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A very brief introduction is given to all that is needed to appreciate the formal
structure of the Dirac equation and why – without destroying this structure – it
cannot be reduced to a Pauli-Schrödinger type equation.
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1. Introduction

For about 30 years I have run around in Europe and in the USA and told everybody in
the field that if relativistic effects are important for a certain physical phenomenon, then
one has to use the Dirac equation rather than the Pauli-Schrödinger equation. For nearly
as long as this I have been confronted with the canonical question, but how big are
the relativistic effects? Usually whenever this question was posed in the past it was
accompanied by a pitiful smile which clearly was intended to indicate that I was obviously
addressing something completely irrelevant. The perhaps less sarcastic reply consisted
frequently in a friendly statement that I should not worry since all that is needed is to
throw in some spin-orbit interaction. My standard reply, namely the counter-question of
why should I completely neglect Einstein and his special theory of relativity, was usually
brushed aside with the comment that we are in solid state physics and not astrophysics.
This kind of attitude was (is) perhaps best expressed by Richard Feynman in his
Six Not-So-Easy Pieces [1], quoted below:

Newton’s Second Law, which we have expressed by the equation

F ¼ dðmvÞ=dt,

was stated with the tacit assumption that m is a constant, but we now know that this is not
true, and that the mass of a body increases with velocity. In Einstein’s corrected formula
m has the value

m ¼
m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p ,

where the ‘rest mass’ m0 represents the mass of a body that is not moving and c is the speed
of light, which is about 3.105 km.sec�1 or about 186 000 mi.sec�1.
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For those who want to learn just enough about it so they can solve problems, that is all
there is to the theory of relativity – it just changes Newton’s laws by introducing a correction
factor to the mass. From the formula itself it is easy to see that this mass increase is very
small in ordinary circumstances . . .

Fortunately for me it turned out that solid state physics nowadays is ruled by
nanoscience. And we all know that without relativity there would not be magnetic
anisotropies, and there would be no perpendicular magnetism. Without relativistic
effects the development in information technology would have been minute. Without
relativistic effects none of the beautiful GMR devices we have in nearly all everyday-
life devices would make sense. It seems that lately there are only a few colleagues left
who intentionally ignore relativistic effects because of not being familiar with a proper
treatment of such effects.

In this contribution a very short summary of ‘relativity essentials’ will be given.
In particular it will be pointed out why a so-called ‘four-component’ theory cannot be
reduced to a ‘two-component’ scheme without destroying the inherent algebraic structure
that follows from the general postulates of quantum mechanics and Einstein’s (special)
theory of relativity. The arguments given are based on two completely different points
of view, namely (a) application of group theory and (b) making use of the condition of
relativistic covariance. The basics of these arguments are not new; however, I hope it
perhaps helps to repeat them yet another time.

2. Minkowski space

Suppose the set of space-time vectors is given by

M ¼ x�f g, ð1Þ

x� � x0, x1, x2, x3Þ ¼ ðx0, xk
� �

¼ ct, rð Þ, ð2Þ

� ¼ 0, 1, 2, 3, k ¼ 1, 2, 3,

where x0¼ ct is the time component and r¼ (x1,x2, x3) the space component of an
arbitrary space-time vector x�. For any arbitrary pair of elements x, y2M the scalar
product in M is defined as follows

ðx, yÞ �
X3
�¼0

x�y
� ¼ x0y

0 �
X3
k¼1

xky
k, ð3Þ

and in particular therefore the norm as

kxk ¼ ðx, xÞ ¼ x0x
0 � ðr, rÞ: ð4Þ

The metric in M is said to be pseudo-Euclidean, since the metric tensor g�� is of the
following form

g�� ¼

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

0
BBB@

1
CCCA ¼ 1 0

0 �13

� �
¼ g��: ð5Þ
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The set M is sometimes also called Minkowski space.
In M a vector a is called contravariant (usually denoted by e.g. a�) if it ‘transforms like

a space-time vector’ x� and covariant (usually denoted by, e.g. a�) if it transforms like

@/@x�. The transformation of a contravariant vector by means of the metric tensor g��
yields a covariant vector:

a� ¼
X3
v¼0

g��a
� � g��a

�, ð6Þ

while by the opposite procedure a contravariant vector is obtained:

a� ¼
X3
v¼0

g��a� � g��a�: ð7Þ

It should be noted that in either case a0¼ a0. The implicit summation over repeated

indices as indicated in the last two equations is usually called the Einstein sum convention.

The product of the metric tensor with itself

X3
�¼0

g��g
�� � g��g

�� ¼ ���, ��� ¼
1, � ¼ �

0, � 6¼ �,

�
ð8Þ

is a unit matrix. A vector a� is called a space-like vector if its norm a�a
�50 and oppositely

a time-like vector if the norm is positive.
Defined in M, the gradient can be written as a covariant vector @�,

@� �
@

@x�
¼

@

@x0
,
@

@x1
,
@

@x2
,
@

@x3

� �
¼

@

@ct
,r

� �
, ð9Þ

or, as a contravariant vector @�,

@� ¼
@

@ct
,�r

� �
, ð10Þ

whereby

@�@
� � œ ¼

1

c2
@2

@t2
� r � r ¼

1

c2
@2

@t2
�� ð11Þ

is usually called the D’Alembert operator.

If A¼A(r, t) denotes the vector potential and �¼�(r, t) the scalar potential then the

electromagnetic field can be written as the following contravariant vector A�,

A� ¼ ð�,AÞ, ð12Þ

such that the electric and magnetic field, E and H, respectively, are given by

E ¼ ðEx,Ey,EzÞ ¼ �r��
@A

@x0
, ð13Þ

H ¼ ðHx,Hy,HzÞ ¼ rotA: ð14Þ
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The so-called electromagnetic field tensor F��, formally written as

F�� ¼
@A�
@x�
�
@A�
@x�

, ð15Þ

is an antisymmetric tensor in M, whose elements are given by the components of E and H,

F�� ¼

0 Ex Ey Ez

�Ex 0 �Hz Hy

�Ey Hz 0 �Hx

�Ez �Hy Hx 0

0
BBB@

1
CCCA: ð16Þ

The gradient and the electromagnetic field vectors finally can be combined to yield the

following four-component vector D�

D� ¼ �� þ ieA� ¼
@

@x0
þ ie�, �r þ ieA

� �
: ð17Þ

3. Poincaré and Lorentz transformations

Poincaré transformations are inhomogeneous linear transformations that preserve the

quadratic form x�x
�, i.e. the norm in M. Such a transformation is defined by

x�ð Þ0¼ ��
v x

� þ a�, ð18Þ

where (x�)0 is the transformed vector, ��
v a space-time point operation �, which keeps

the origin invariant, and a� a translation. If (�ja) denotes the operator that maps x�

on (x�)0,

ð�jaÞx� ¼ ��
v x

� þ a� ¼ x�ð Þ0, ð19Þ

then the matrix ��
v is the representation of the corresponding space-time point operation,

whereby matrices like ��� and ��� can be obtained by using the metric tensor g�� as

follows

��� ¼ g���
�
� :

From the condition that the norm has to be left invariant and that the transformations are

real, the properties of the matrices ��
� can be deduced, namely

���� ¼ ���, ð20Þ

����
�� ¼ ������ ¼ ��� , ð21Þ

det j��
v j ¼ �1: ð22Þ

The set of operators (�/a) forms a group, the so-called Poincaré group,

P ¼ ð�jaÞjð�jaÞð�0ja0Þ ¼ ð��0j�a0 þ aÞ
� 	

, ð23Þ
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in which the identity element (	j0) has the following representation for the pure space-time

point operation 	

Dð	Þ ¼
1 0

0 13

� �
: ð24Þ

Similarly, the pure time-inversion operator (Tj0) and pure space inversion operator (Jj0)

are defined by the representations of their corresponding space-time point operations

DðT Þ ¼
�1 0

0 13

� �
, DðJÞ ¼

1 0

0 �13

� �
: ð25Þ

The set of operators (�ja) for which �0040, i.e. which preserve the direction of time,

forms a subgroup P � P of index two:

P ¼ �ja
� �

�00

� 0
n o

, ð26Þ

since the complement ðP� PÞ is defined by

ðP� PÞ ¼ ð�jaÞ


 �jað Þ ¼ �ja

� �
ðTj0Þ

� 	
: ð27Þ

P is called the orthochronous Poincaré group, which in turn has a subgroup of index two,

namely the so-called proper orthochronous Poincaré group, Pþ, which is the set of time

conserving transformations for which det j��
v j ¼ 1:

Pþ ¼ ð�jaÞ


�00
� 0, det j��

v j ¼ 1
n o

: ð28Þ

In terms of left cosets, the Poincaré group P 	 P 	 Pþ can therefore be written as

P ¼ P, ðTj0ÞP
� 	

, ð29Þ

P ¼ Pþ, ðJj0ÞPþ
� 	

: ð30Þ

These three Poincaré groups contain as corresponding subgroups all those operations

for which the translational part is zero, i.e. a¼ 0:

L ¼ ð�jaÞ
� 	

¼ L, ðTj0ÞL
� 	

, ð31Þ

L ¼ Lþ, ðJj0ÞLþ
� 	

: ð32Þ

L is called the Lorentz group, L the orthochronous Lorentz group and Lþ the proper

orthochronous Lorentz group.
The subset of operators of the Poincaré group that corresponds to pure space

translations only also forms a subgroup, the so-called Euclidean group:

P 	 E ¼ ð�jaÞ


8a0 ¼ 0

� 	
: ð33Þ

The corresponding subgroup of the Lorentz group is the familiar rotation-inversion group

in R3. It should be appreciated that the above very brief characterization in terms of the

left coset representatives (Tj0) and (Jj0) most likely is the most compact way of viewing the

general structure of these groups. Specific aspects of group theory, namely in particular
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representation theory, will also be used in the following sections in order to pin-point the

relation between Paul spin matrices and Dirac matrices. For historical reasons it has to be

mentioned that of course Dirac in his 1928 paper [2,3] carefully ‘checked’ the Lorentz

invariance of his newly found equation in an extensive separate section.

4. The Dirac equation

For a single particle of charge e and mass m the relativistic Hamilton function is given

by1, c¼ 1,

H ¼ e�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� eAÞ2 þm2

q
, ð34Þ

where � is the scalar potential, A the vector potential and p the momentum. Assuming

now in accordance with the postulates of quantum mechanics that the probability density

�¼ * is positive definite then it follows immediately that the corresponding Hamilton

operator, Ĥ, has to be Hermitian, since:Z
@�

@t|{z}
linear

d3x ¼ �
i

�h

Z
 �Ĥ � Ĥ 

� ��
 

� �
d3x ¼ 0:

ð35Þ

For the sake of simplicity in the following discussion only the Hamilton function in

the absence of a field shall be considered:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
: ð36Þ

Since the left-hand side of (35) is linear in @/@t� @/@x0, see in particular Equation (9), this

implies that also Ĥ on the right-hand side of (35) has to be linear with respect to @/@xk,
k¼ 1, 3, i.e. with respect to components of the momentum operator p̂. This condition

is usually called the condition of relativistic covariance.
If one replaces according to the correspondence principle E! i@/@t and p!�ir, i.e.

Ĥ ¼
i@

@t|{z}
linear

 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂
2
þm2

q� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
has to be linear

 ,
ð37Þ

one can immediately see that the condition of linearity cannot be fulfilled in

a straightforward manner, since the square root is not a linear operator. As is perhaps

less known the Dirac problem [2–4], but also the problem of Pauli’s spin theory [5], can be

viewed in terms of a special polynomial algebra [14].

4.1. Polynomial algebras

Let P2(x) be a second order polynomial of the following form

P2ðxÞ ¼ a21
X
i6¼j

xixj þ a22
X
j

x2j , i, j ¼ 1, 2, . . . ,m,
ð38Þ
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where the aij are elements of a symmetric matrix. Consider further that the linear form

LðxÞ ¼
Xm
j¼1


jxj ð39Þ

satisfies the condition

P2ðxÞ þ L2ðxÞ ¼ 0: ð40Þ

Then the set of coefficients {
j} has to satisfy the following properties [14]:

i ¼ j : 
i,
j
� �

þ
¼ �2a22I, ð41Þ

i 6¼ j : 
i,
j
� �

þ
¼ �a21I, ð42Þ

where I denotes the identity element in {
j} and [, ]þ anticommutators. The set of
coefficients {
j} is called an associative algebra. Two special cases carry famous names,
namely

a21 ¼ a22 ¼ 0! 
i,
j
� �

þ
¼ 0, ð43Þ

the so-called Grassmann algebra
2 and

a21 ¼ 0, a22 ¼ �1! 
i,
j
� �

þ
¼ 2�ij, ð44Þ

the so-called Clifford algebra. Comparing now Equation (37) with Equation (36) one can
see that exactly the case of the Clifford algebra is needed in tackling the problem of the
linearization of the square root: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

p2j

 !vuut
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

P2ð pÞ

¼
Xm
j¼1


jpj|fflfflfflffl{zfflfflfflffl}
Lð pÞ

:
ð45Þ

In the following first the case for m¼ 2 and 3 (Pauli spin theory) is discussed by
considering the smallest groups with Clifford algebraic structure, and only then is the
Dirac problem (m¼ 4) addressed in a similar way.

4.2. The Pauli groups

4.2.1. The Pauli group for m¼ 2

For m¼ 2 the smallest set of elements 
i that shows group closure [11–13] is given by

G
ðm¼2Þ
P ¼ �I,�
1,�
2,�
1
2f g: ð46Þ

This group is of order 8 and has five classes (Ci), as can easily be found by using
Equation (44), see Table 1.

There are therefore five irreducible representations (�
ðm¼2Þ
i , i ¼ 1, 5) of dimensions ni

such that

X5
i¼1

n2i ¼ 8: ð47Þ
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This implies that four irreducible representations (�
ðm¼2Þ
i , i ¼ 1, . . . , 4) have to be one-

dimensional and one two-dimensional. Since one-dimensional representations are

commutative, i.e. do not satisfy the conditions of a Clifford algebra, only the

two-dimensional representation (�
ðm¼2Þ
5 ) is of help. The matrices for this irreducible

representation are listed below:

�
ðm¼2Þ
5 ð�IÞ ¼ �

1 0

0 1

 !
, �

ðm¼2Þ
5 ð�
1Þ ¼ �

0 1

1 0

 !
,

�
ðm¼2Þ
5 ð�
2Þ ¼ �

0 �i

i 0

 !
, �

ðm¼2Þ
5 ð�
1
2Þ ¼ �

i 0

0 �i

 !
: ð48Þ

Using this set of matrices it is easy to show that it indeed forms a representation of G
ðm¼2Þ
P

and that these matrices are Clifford algebraic. For the case of m¼ 2 the problem of the

linearization of the square root is therefore solved:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂21 þ p̂22

q 1 0

0 1

� �
¼ p̂1

0 1

1 0

� �
þ p̂2

0 �i

i 0

� �
: ð49Þ

4.2.2. The Pauli group for m¼ 3

For m¼ 3 the smallest set of elements di forming a group is given by

G
ðm¼3Þ
P ¼ �I,�
1,�
2,�
3,�
1
2,�
1
3,�
2
3,�
1
2
3f g: ð50Þ

The order of this group is 16. It has 10 classes (see Table 2), and therefore 10 irreducible

representations,

X10
i¼1

n2i ¼ 16, ð51Þ

of which eight (
ðm¼3Þi , i ¼ 1, . . . , 8) are one-dimensional and two (
ðm¼3Þi , i ¼ 9, 10) are

two-dimensional. Again only the two-dimensional irreducible representations are Clifford

algebraic.
For 
1 and 
2 one can use the same matrix representatives as in the m¼ 2 case,

�
ðm¼3Þ
9 ð
1Þ ¼ �

ðm¼2Þ
5 ð
1Þ, �

ðm¼3Þ
9 ð
2Þ ¼ �

ðm¼2Þ
5 ð
2Þ, ð52Þ

provided that the corresponding matrix for 
3 is defined by

�
ðm¼3Þ
9 ð
3Þ ¼ �i�

ðm¼3Þ
9 ð
1Þ�

ðm¼3Þ
9 ð
2Þ: ð53Þ

Table 1. Class structure of G
ðm¼2Þ
P .

C1 : {I}
C2 : {�I}
C3 : {�
1}
C4 : {�
2}
C5 : {�
1
2}

2592 P. Weinberger
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The second two-dimensional irreducible representation (�
ðm¼3Þ
10 ) is by the way the complex

conjugate representation of �
ðm¼3Þ
9 . It is rather easy to prove that these two irreducible

representations are indeed non-equivalent.
For the m¼ 3 case the problem of the linearization of the square root reduces therefore

to the following matrix equation:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂21 þ p̂22 þ p̂23

q
�
ðm¼3Þ
9 ðIÞ ¼ p̂1�

ðm¼3Þ
9 ð
1Þ þ p̂2�

ðm¼3Þ
9 ð
2Þ þ p̂3�

ðm¼3Þ
9 ð
3Þ: ð54Þ

The matrices

�
ðm¼3Þ
9 ð
1Þ � �1 ¼

0 1

1 0

� �
, �

ðm¼3Þ
9 ð
2Þ � �2 ¼

0 �i

i 0

� �
,

�
ðm¼3Þ
9 ð
3Þ � �3 ¼

1 0

0 �1

� �
, ð55Þ

are nothing but the famous Pauli spin matrices, usually – as indicated in the last equation –

denoted simply by �1, �2 and �3. For m¼ 2, 3 the corresponding groups, G
ðm¼2Þ
P and G

ðm¼3Þ
P ,

are called Pauli groups (as indicated by the index P).

4.3. The Dirac group

For m¼ 4 the following subset of the Clifford algebra forms the smallest group

G
ðm¼4Þ
D ¼

�
�I,�
i ði 
 4Þ,�
i
j ði5 jÞ,�
i
j
k ði5 j5 kÞ,�
1
2
3
4 � �
5

	
, ð56Þ

where ‘traditionally’ the elements 
i are usually denoted in the literature also by ��. The
order of this group is 32. It has 17 classes, and therefore 17 irreducible representations.

As can easily be checked in analogy to Equation (47) 16 of these irreducible

representations (�
ðm¼4Þ
i , i ¼ 1, . . . ,16) are one-dimensional and one is four-dimensional

(�
ðm¼4Þ
17 ). Again only the matrices of the four-dimensional irreducible representation satisfy

the conditions of the Clifford algebra.
The following matrices

�
ðm¼4Þ
17 ð
iÞ � 
i � �i ¼

0 �i

�i 0

� �
, i ¼ 1, 2, 3, ð57Þ

�
ðm¼4Þ
17 ð
4Þ �  � �4 ¼

I2 0

0 �I2

� �
, ð58Þ

Table 2. Class structure of G
ðm¼3Þ
P .

C1 : {I} C6 : {�
1
2}
C2 : {�I} C7 : {�
1
3}
C3 : {�
1} C8 : {�
2
3}
C4 : {�
2} C9 : {
1
2
3}
C5 : {�
3} C10 : {�
1
2
3}
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where the �i are the Pauli spin matrices and I2 is a two-dimensional unit matrix, are then
irreducible representatives of the elements 
i 2 G

ðm¼4Þ
D . These particular representatives,

usually as indicated above simply by 
i and , are the famous Dirac matrices; G
ðm¼4Þ
D is

called the Dirac group.

4.4. Relations between the Dirac group and the Pauli groups

4.4.1. The subgroup structure

The Dirac group G
ðm¼4Þ
D contains the Pauli groups as subgroups,

G
ðm¼2Þ
P � G

ðm¼3Þ
P � G

ðm¼4Þ
D , ð59Þ

whereby G
ðm¼2Þ
P is a normal subgroup in G

ðm¼3Þ
P and G

ðm¼4Þ
D . This implies that in a coset

decomposition of G
ðm¼4Þ
D in terms of G

ðm¼2Þ
P ,

G
ðm¼4Þ
D ¼ IG

ðm¼2Þ
P , 
3G

ðm¼2Þ
P , 
4G

ðm¼2Þ
P , 
3
4G

ðm¼2Þ
P

n o
, ð60Þ

left and right cosets are identical,


3G
ðm¼2Þ
P ¼ f�
3,�
3
1,� 
3
2,�
3
1
2g

¼ f�
3,�
1
3,�
2
3,�
1
2
3g ¼ G
ðm¼2Þ
P 
3, ð61Þ

and that G
ðm¼2Þ
P consists of complete classes of G

ðm¼4Þ
D , see Table 3, denoted for the

moment as CiðG
ðm¼4Þ
D Þ,

G
ðm¼2Þ
P ¼ C1 G

ðm¼4Þ
D

� �
,C2 G

ðm¼4Þ
D

� �
,C3 G

ðm¼4Þ
D

� �
,C4 G

ðm¼4Þ
D

� �
,C5 G

ðm¼4Þ
D

� �n o
: ð62Þ

It should be noted that G
ðm¼3Þ
P is not a normal subgroup in G

ðm¼4Þ
D , since

C17 G
ðm¼4Þ
D

� �
¼ C9 G

ðm¼3Þ
D

� �
[ C10 G

ðm¼3Þ
D

� �
: ð63Þ

4.4.2. Subduced representations

The set of matrices,

�
ðm¼4Þ
17 G

ðm¼2Þ
P

� �
� �

ðm¼4Þ
17 ð
Þ, 8
 2 G

ðm¼2Þ
P

n o
,

and

�
ðm¼4Þ
17 G

ðm¼3Þ
P

� �
� �

ðm¼4Þ
17 ð
Þ, 8
 2 G

ðm¼3Þ
P

n o
,

Table 3. Class structure of Gðm¼4ÞD .

C1 : {I}
C2 : {�I}
C3�6 : {�
i j i
 4}
C7�12 : {�
i
j j i5j
 4}
C13�16 : {�
i
j
k j i5j5k
4}
C17 : {�
1
2
3
4}
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of course also forms a representation for G
ðm¼2Þ
P and G

ðm¼3Þ
P , respectively, which, however,

is reducible. Such representations are called subduced representations. Reducing these

two representations (for example by means of the orthogonality relation for characters),

one finds the following decompositions into irreducible representations:

�
ðm¼4Þ
17 G

ðm¼2Þ
P

� �
¼ 2�

ðm¼2Þ
5 G

ðm¼2Þ
P

� �
, ð64Þ

and

�
ðm¼4Þ
17 G

ðm¼3Þ
P

� �
¼ �

ðm¼3Þ
9 G

ðm¼3Þ
P

� �
þ �

ðm¼3Þ
10 G

ðm¼3Þ
P

� �
¼ �

ðm¼3Þ
9 G

ðm¼3Þ
P

� �
þ �

ðm¼3Þ
9 G

ðm¼3Þ
P

� �� ��
:

ð65Þ

Since the irreducible representation �
ðm¼4Þ
17 of G

ðm¼4Þ
D always subduces only the group

of the Pauli spin matrices (and their complex conjugates), there is no way to linearize

properly the square root
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
for a four-component momentum in terms of 2� 2

matrices only! In other words: there is no other ‘truly’ relativistic description but the one

using the Dirac matrices:

I4 p̂21 þ p̂22 þ p̂23|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
p̂2

þ p̂24|{z}
m2

0
B@

1
CA
1=2

¼ 
1p̂1 þ 
2p̂2 þ 
3p̂3 þ p̂4 ð66Þ

Equation (66) is nothing but a consequence of the condition of relativistic covariance!
It is interesting to note that conversely by inducing representations of G

ðm¼4Þ
P from

the irreducible representations of the normal subgroup G
ðm¼2Þ
P � G

ðm¼4Þ
P (not shown here)

one indeed obtains a four-dimensional irreducible representation, namely �
ðm¼4Þ
17 .

One can summarize the properties of these three groups G
ðm¼2;3Þ
P and G

ðm¼4Þ
P very

compactly in Table 4.

4.4.3. Fundamental theorem of Dirac matrices

The so-called fundamental theorem of Dirac matrices, namely that a necessary and

sufficient condition for a set of four matrices � 0i to be Dirac matrices, i.e. to be irreducible

and Clifford algebraic, is that they have to be obtained via a similarity transformation

W from the matrices in (57), (58):

� 0i ¼W�1�iW, i ¼ 1, 4, ð67Þ

Table 4. Summary of group properties for m
 4.

m
Group-
order # of classes

# of one-
dim. irreps

# of two-
dim. irreps

# of four-
dim. irreps

2mþ1 m2
þ 1 2m

2 8 5 4 1 0
3 16 10 8 2 0
4 32 17 16 0 1
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is, in the context of the Dirac group, nothing but Schur’s lemma for irreducible

representations.

5. Dirac’s original derivation

Of course Dirac in his famous paper [2,3] did not use group theory, nor did he realize that

his matrices were Clifford algebraic. He found ‘his’ matrices by trial and error, knowing

very well, however, that if quantum mechanics and Einstein’s special theory of relativity

were to be compatible at all, then they can be found only on the condition that the

postulates of quantum mechanics had to be fulfilled rigorously.
In an appendix of his first paper he also introduced the so-called elimination method in

order to arrive at expressions that at his time were very much en vogue, namely the Darwin

term, the mass-velocity term and the spin-orbit term, the last of which causing so much

confusion in the following decades. For matters of completeness his derivation of these

terms is reformulated in the following section [7].

6. The Pauli-Schrödinger equation

Consider for simplicity a Dirac-type Hamiltonian for a non-magnetic system, in atomic

units (�h¼m¼ 1),

H ¼ ca � pþ � I4ð Þc2 þ VI4, ð68Þ

where c is the speed of light. In making use of the bi-spinor property of the wavefunction,3

 


 � ¼ �j i

�j i

� �
,

the corresponding eigenvalue equation,

H  


 � ¼ 	  

 �, ð69Þ

can be split into two equations, namely

cr � p �j i � V �j i ¼ 	 �j i,

cr � p �j i þ V� 2c2
� �

�j i ¼ 	 �j i:
ð70Þ

Clearly, the spinor j�i can now be expressed in terms of j�i:

�j i ¼ 1=2cð ÞB�1r � p �j i, ð71Þ

B ¼ 1þ 1=2c2
� �

	� Vð Þ, ð72Þ

thus leading to only one equation for j�i:

D �j i ¼ " �j i, ð73Þ

D ¼ 1=2ð Þr � pB�1r � pþ V: ð74Þ
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6.1. The central field formulation

For a central field, V(r)¼V(jrj), the operator D in Equation (74) has the same constants of

motion [8–10] as the corresponding Dirac Hamiltonian, namely the angular momentum

operators J2, Jz, and K¼ (1þ r �L):

J2 �j i ¼ jð jþ 1Þ �j i, J2 �j i ¼ jð jþ 1Þ �j i,

Jz �j i ¼ � �j i, Jz �j i ¼ � �j i,

1þ r � Lð Þ �j i ¼ � �j i, 1þ r � Lð Þ �j i ¼ �� �j i,

j ¼
1

2
,
3

2
,
5

2
, . . . ,

�j 
 � 
 j,

� ¼
�‘� 1; j ¼ ‘þ 1=2

‘; j ¼ ‘� 1=2:

(

Their simultaneous eigenfunctions are the so-called spin spherical harmonics [8],

��j i � Q


 �
¼

X
s¼�1=2

c ‘
1

2
;�� s, s

� �
‘,�� sj i�ðsÞ,

r̂
� 

‘,�� si ¼ Y‘,��s r̂ð Þ,

�
1

2

� �
¼

1

0

 !
, � �

1

2

� �
¼

0

1

 !
,

c ‘
1

2
;�� s, s

� �
¼
ð�1Þ‘þ��1=2

ð2jþ 1Þ1=2

‘ 1=2 j

m s �

 !
,

where the Y‘mðr̂Þ are (complex) spherical harmonics, �ð� 1
2Þ the so-called spin eigen-

functions [5] and the cð‘ 1
2 ;�� s, sÞ the famous Clebsch-Gordan coefficients [6], which in

turn are related to the Wigner 3j-coefficients [6]. It is important to note that j‘, �� si �(s)

is a tensorial product of functions belonging to different spaces.
Because of the constants of motion J2, Jz, and K¼ (1þ r �L) Equation (73) is

separable with respect to the radial and angular variables, i.e. an eigenfunction of D

belonging to a particular eigenspace of these constants of motions is then of the form

r


�Q� �
¼

R� rð Þ

r
r̂


Q� �

, ð75Þ

where the radial amplitudes R�(r) are solutions of the following differential equation [2,3,7]

1

2
�

d2

dr2
þ
‘ ‘þ 1ð Þ

r2

� �
þ V rð Þ � 	

� �
R� rð Þ

¼
1

4c2
B�2ðrÞ

dV rð Þ

dr

�

r
R� rð Þ þ

1

4c2
	� V rð Þð ÞB�1ðrÞ �

d2

dr2
þ
‘ ‘þ 1ð Þ

r2

� �� �
R� rð Þ

þ
1

4c2
B�2ðrÞ

dV rð Þ

dr

d

dr

� �
R� rð Þ: ð76Þ
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Equation (76) shows a remarkably ‘physical structure’, namely

(1) For c¼1 (non-relativistic limit) this equation is reduced to the well-known radial

Schrödinger equation.
(2) By approximating the elimination operator B in Equation (72) by unity (B¼ 1)

the so-called (radial) Pauli-Schrödinger equation is obtained. The terms on the

right-hand side of Equation (76) are then in turn the spin-orbit coupling, the mass

velocity term, and the Darwin shift.
(3) For B 6¼ 1 relativistic corrections in order higher than c�4, enter, e.g. via the

normalization of the wavefunction.
(4) It should be noted that although all three terms on the right-hand side of

Equation (76) have a prefactor 1/4c2, i.e. are of relativistic origin, the only one,

however, which explicitly depends on a (relativistic) quantum number, namely �,
is spin-orbit coupling.

(5) It should be noted in particular that dV/dr has the unpleasant property of being

singular for r! 0.

7. Comparison to the ‘radial Dirac equation’

Clearly in the case of a central field also Equation (69) can be separated using polar

coordinates, i.e. using the constants of motion J2, Jz, and K¼ (1þ r �L),

r


 ��� �

¼
g�ðrÞ r̂



��� �
if�ðrÞ r̂



���� �
 !

, ð77Þ

g�ðrÞ ¼
P�ðrÞ

r
, f�ðrÞ ¼

Q�ðrÞ

cr
, ð78Þ

where the radial amplitudes P�(r) and Q�(r) are solution of the following differential

equation (in atomic Rydberg units)

dQ�ðrÞ

dr
¼ �

Q�ðrÞ

r
� ð	� VðrÞÞP�ðrÞ, ð79Þ

dP�ðrÞ

dr
¼ ��

P�ðrÞ

r
þ

	� VðrÞ

c2
þ 1

� �
Q�ðrÞ: ð80Þ

This radial differential equation has now to be compared to the one corresponding

to the Pauli-Schrödinger equation (B(r)¼ 1, 8r)

�
d2

dr2
þ
‘ ‘þ 1ð Þ

r2

� �
þ V rð Þ � 	

� �
R� rð Þ

¼
1

4c2
dðV rð ÞÞ

dr

�

r
R� rð Þ þ

1

4c2
	� V rð Þð Þ �

d2

dr2
þ
‘ ‘þ 1ð Þ

r2

� �� �
R� rð Þ

þ
1

4c2
dðV rð ÞÞ

dr

d

dr

� �
R� rð Þ: ð81Þ
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As can easily be seen, Equation (81) is a second-order differential equation, while

Equations (79)–(80) form a system of coupled first-order differential equations.
Remembering now that the key requirement for a proper inclusion of relativity into

quantum mechanics is the condition of relativistic covariance, see in particular

Equations (9)–(10), namely the condition of linearity for a relativistic Hamiltonian, see

Equation (37), when using the correspondence principle (one of the postulates of quantum

mechanics), then one has to arrive immediately at the conclusion that the Pauli-

Schrödinger equation does not meet this requirement. This equation only partially satisfies

the postulates of (relativistic) quantum mechanics! It has, however, the big advantage that

one can immediately prove that in the non-relativistic limit (c!1) the Schrödinger

equation is recovered, a fact which is less easy to see by inspecting the Dirac equation.
It is utterly important not to confuse the ‘large component’ g�(r) in Equation (77) or

for that matter hrj�Qi in Equation (75) with a corresponding solution of the Schrödinger

equation: only in the limit of c!1 can such a relationship be established.

8. A last remark

We all know that nowadays nearly all calculations in solid state physics are performed

using Density Functional Theory (DFT), in particular local DFT. For a magnetic system

the Kohn-Sham-Dirac Hamiltonian is given by

HðrÞ ¼ ca � pþ � I4ð Þc2 þ VeffðrÞI4 þ �zB
eff
z ðrÞ, ð82Þ

where Veff(r) is the effective potential, Beff
z ðrÞ the effective exchange field and

�z ¼
�z 0

0 �z

� �
: ð83Þ

Because LDFT provides Beff
z ðrÞ only with respect to a fictitious z-axis, in order to evaluate

anisotropy energies for example, it is necessary to ‘rotate’ H

SðRÞHðR�1rÞS�1ðRÞ ¼ H0ðrÞ, ð84Þ

where S(R) is a 4� 4 matrix transforming the Dirac matrices 
i, , and �i. Since  is a real

matrix, it can be shown [10] that S(R) is of block-diagonal form,

SðRÞ ¼
UðRÞ 0

0 det½��UðRÞ

� �
, ð85Þ

where U(R) is a (unimodular) 2� 2 matrix and det[�]¼ det[D(3)(R)] is the determinant

of D(3)(R), the latter one being the representation of R in R3. Clearly enough by such

a transformation not only �zB
eff
z ðrÞ is transformed but also ca � p.

On the other hand considering a two-component formulation

HðrÞ ¼ �r2I2 þ�þ VeffðrÞI2 þ �zB
eff
z ðrÞ, ð86Þ

where for matters of simplicity � contains all relativistic correction terms, one easily

can see that of course r2 is unaffected by any rotation in spin space. This implies that by

using a Kohn-Sham-Dirac operator the kinetic energy part is properly transformed
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(a special case of Lorentz group invariance), while in a two-component formulation it is

not. Of course the Pauli-Schrödinger and the Dirac Hamiltonian do have different spectra.

9. Summary

The formal deficiencies of the Pauli-Schrödinger equation discussed above were in the

past always my main arguments for insisting on using directly the Dirac equation and not

some alternative two-component descriptions. Clearly, many more things can be said

about the Dirac equation, see for example [6,10].
Nowadays – it seems – things have changed for very practical reasons as it is much

easier to use the Dirac equation in actual calculations than fiddling around with the spin–

orbit term in the Pauli-Schrödinger equation. The theoretical description of anisotropic

magnetic properties of magnetic nanostructures, even of domain walls, would not have

been possible without this numerical advantage!
To my great satisfaction the use of the time-dependent Dirac equation in the presence

of an external electromagnetic field and of the concept of the so-called polarization

operator led very recently [15] to a quantum mechanically correct identification of

spin currents, spin-transfer, and spin-Hall effects, which in turn will hopefully lead to

a completely new stage in spintronics!
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Notes

1. For a discussion of classical relativistic dynamics see, e.g. the book by Messiah [6].
2. This is exactly the algebra of creation and annihilation operators for fermions.
3. Because of the block-diagonal form of the Dirac matrix .
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