one can see easily that two cases arise.
The first one, denoted by an index s,

1
Pps(1,2) = —= (15(1)2s(2) + 1s(2)2s(1)) (33)
V2
is symmetric with respect to a permutation of the indices for the electrons,

Pgiys(1,2) = ¢s(2,1) = - (15(2)2s(1) + 15(1)25(2)) =

V2

69



i.e. does not change the sign of the spin-independent part of the wavefunction,
when permuting the numbering of the electrons. The second one, however,

1
2s(1,2) = —= (1s(1)2s(2) — 1s(2)2s(1 , 35
ws(1,2) \/5(()() (2)2s(1)) (35)
is antisymmetric with respect to such a permutation.

Pois(1,2) = ¢F5(2,1) = % (15(2)2s(1) — 1s(1)2s(2)) =

= —0ps(1,2) . (36)

Concomitantly the two electrons can not be distinguished with respect to their
spin. Again the product of the corresponding spinfunctions has to be checked
with respect to a permutation of indices and also with respect to the eigenvalue
of S,. For example:

Pa(1)a(2) = a(2)a(l) = a(D)a(2) (37)

S.a(1)a(2) = a(2)S.a(1) + a(1)8.a(2) =
= h(my(Da(1)a(2) + my(2)a(D)a(2)) = h(ms(1) +ms(2) a(1)a(2) =
=hM;a(l)a(2) . (38)

For the various products of the two spin functions one can construct a little
table and note the occurring permutational symmetry, using as before ”s” for
symmetric and "as” for antisymmetric, respectively:

product symmetry M,

a(l)a(2) 1

B(1)B(2) N
L (a(D)a(2) + B(1)B(2) s 0
I (@)a(2) - B(1)A(2))  as 0

As one can see from this table, three out of four product functions are
symmetric and only one is antisymmetric.

In the same way as M was obtained, also the total spin can be determined.
For example,

S2a(1)a(2) = 1 (s(1)(s(1) + Der(D)x(2) + 5(2)(s(2) + Da(1)a(2)) =

=h2S(S + Da()a(2) . (39)
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Thus, if N is the total number of electrons then the total spin S and the total
spin quantum number M are given by:

S=>s(i) , MS=ZmS(i) : (40)

i=1

Combining finally the spin-independent parts (orbital parts) of the wave-
function with the products of the spinfunctions, one has to remember that the
product of two symmetric functions is symmetric, while the product of a sym-
metric function with an antisymmetric function results in an antisymmetric
function. Symbolically written the following short-hand rule applies:

| symmetric ® symmetric = symmetric‘ (41)
|symmetric ® antisymmetric = antisymmetric| (42)
| antisymmetric ® antisymmetric = symmetric| (43)
For example
S L (1s(1)2s(2) 4+ 1s(2)2s(1)) a(D)(2)

V2

is symmetric with respect to a permutation of the indices for the two electrons,
while

)= % (1s(1)25(2) + 15(2)2s(1)) (a(1)5(2) — (2)5(1))

is antisymmetric.

7.4 The Pauli principle - version 2

The wavefunction of a system of electrons has to be antisymmetric
with respect to a simultaneous permutation of the coordinates and of
the spins of two electrons.

The wavefunction of a system of Fermions has to be antisymmetric
with respect to permutational symmetry, that of Bosons symmetric,
whereby Fermions are particles with half-integer spins (%, %, %, ...) like
electrons, protons, neutrons etc. and Bosons particles with integer
spin (0,1,2,...) like photons, a—particles (He nuclei) etc.

For the above example of the wavefunction for the excited state of a He
atom, one gets therefore the following three (triplet) antisymmetric wavefunc-
tions that have antisymmetric orbital parts and symmetric spin parts and which
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in the absence of an external magnetic field belong all to one degenerated energy
eigenvalue

) a(l)a(2)
% ((1s(1)25(2) — 15(2)25(1)) {75 (@(1)B(2) + a(2)6(1))  (44)
B1)B(2)

and one (singulet) antisymmetric wavefunction that is symmetric in its orbital
part and antisymmetric in the spin part

wTriplet —

wSingulet _

((1s(1)2s(2) + 15(2)25(1)) (a(1)B(2) = «(2)5(1)) . (45)

N | =

In general the number of spin functions that in the absence of a magnetic field
belong to one and the same energy eigenvalue is given by (25 + 1) the so-called
multiplicity. The multiplicity and the total spin quantum number M, are then
used to characterize a particular (antisymmetric) wavefunction of a in general
n-electron system

1N1,2,3,.,n) (46)
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Figure 13: Spin induced splitting of atomic line spectra

8 The electronic spin, permutational symmetry
and the Pauli principle

If one records the emission spectrum of an atom in the absence and in the
presence of an external magnetic field one finds for example for a transition
from a 2p-level to a 1s-level different patterns. In the absence of the field only
one line is recorded, whereas in the presence of this field three lines can be
observed (see Figure 18). This is totally in accordance with the very meaning of
the term magnetic quantum number, namely that the degeneracy with respect
to the eigenvalues of L, is lifted. Increasing the resolution, however, one finds
that two of these lines are in fact double lines.

This doubling of lines implies that the particle (electron) must have an addi-
tional property, which up to now was not included in its formal description. This
property is the (electronic) spin (German: ”Eigendrehimpuls”) of the electron.
The reason for this formal deficiency is that the correspondence principle was
only applied to problems of classical mechanics (classical Hamilton functions),
which clearly does not include Einsteins theory of relativity. Strictly speaking
a formal description of the spin can only be based on a theory of a relativistic
motion of particles'. Without the use of a such relativistic theory the properties
of the electronic spin can only be stated in terms of postulates, and admittingly
remain slightly vague.

Isee for example chapter 17
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8.1 Spin postulates
8.1.1 Postulate 1:

The components of the spin momentum operator S commute in the same formal
way as the components of the angular momentum operator L, namely

Sy, 8]~ =ihS. (7)
Sy, S:]- = ihS, | 8)
S.,8,]- =ihS, | (9)
and the square of Sis given by
S2=824+52+52 . (10)

8.1.2 Postulate 2:

For an electron there are only two eigenfunctions of 52 and §z, namely « and
B, corresponding to the following eigenvalue equations

a2 711 2
Sa—2(2+1)ha ) (11)
a2 11 2
SB=5(5+DR°B (12)
2°2
§za:%ha , (13)
iﬁz—;w . (14)

In analogy to the case of the angular momentum operators these eigenvalue
equations are usually written as

§2a:s(s+1)h2a , §2625(s+1)h26 , s:% , (15)

~ . 1
S.a=msha , S.B=mshB , m, :i§ . (16)

The functions a and 3 are so-called spinors,

a:(})) , (7)
i=(1) - (18)

Traditionally the elements in these 2-vectors are labelled (in a somewhat con-
1 such that o and S can also be viewed as

fusing manner) by o = 5 and 0 = _%’
the following orthonormalized functions, usually called spin functions

o1
70-_5

P 1 ) (19)
0 = 2

alo)=1{ ,
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so) =) 723, (20
U_i%a(a)Ta(U) —(10) ( . ) —1 (21)
X peree)=(o 1 (9)-1 (22)
oo =10 1(9)-=0 - 2
U_i%B(J)Ta(U) —(0 1 )( ; ) —0 . (24)

8.2 Atomic spin orbitals

In a non-relativistic description the operators §x, §y, §Z and S2 only act on the
spin functions, i.e. for the Hamilton operator of the single electron atom ( the
hydrogen atom for example) the following commutator relations apply trivially,

[H,8%_ =[H,S.)- =[HL*_ =[H L] =0 |, (25)
[1%,5%_=[L.,S.]- =0 . (26)

Since the eigenvalue of 52, s(s + 1)h? is the same for all electrons, namely 3h2 /4
only the eigenvalue §z, mgsh, ms = i%, can be used for a further characterization
("symmetry”) of an energy eigenvalue in the atomic single electron problem.
The corresponding eigenfunctions can therefore be characterized by the four
quantum numbers:

principal quantum number
angular momentum quantum number
magnetic quantum number

s spin quantum number

33 TS

The eigenfunctions are products of atomic orbitals and spin functions

U, im,m, (T, 0) = { wnylm(r)a(a) _

wn,lm (r)ﬁ(a)
_ [ Buat)Y(0,0)a(0)
={ Trtnim(n o) 27
St i (0)0(0) = Yy 1 (D8-0(0) = 50 4 (E)alo) . (29)
St i ()B(0) = 10 (1)5.5(0) = 3P 1 ()B(0) - (29)
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The atomic spinorbitals U,, ;,,, . (r, o) are orthonormalized wavefunctions

> / U2 i (0,0t (v, 0)dr =1 (30)

11
o=%3

8.3 The Pauli principle - version 1

The Pauli principle is a principle, independent of the Schrodinger equation.
In the context of a single electron theory of atoms it can be stated as follows:

Two electrons in an atom never can have the same set of (atomic)
quantum numbers.

For the energy eigenvalues of the He atom this implies that the two electrons
must have different quantum numbers. Denoting the atomic orbital of electron
1 by ¢(1) and that of electron 2 by ¢(2) and using the numbering for the
electrons also as argument for the spin functions, the ground state wavefunction
Yag(1,2) = ag(ry, ra) of the He atom , where ry and ro denote the coordinates
of the two electrons, obviously refers to the case that both, ¢(1) and ¢(2) are
1s-orbitals, formally written as 1s(1) and 1s(2). The two electrons must differ
therefore in their spin functions:

Yas(1,2) = 6(1)9(2)a(1)8(2) = 1s(1)1s(2)a(1)5(2) (31)

For the first excited state of the He atom, however, in principle two possibilities
of assigning atomic orbitals to the spin-independent part of the wavefunction
dps(l,2) exist

[ 1s(1)2s(2)

which would imply that the two electrons are distinguishable! Since this can not
be the case - just as the Hamilton operator can not dependent on the choice of
the coordinate system (principle of coordinate invariance), one forms normalized
linear combinations of the above two possibilities. If P denotes an operator that
permutes the indices of the electrons, one can see easily that two cases arise.
The first one, denoted by an index s,

1
Pps(1,2) = —= (15(1)2s(2) + 1s(2)2s(1)) (33)
V2
is symmetric with respect to a permutation of the indices for the electrons,

Pgiys(1,2) = ¢s(2,1) = - (15(2)2s(1) + 15(1)25(2)) =

V2
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i.e. does not change the sign of the spin-independent part of the wavefunction,
when permuting the numbering of the electrons. The second one, however,

1
2s(1,2) = —= (1s(1)2s(2) — 1s(2)2s(1 , 35
ws(1,2) \/5(()() (2)2s(1)) (35)
is antisymmetric with respect to such a permutation.

Pois(1,2) = ¢F5(2,1) = % (15(2)2s(1) — 1s(1)2s(2)) =

= —0ps(1,2) . (36)

Concomitantly the two electrons can not be distinguished with respect to their
spin. Again the product of the corresponding spinfunctions has to be checked
with respect to a permutation of indices and also with respect to the eigenvalue
of S,. For example:

Pa(1)a(2) = a(2)a(l) = a(D)a(2) (37)

S.a(1)a(2) = a(2)S.a(1) + a(1)8.a(2) =
= h(my(Da(1)a(2) + my(2)a(D)a(2)) = h(ms(1) +ms(2) a(1)a(2) =
=hM;a(l)a(2) . (38)

For the various products of the two spin functions one can construct a little
table and note the occurring permutational symmetry, using as before ”s” for
symmetric and "as” for antisymmetric, respectively:

product symmetry M,

a(l)a(2) 1

B(1)B(2) N
L (a(D)a(2) + B(1)B(2) s 0
I (@)a(2) - B(1)A(2))  as 0

As one can see from this table, three out of four product functions are
symmetric and only one is antisymmetric.

In the same way as M was obtained, also the total spin can be determined.
For example,

S2a(1)a(2) = 1 (s(1)(s(1) + Der(D)x(2) + 5(2)(s(2) + Da(1)a(2)) =

=h2S(S + Da()a(2) . (39)
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Thus, if N is the total number of electrons then the total spin S and the total
spin quantum number M are given by:

S=>s(i) , MS=ZmS(i) : (40)

i=1

Combining finally the spin-independent parts (orbital parts) of the wave-
function with the products of the spinfunctions, one has to remember that the
product of two symmetric functions is symmetric, while the product of a sym-
metric function with an antisymmetric function results in an antisymmetric
function. Symbolically written the following short-hand rule applies:

| symmetric ® symmetric = symmetric‘ (41)
|symmetric ® antisymmetric = antisymmetric| (42)
| antisymmetric ® antisymmetric = symmetric| (43)
For example
S L (1s(1)2s(2) 4+ 1s(2)2s(1)) a(D)(2)

V2

is symmetric with respect to a permutation of the indices for the two electrons,
while

)= % (1s(1)25(2) + 15(2)2s(1)) (a(1)5(2) — (2)5(1))

is antisymmetric.

8.4 The Pauli principle - version 2

The wavefunction of a system of electrons has to be antisymmetric
with respect to a simultaneous permutation of the coordinates and of
the spins of two electrons.

The wavefunction of a system of Fermions has to be antisymmetric
with respect to permutational symmetry, that of Bosons symmetric,
whereby Fermions are particles with half-integer spins (%, %, %, ...) like
electrons, protons, neutrons etc. and Bosons particles with integer
spin (0,1,2,...) like photons, a—particles (He nuclei) etc.

For the above example of the wavefunction for the excited state of a He
atom, one gets therefore the following three (triplet) antisymmetric wavefunc-
tions that have antisymmetric orbital parts and symmetric spin parts and which
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in the absence of an external magnetic field belong all to one degenerated energy
eigenvalue

) a(l)a(2)
% ((1s(1)25(2) — 15(2)25(1)) {75 (@(1)B(2) + a(2)6(1))  (44)
B1)B(2)

and one (singulet) antisymmetric wavefunction that is symmetric in its orbital
part and antisymmetric in the spin part

wTriplet —

wSingulet _

((1s(1)2s(2) + 15(2)25(1)) (a(1)B(2) = «(2)5(1)) . (45)

N | =

In general the number of spin functions that in the absence of a magnetic field
belong to one and the same energy eigenvalue is given by (25 + 1) the so-called
multiplicity. The multiplicity and the total spin quantum number M, are then
used to characterize a particular (antisymmetric) wavefunction of a in general
n-electron system

1N1,2,3,.,n) (46)

References

[1] W.Pauli, ”Die allgemeinen Prinzipien der Wellenmechanik”, Handbuch der
Physik, Bd XXIV, Part 1 (1933)
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9 Determinantal wavefunctions, permutational
symmetry and the Hs molecule

The Hs molecule - the simplest molecule, but H2+ - poses already a four-body
problem. For given (fixed) positions of the nuclei the Hamilton operator for the
Hs molecule can be read off from Figure 15. In atomic units (A =m =e = 1)
this Hamilton operator is given by

~ 1 1 1 1 1 1 1 1

H=—--V?-_V}{ —  —  — 4+ — 4+ 1

2°1 272 ra ray rp rpy T2 R @)

where 1/R describes the repulsion of the nuclei and 1/r15 the interaction be-
tween the two electrons. By rewriting this Hamilton operator in the following
way,

~ 1 1 1 1 1 1 1 1
=y v 2l ) e L DL, 2
{ 21 g TB1}+{ 22 ra TBQ}+T12+R @

hr hrr

one can see that the Hamilton operator is of the form

H=Hy+V |, (3)
where
Ho=hi+hir (4)
and
V= (5)
712

if one considers 1/R as a constant contribution to the energy (Born-Oppen-
heimer approximation). Quite clearly h 1 as well as h 171 refers to the Hamilton
operator of the Hj molecule. Considering first the Hy problem in terms of first
order perturbation theory, the unperturbed wave function is given by

$(1,2) = ¢, (1) (2) (6)

namely as the product of the wave functions for the two independent "Hj -
motions”.
By means of the wave function for the HJ molecule (see chapter 7),

XA+ X8 1
==, o = — —Ta) :A,B 3 7

where x,, is hydrogen 1s-atomic wavefunction centered in nucleus o and S is the
overlap integral, the ground state energy for the Hy molecule is easily obtained
within first order perturbation theory using (6)

E(R) :QEH;(R)+//¢°(1,2)*é¢0(1,2)d71dm . (8)
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fiz

Figure 15: Coordinate system for the Hy molecule

The result of this calculation is compared in the table below with the corre-
sponding experimental results

experimental perturbation theory

total energy -31.93 eV -29.88 eV
dissociation energy -4.75 eV -2.67 eV
equilibrium separation 0.74 A 0.85 A

Again one can that obviously the perturbation is not small enough to yield
a result close to experiment, which in turn implies that in the end the vari-
ational method has to be applied in order to get reasonably good agreement
with experiment. In general this performed by using suitably chosen variational
parameters for the spin-orbitals and minimizing the expectation value of the
Hamilton operator. This in fact is the essence of the following section.

9.1 Slater determinants

According to the Pauli principle the unperturbed wave function has to be
antisymmetric, i.e., by neglecting as before any interaction between the angu-
lar momentum and the spin of the electrons (non-relativistic description), the
unperturbed wave function is given as the following product of spin-orbitals

W(1,2) = A{o(D)a(1)6(2)5(2)} 9)
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where ¢(1) and ¢(2) refer to the orbital parts of the wave function for electron
one and two, respectively, and «(1) and [(2) are their spin functions. The
operator A is the so-called antisymmetrizer, that takes care of the proper
permutational symmetry! for the indices of the electrons. As was shown by
Slater the condition of antisymmetric behavior for the total wave function is
always fulfilled if written as a determinant

v0(1,2) = A{e(1)a(1)¢(2)(2)} =

= N{o(1)a(1)¢(2)5(2) — o(1)A(1)(2)a(2)} (10)

where N is the normalization constant.
In general for an electronic system of 2n electrons the corresponding 2n
spin-orbitals can be arranged in the following Slater determinant,

1/)(1,2, ..,TL) = (ll)
o1 (Nafl) o (1)BA) -+ ¢, (1)a(l) ¢, (1)B(1)
#1(2)(2)  $1(2)B(2) -+ 9,(2)a(2) #,(2)3(2)
6.(20)a(2n) o e b (2n)a2n) 6, (2n)B(2n)

There are n electronic coordinates for the 2n electrons. Schematically the Slater
determinants have 2n rows for the 2n electrons and n columns for the n orbitals,
whereby each column consists of two columns, an « column and a 8 column,

orbital 1 orbital n
electron 1 afB| e ap
electron 2 af| e a B (12)
electron 2n  |(a B ------
i.e., the arrangement is as follows
n orbitals = 2n spin-orbitals — —
! O O
2n electrons O n (13)
! O O

Isee also chapters 14, 15 and 18 for further discussions
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9.2 The Hartree-Fock method
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9.3 Two-atomic molecules

N atom N> molecule N atom
2pz, 2py - ——  2ps,2py
R
. —— 302 ———ll-—- —— .
205 ——— 11—~
252 — —— 252
203 - =T ---

02 ———l1---

152 —— —— 152
103 e i

N atom : 15%225%22p3
Na molecule : 10310%2032033031773

O — atom O molecule O — atom
R

2pz,2py  —— ——  2pg,2py
e

% —— 3% ———ll-—— ——
2% ———11-—-

252 —— —— 252
203 ———|T-—-
e

152 —— —— 152
103 —— =T -—-

O atom : 1s%25%2p*
Oy molecule : 10210%20220230 21wy 1%
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C — atom CO molecule O — atom

- 2px72py

e

2. —— b’ ———ll--— ——
100 -1~

252 —— —— 252
e
200 ——— 11—~

152 — — 152
e

C atom : 15%2522p? O atom : 1522s2p*
CO molecule : 16220230%402%502 174

References

[1] W.Pauli, ”Die allgemeinen Prinzipien der Wellenmechanik”, Handbuch der
Physik, Bd. XXIV, 1933
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10 First order time dependent perturbation the-
ory and the basic principles of spectroscopy

10.1 An overdue change of notation - the Dirac notation

Let H (r) be the Hamilton operator in the following eigenvalue equation:

ﬁ(r)%(r) :Eiwi(r) , i=1...,n (1)

where 1, (r) is the eigenfunction to the i-th eigenvalue E;. Suppose now that
,(r) is rewritten in the following way

Yi(r) =(r ;) (2)
Yi(r) = [r) (3)

such that the normalization integrals and orthogonality relations can be formu-
lated using the below notation

Juiwuwir = [ o v -

=<¢i|/|r><r|dr\¢i>5<wi|¢¢>E<i|i>=1 ; (4)
=1

/ () (x)dr = / (Wi | 1) | ;) dr =
— (| 0,) = i | ) = b3 - (5)

From the completeness relation for Hermitian operators follows then that

r|y;); | r)dr= [(r ;) (Y, rydr=1 | 6
;/u YW | 1) /<|<Z % |>|> (6)

=I

where T is the identity operator

n

Z\%M% =D lil=1 . (7)

i=1

This last equation is sometimes also called the ”resolution of the identity”. The
notation, introduced in (1) - (7) is the famous Dirac notation. Since brackets
are used to abbreviate occurring integrals, states such as (¥, | r), (¥, |, (i | are
frequently called ”bras” ("bra”-states) and (r | ¥,), | ¥,), | i) as "kets” ("ket”-
states). Quite clearly the Dirac notation simplifies considerably the notation in
quantum mechanics.
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10.2 Transition probabilities

Suppose ﬁo is the time-independent Hamilton operator in the following eigen-
value equation

Hy|n)=EJ|n)=Ey|n) | (8)
didmnl=1 5  (m|n)=6m , (9)

n

and V(t) is a time-dependent perturbation of the following form,

W) ;0<t<r

?(t) ={ 0 ; otherwise (10)
such that the total Hamilton operator H (t) is time-dependent
Ht)=Hy+V(t) , —co<t<oo . (11)
The time-dependent Schrédinger equation
o) = (o + V(1) vlt) (12

has now of course no longer stationary states, however, ¥(¢) can be expanded
in the eigenfunctions of Hy,

Zan | n) exp(—iE,t/h) = Zan . (13)

This expansion is usually called the superposition principle, since multi-
plying from the left with (m | yields directly an interpretation of | ) as an
”ensemble” of states

P (t) =| ) exp(—iEnt/h) (14)
with the statistical weight a,(t) :

(m | ) = Zan (m | n) exp(—iEnt/h) = am(t) exp(—iE,t/R) ,  (15)
_5mn
Ay, ()am(t) =| am(t) 7= (¥ [m) (m[4) (16)
Y lam(®) P=) @ [ m) (m|y) =
= (@[> Im) fm[¢)=(@|v)=1 . (17)
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By using now this ensemble in the time-dependent Schrédinger equation one

gets
S {im P au0) )y pespl-iBnt/h) =

n

= 5" (o + V(1)) an(t) | m) exp(—iEat/B) (18)

This equation can be rearranged thus that one can read off the parts referring
to the eigenvalue equation for Hy

> {| 2D 4oty Im) 2~ o,y n>} exp(~iF5,t/h) =

n

than t) | nyexp(—iEnt/h) (19)

i.e., one gets

Oan(t)
> i

Multiplying now from the left with ¢, (¢t) = (m | exp(iE,,t/h) yields an expres-
sion for the time-evolution of the expansion coefficients

exp(—iE,t/h) = Zan OV (t) | n)exp(—iE,t/h) . (20)

5 | 22D ey 8, - B, /) = LD
n =6
== Zan (m | V(t) | n)exp (i(Ep — En)t/h) . (21)

In order to solve this system of partial differential equations for the expansion
coefficients, the following assumptions (boundary conditions) shall be made:
(1) the perturbation V (t) is sufficiently small, such that

aamt th ) (m | V() | n)exp (B — EJE/E) ,  (22)

(2) there is a well-defined initial state at ¢t =0

1 ;n=1

w®={y "2 (23)

(3) for not too large time intervals T

T

am (1) = ﬁ/ (m | \7(1&) | n) exp (i(En — Ep)t/h)dt (24)

0
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whereby no explicit integration constant appears, since a;(0) = 1 and a,,(0) =
0,Vn#1.

If one finally uses | i) for the initial and | f) for the final state and
abbreviates the difference of eigenvalues in the following way

wri = (Ey = E;)/h (25)
one can see that the probability W;; for the system, which was at ¢ = 0 in
state | i) , to be after the time-lap 7 in state | f) is given by

- 2

W=l as(r) P= gz | [ (1700 [Despliondt] . (20)

0

10.3 Constant perturbation

The most easiest case of a time-dependent perturbation is of course a constant

W ;0<t<r

Vi) =1 0 ; otherwise (27)

For the matrix element in (26), namely for the time-integral, one obtains
T T

[ 1w ipexptogitide = (£ |W i) [ explisityit =

0 0

Wi .
= LD (epfionyr) - 1) (28)
W i
from which very easily the transition probability W;s can be calculated,

L(fIW]i) G| W
Wif:ﬁ<f| |ZZJ?<Z | f)

(exp(—iwys;T) — 1) (expliwpT) — 1) =

_LIAIwaF

= 2 — exp(—iwygT) —exp(iwpT) p =
h2 w?cl K2 (2

=—2cos(wy;T)
2

= I 1W 19 1 = eosferim)] (29)

=F(Ef—E;)

The function F(E; — Ey), obviously the key quantity for the transition proba-
bility, can be rewritten in the following way (see (25) )

(B, - B) = 1 —cos (E;—ET) . 1—cos (E’;—Er) 50)
! v (Ef;LE'i)Q - (Ef — Ep)?t/h
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If one abbreviates for a moment 7/ by % , then in the limit of Kk — 0 the
fraction in the last equation leads to a very famous function, the so-called Dirac
d-function ,
1- E;—E;
L1 cos (s(Ey — E)
woh T R(Ey - B

= n8(E; — E;) . (31)

The Dirac d-function has for example the following useful properties

0(z) =6(—x) , b(ax)= ri‘é(x) , xd(x)=0 |, (32)
f(@)d(z —a) = f(a)d(z —a) , (33)
[ Ha—w)st—ady = fo =) . (31)

In terms of the Dirac d-function the transition probability in (29) is therefore
given by

Wi = @n/B)|(f | W | )|* 78(Ef — E;) (35)

Finally, in order to get rid of 7, which frequently is also called the characteristic
time, one can define a transition probability per characteristic time (unit time),
the so-called transition rate

Piy = (2n/0) [(F | W | )] 8(E; - E) (36)

This last equation is very frequently termed Fermi golden rule.

10.4 Periodic perturbation
If one considers now a periodic perturbation of the following kind

S Whexp(diwt) ; 0<t<T
Vie) ={ 0 ; otherwise
then the matrix element is simply given by the integral,

T

/w|wiuwm@wﬂimwﬁ
0

from which exactly in the same manner as before the transition probability per
unit time is obtained,

P = 2r/h) [(f | W | 4)]* 6(Ef — E; + w) (38)

whereby usually the Dirac d-function 6(Ey — E; £ w) is called energy conser-
vation.
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10.5 Classical interaction with the electro-magnetic field

Finally the classical interaction of matter with the electro-magnetic field shall
be considered. The interaction of a particle of mass p and charge e is given
(non-relativistically) by

2

W(t)=——(A-p)+ 5 A (39)

pe 2

where A is the vector potential as related to the electric field via the Maxwell

equation,
_ 10A
e ot
p is the momentum and c is the speed of light. Because of ¢ the second term
in (39) is by orders of magnitudes smaller than the first term. The interaction
operator can therefore be assumed to be of the following form
e
Wi(t)=—-——(A" . 40
(=-"(A-p) (40)
Furthermore the vector potential can be viewed as a plane wave in ”space” and
”time”, i.e., can be written as

A = Apu{exp(—ik - r) exp(iwt) + exp(ik - r) exp(—iwt)} (41)

where u is the polarization vector, k is the wave vector, which determines
the direction of propagation, w is the frequency and Ay is the amplitude of the
vector potential, which usually is chosen in a standardized manner. According
to the last equation the perturbation operator is of the same form as already
discussed in the previous section:

W (t) = Wexp(iwt) + W'exp(—iwt) (42)

W= —iAo(u -p)exp(—tk-r) , “emission” | (43)
pe

Wt = —iAo(u -p)exp(tk-r) , “absorption” . (44)
pe

The term ”"emission” refers to the case that the system ”looses” energy and
similarly ”absorption” means ”gaining” of energy with respect to the so-called
energy conservation (see 38).

Considering now only the case of "emission” , the transition probability
per unit time is given by the general case of a periodic perturbation, namely as

Py = (2 /) |{f | W | §)” 6(Ey — Ei+ hw) . (45)

The only remaining part to be evaluated is now the matrix element itself,

<MWW®=—iAMNOPMwM4kﬂH>- (46)

91



Using the well-known power series for the exponential function,
1
exp(—ik-r)=1—1ik-r)+ E(—ik )i,

and keeping only the first term, one ends up with the so-called dipole approx-
imation (exp(—ik-r) ~ 1),

<f\W|z‘>zﬁAo (| (-p)li) . (47)

However, since u is a classical vector, one just as well can form the scalar product
of this vector with the matrix element of the momentum vector p

<f\W|z‘>~—§Ao<u-<f|p>|z‘>> . (48)

Finally one can make use of the fact that the commutator of the unperturbed
Hamilton operator Hy and r is given by!

[ﬁo,r}7 = %p , (49)

from which immediately follows that
ih ) = . =
—(fIpli) =(f1Hor[1) —(f |rHo | i) =
1% N’ N —r
=Es(fl =E;i)

= (By = E)(f|x]d) . (50)
For the matrix element in (48) this last identity therefore yields

. 1 Ey - E; .
GIw iy~ —Lag BB ey | =
> h N
dfi
1
:*EAowfi(u'dfi) , (51)

where d;y is nothing but the matrix element for the electric dipole. Finally now
reading off in Figure 16 the set-up for the vectors u and d with respect to the
direction of propagation of light (k) and recalling that the polarization vector
is a unit vector, one can see immediately that

(u-dy;) = |dyg|sing . (52)

If therefore the electric dipole vector is perpendicular to k (sin # = 1, >unpolarized
light”), then by omitting the constant (27 /c?h) A2 in front, the transition prob-
ability per unit time is given by

Ppi = w¥; |dyl* 6(Ey — Ei + hw) (53)

Isee also chapter 2
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Figure 16: Propagation of light

The Dirac §-function governs the ”energy conservation”, whereas the square
of the electric dipole matrix element governs the selection rules, such as for
example discussed in chapter 4 in the case of the one electron atom. In principle
this last equation determines the shape of the intensity in quite a few famous
spectroscopical techniques, such as for example photoemission spectroscopy
or x-ray emission- or absorption spectroscopy, which are widely used in all
kinds of contexts.

References
[1] E.Schrodinger, Ann.Physik 81, 109-139 (1926)

[2] P.A.Dirac, "The Principles of Quantum Mechanics”, Oxford University
Press, 1981

93



	Part-a-p1
	Part I
	Part I
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10




